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Abstract. We consider the crossed product or transformation group C*-algebras
arising from actions of the group of integers on a totally disconnected compact
metrizable space. Under a mild hypothesis, we give a necessary and sufficient
dynamical condition for the invertibles in such a C*-algebra to be dense. We also
examine the property of residual finiteness for such C*-algebras.

1. Introduction
Throughout this paper, we let X denote a compact, totally disconnected metrizable
space. Let C(X) denote the C*-algebra of continuous complex-valued functions
on X. We say that a subset E of X is clopen if it is both closed and open, and we
use \E to denote the characteristic function of E. We define a partition of X to be
a finite collection of pairwise disjoint clopen subsets whose union is all of X. Given
a partition SP of X, we let C(2P) denote the finite-dimensional C*-subalgebra of
C(X) which is generated by {XE IE e <?}. Since the clopen sets generate the topology
of X, {JC{0>) is dense in C(X), where the union is taken over all partitions SP.

We let <f> be a homeomorphism of X. We obtain a *-automorphism, also denoted
by <f>, of C(X) by defining </>(/) =/•> f1, for each / in C(X). We will consider
the crossed product C*-algebra C(X)x4,Z obtained from the action of the group
of integers on C(X) generated by </). (See 7.6.5 of Pedersen [4].) It is generated as
a C*-algebra by C{X) and a unitary operator, which we denote by uXd> or by u
when no confusion will arise, satisfying ufu* = <f>(f), for all / in C(X).

We refer the reader to Blackadar [1] for standard facts regarding K- theory for
C*-algebras.

First of all, the AMheory of C(X) is computable since it is an AF C*-algebra
(Effros [3] or Blackadar [1]). Specifically, Kl(C(X)) = 0 and K0(C(X)) is isomor-
phic to C(X, 1), the group of continuous Z-valued functions on X, with positive
cone the non-negative functions. Secondly, we may apply the Pimsner-Voiculescu
six-term exact sequence [6] to completely determine the K-theory of C(X)xrf>Z
(also see Blackadar [1]). We summarize the results in the following theorem.
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198 /. F. Putnam

THEOREM 1.1. (i) Let i denote the inclusion of C(X) in C{X)x4,Z. Then
i%: K0(C(X))-> K0(C(X)xd>Z) is surjective and its kernel is the image of id-0.,.,
considered as an endomorphism of K0(C(X)).
(ii) If X contains no nontrivial clopen <j>-invariant subsets, then Ki(C(X)x^Z) = Z

and is generated by the class of u.

A subset of X is said to be minimal for 4> if it is a minimal non-empty, closed,
4>-invariant set. We let S1 denote the circle and Mm denote the C*-algebra of m
by m matrices.

In this paper, we wish to determine the topological stable rank of the C*-algebra
C(X)x4,Z (denoted tsr (C(X)x<t>Z)). We refer the reader to Rieffel [8] fora complete
treatment of the topic, but we note that from 7.4 of [8], tsr (C(X)x^Z) is either 1
or 2. Also from [8], we see that our original problem reduces to the question of
whether or not the invertible elements of C(X)x4,Z are dense.

We first consider the case when X itself is minimal for <j> in § 2. We show that
given a t , a2,... ,an in C(X)x4,Z and e > 0 , there is a unital C*-subalgebra A of
C(X)x$Z and a[, a'2,..., a'n in A such that ||a, — a||| < e, for i = 1 , . . . , n, and A is
*-isomorphic to

[C(S')®MJ|]©MJ2©- • -®MJK

for some integers Jt, J2, • • •, JK-
This result is of interest in its own right (compare with the definition of AF-

algebra), but as a corollary we show that the invertibles are dense in C(X)x4,Z,
when X is minimal.

In § 3, we turn to the general case. (Actually, we impose the very mild restriction
that X have no nontrivial clopen ^-invariant subsets.) We obtain a necessary and
sufficient condition on (X, <f>) for the invertibles in C(X)x^Z to be dense; namely,
that there is exactly one minimal set for (/>. We also show that these conditions are
actually equivalent to C(X)x4,Z having the cancellation property for finitely gener-
ated projective modules (see Rieffel [8]).

Finally, in § 4, we examine the question of finiteness and residual finiteness of
C(X)x<1,Z. Using the work of Pimsner [5], we produce a necessary and sufficient
condition on (X, </>) for the C*-algebra C{X)xi,Z to be residually finite. We also
produce a somewhat surprising example of a residually finite C(X)xtl,Z where the
invertibles are not dense.

2. The minimal case
Here, we deal with the case when X is minimal for <j>.

THEOREM 2.1. Suppose that X is miminal for <j>. Given a partition 9 of X and an
e > 0 , there is a unital C*-subalgebra, A c C{X)x^,Z, which is *-isomorphic to

[C(5')®My|]©MJ:,©- • -®MJK,

(for some integers Jx, J2,..., JK) and such that C(SP)c A and there is a unitary u'
in A such that II u — u'\\ < e.
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Transformation group C*-algebras 199

The proof is lengthy, so we defer it for the moment while we point out the
following consequences.

COROLLARY 2.2. Suppose that X is minimal for <f>. Given au a2, •. •, an e C(X)xd,Z,
there is a unital C*-subalgebra A c C(X)x4>Z of the same form as in 2.1 and a\,
a'2, . . •, a'neA such that | | a , - a | | | < e, for all i = 1, 2 , . . . , n.

The proof of 2.2 is a trivial consequence of 2.1.

COROLLARY 2.3. If X is minimal for </>, then the invertible elements ofC(X)xd,Z are
dense.

Proof. Given an element a in C(X)x<t,Z and e <0, we find A and a' as in 2.2, with
||a - a ' | | < e/2. From Proposition 1.7, Theorem 3.3 and Theorem 5.2 of Rieffel [8],
we may find an invertible element, a", of A such that | |a"-a ' | | < e/2. Thus, | |a-a" | | <
e and a" is invertible. •

For a C*-algebra B and a positive integer n, we let GLn(B) denote the invertible
elements of Mn®B. Also, GL°(B) denotes the connected component of the identity
in GLn(B).

COROLLARY 2.4. IfX is minimal for <f>, then for all positive integers n, the natural map

is an isomorphism.

Proof. As we noted in Theorem 1.1, Kx(C(X)x4>Z) is generated by the class of u.
Therefore, the natural map above is surjective for all n.

We wish to show that the natural map

GLn(B)/GL°n(B)^Kl(B)

is injective, for B = C{X)x^,Z. Let a be an element of GLn{C{X)x4)Z). It is
well-known that the set of invertible elements in a Banach algebra is open. Together
with Proposition 2.1, this implies that we may find a unital C*-subalgebra Ac
C(X)x<l>Z, as in 2.1, and an element a' in GLn{A) such that a and a' are homotopic
in GLn(C(X)x4,Z). Thus, it suffices to consider the case B = A, with A of the form
in 2.1.

Since A is a direct sum of matrix algebras over C and C(S'), we see that it is
sufficient to consider the cases B = C and B = C(Sl). For the former, GLn(C) =
GL°n(C) and so the result is trivial. As for B = C(5'), we may view elements of
GLn(C(S1)) as continuous functions from S1 into GLn(C) and in this way identify
GLn{C(S1))/GL^CiS')) with 7r,(GLn(C)). In (10.17) on p. 204 of Whitehead [11],
it is shown that ir,(GLB(C)) = Z and that the pathf(t) = e27r[lp + (In-p), for te [0,1],
where p is any rank one projection in Mn, is a representative of a generator of the
group. From this we conclude that the natural map is an isomorphism in the case
B=C(S1). •

Proof of Theorem 2.1. If X is finite, then C(X)x^,Z = C(Sx)®Mj, where J is the
cardinality of X. So the result is trivial in this case.
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200 /. F. Putnam

Let us consider the case when X is infinite. Any finite orbit would be a closed
invariant subset of X and so we see that the action is free. Thus, C(X)x$Z is simple.
(See Theorem 5.15 of Zeller-Meier [12].) It will be useful to have a concrete
representation of C(X)x^Z.

We fix a ̂ -invariant probability measure on X (such a measure always exists—see
Theorem 1, p. 37 of Corfeld et al. [2]), and consider the Hilbert space L2{X),
suppressing the measure in our notation. If Y is a clopen subset of X, there is a
natural decomposition L2(X) = L2{ Y)@L2(X - Y).

We define a covariant representation of our C*-dynamical system as follows. Let
C(X) act on L2(X) by multiplication:

(/£)(*) =/(x)£(x), fo r / eC(X) ,£eL 2 (X) andxeX.

We also define a unitary operator u on L2(X) by

{u£)(x) = t((t>-\x)), for£eL2(X) andxeX.

Then C(X)x</)Z is the C*-algebra generated by C(X) and u. (See 7.6.4 of Pedersen
[4]. We use the fact that C(X)xd>Z is simple to conclude that this representation is
faithful.)

We begin with the partition 9° and e > 0. Choose an integer N > 0 such that
TT/N<E.

Choose a point x0 in X arbitrarily. The points x0, (j>(x0),..., <f>N(x0) are all

distinct so we may choose a clopen neighbourhood Y of x0 satisfying

(i) Y, </>( Y),..., $ N ( Y) are pairwise disjoint, and
(ii) For each n = 0, 1 , . . . , N, the set <j>"{Y) is contained in an element (2.1)

o f <3>.

We will construct an approximation to </>. This technique was first developed by
Versik [9,10] and may be viewed as an analogue of the Rokhlin Lemma [2] in a
topological setting.

We define a function A : Y-»Z by

\(y) = inf{n>l\<f>n(y)eY}, forye Y.

The minimality of (j> implies that the positive itterates of any point are dense and
since Y is open, this is well-defined. It is straightforward to see that A is upper
(lower) semi-continuous because Y is open (closed). Thus, A is continuous. As Y
is compact, so is \(Y). Therefore, A( Y) is finite; say \(Y) = {/,, J2, • • • , /«}• Notice
that by (2.1), each Jk is greater than or equal to N.

We define clopen sets Y(k,j), for each k=l,2,...,K, and each j = 1 , . . . , Jk, by

It is immediate from the definitions that we have

4>(Y(k,j))=Y(k,j+l), for 1 <;</,, (2.2)

U Y(k,Jk)= Y, and (2.3)
k = \

4>(U Y(k, Jk)) = U Y(k, 1) = U Y). (2.4)
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Transformation group C*-algebras 201

It follows from (2.2) and (2.4) that the union of all Y(k, J) is invariant under <f>.
This union is also closed and therefore must be all of X. Thus, {Y(k,j) 11 < k < K,
1 <j<Jk} is a partition of X. It is clear that by dividing up the individual towers,
{Y(k,j) 11 <_/ < / j j , we may make this partition finer than Sf. (This will increase the
value of K, but does not affect any of the properties (2.2)-(2.4)). We do this so that
C ( ? ) c C ( ? 0 ) , where

We now define a finite dimensional unital C*-subalgebra Ao<= C(X)x^,Z. In fact,
Ao will be *-isomorphic to

M / ] 0 M , 2 @ - - - © M J K .

To do this, it suffices to define a system of matrix units by

4 k ) = *v(*.o«'~7.1 ^ fc s K, 1 < 4 7 =s A-

It is straightforward to verify that, for fixed k, {e[k)\ 1 < /,j '</k} forms a complete
system of matrix units for MJk and that the projections

form a partition of unity in C{X)x^Z. Also notice that

C{9f>0) = span {«#> 11 s fc=s A:, 1 < / < 7J ,

so that C(^*)ci Ao. For any positive integer n, Mn is generated (as a C*-algebra)
by the diagonal matrices and the single nilpotent matrix consisting of ones immedi-
ately below the diagonal and zeros elsewhere. In our case, this allows us to observe
that Ao is the C*-subalgebra of C(X)xtt>Z generated by C(S^0) and WA'x-y-

Let us return to the dynamical situation and define homeomorphisms (f>0 and i/*o
of X by

>l>o(x)= , . , _ , ,
forxe y(fc,A)

Observe that ip0 is the disjoint union of K periodic homeomorphisms, and that <j)0

is the identity off of Y. (Its restriction to Y is the first return map of <f> with respect
to y.)

We define unitary operators u0 and v0 on L2(X) by

for £e L2(X) and xe X. It is easily checked that

»o= Z [ l 4^ , + e ^ l ,

so that voe Ao, and that vouo= u so that uoe C(X)xd,Z. Since ^0 = 0 off of V, DO= «
and MO=7 on L 2 ( X - y ) .
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202 /. F. Putnam

We now let Z = Y(1, J,) and repeat the procedure beginning by denning A': Z -» Z
and obtaining X', / ' , , . . . , /'K and clopen Z(k,j) which satisfy conditions analogous
to (2.2)-(2.4). We also insist that the partition 0>, ={Z(fc,j)| 1 < A:< K', l s j s / ^ }
is finer than ^ 0 and that C(Ŝ >

1) contains ^-y.
As before, we obtain a finite dimensional C*-subalgebra, -4,c C(X)x<iZ. (We

will not need to write down matrix units for A,.) As before for Ao, we may describe
A, as the C*-subalgebra generated by C(0\) and u\x-z- Since 9>x => 0>o and Zcz Y,
it is clear that Aoc Ax.

Define homeomorphisms, <£, and i/»1; of X and unitaries, M, and v,, on L2(X)
in an analogous way so that M = vxux, V, e A,, M, e C(X)x(<,Z and U] = u and «, = /
on L 2 (X-Z) .

The unitary operator U! is the identity except on

so the C*-algebra generated by Ao and M, will be of the desired form (as in (2.1))
and will contain C(2P) as desired. (This will be shown later.) However, it will not
have an approximation to u. Now vxux = u, but vx is in A, and not in Ao. We will
apply Berg's technique (see Lemma 1 of Versik [9]) to produce a unitary z in Ax

such that zvoz* approximates u,. We will do this with sufficient care so that z
commutes with ux and with C(^). Then the C*-algebra generated by zAoz* and
Mj will have all the desired properties.

Consider the unitary operator vtv* e Aj. From the conditions above, vxv* = I on
L2(X — <f>(Y)). Since it is contained in a finite dimensional algebra, its spectrum is
finite and we may find we Al5 which is a unitary operator on L2(4>(Y)) such that
wN = VjV* and such that | |w- / | | < TT/JV< e.

Recalling that u carries L2(<£J( Y)) isometrically onto L2(^+1( Y)) for 0<) < N,
define a unitary operator zeA, by

uiwN-Ju~J onL 2 (^

onL2(X-(<p(Y)U---U<t>N(Y))). (2'5)

We consider the operator zvo-vxz. For 0<j<N, this operator carries L2($J(Y))
into L2(<f>J+l( Y)). First, let us consider the operator on L2(Y), where z = /. Now
v0 carries L2( Y) onto L2(<f>( Y)), where z = wN = v^S, by 2.5. Therefore,

Next, let us take l<j<N and consider zt)0-fiz|L2((/)j'( Y)). Recall that
z\L\<j>i( Y)) = uJ~lwN-j+xul-j. Also note that v0 carries L2(<t>j( Y)) onto L2(4>J+l( Y))
w h e r e z = M J H ' N ~- 'M~ J . F ina l ly , o n L2(</>^(Y)), we h a v e vo=u = v]. Pu t t ing th is
t o g e t h e r , w e o b t a i n

(zvo-Vlz) I L2(4>J( Y)) = uiwN~'u~)u - uui~'iwN-i+xux-J

= ujwN-i(I-w)ui~J.

From this we see that

\\{zvo-vlz)\L2(<f>j{Y))\\ = \\I-w\\<Tr/N<e.
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Thirdly, it is immediate from the definitions that on

L2(X-(Yu<f>(Y)u- • •v<f>N(Y))),v0=u = v, andz = /, so zt)o-u,z = 0.

Altogether, we conclude that \\zv0- vtz\\ < e. Then we have

||zt>oz*Mi-!>!«, || = | |zfo-fiz|| <e- (2.6)

As we noted earlier, C (? ) cA 0 , We now wish to show that z commutes with
each element of C{Sf). This follows immediately from the following two facts.
First, z leaves invariant L2((/>j(Y)), for each 7 = 0, 1 , . . . , N, and z = I on
L 2 (X-(Vu- • -u0 N (y ) ) ) . Secondly, Y was chosen so that 4>J(Y) is contained
in a single element of 9, for each j = 0, 1 , . . . , TV. (This means that each feC(SP)
acts as a multiple of the identity on each L2(<f>J(Y)).)

Let A be the C*-algebra generated by zAoz* and «,. We claim that A satisfies
the properties of Proposition 2.1. First, C(^)c; Ao and z commutes with C(^) , so
C(0*)c= A. Secondly, voeAo, so M' = (zt)0z*)M,e A and | |u'-u| | < e, from (2.6). All
that remains to be shown is that

Since z = / on L2( Y) (2.5) and u, = I on L2(X — Y), z and u, commute, so A is
unitarily equivalent (via z) to B, the C*-algebra generated by Ao and «,. Let

Then u is a unitary operator in B. It is clear that u and Ao generate B (as a
C*-algebra). Moreover, u commutes with Ao and upk=pku=pk for all fe>l. All
that needs to be shown now is that sp(u) = spiu^ = S1. Recall that u = t;^,, so that
in X1(C(X)x<tZ), [W] = [UI] + [M,]. AS we noted in § 1, [«]^0, while [t?,] = 0 since
Vi e A,, which is a finite dimensional C*-algebra. Thus, [u j 5̂  0 and so sp{ui) must
be the entire circle.

This completes the proof of Theorem 2.1. •

3. The general case
We now examine the general case. We will make the simplifying assumption that
X has no non-trivial clopen </>-invariant subsets. (Note that if Y c X is clopen and
0-invariant, then

C(X)Xtt,Z = [C(Y)x+Z]®[C(X- Y)Xtt)Z].)

Recall that a C*-algebra A is said to have the cancellation property if, whenever
U, V and W are finitely generated projective left A-modules such that U® W= V®
W, then we have U =V.ln terms of projections, this says that whenever projections
p and q in A (or Mn®A) determine the same element in K0(A), then they are
actually unitarily equivalent. We refer the reader to Rieffel [8] for a more complete
treatment.

THEOREM 3.1. Suppose that X has no non-trivial, clopen, (^-invariant subsets. The
following are equivalent.
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204 /. F. Putnam

(i) The invertible elements in C{X)x4,Z are dense.
(ii) The C* -algebra C(X)x<t,Z has the cancellation property.

(iii) There is a unique minimal set for <f>.

Remark. Regarding condition (iii), a standard Zorn's Lemma argument shows that

there is always at least one minimal set.

Proof. The implication (i)=>(ii) is valid for all C*-algebras. (See Blackadar [1].)
Let us now show that (iii)=»(i). Let us denote the unique minimal set by Y.

Consider the following short exact sequence (see Zeller-Meier [12]).

0 -» C0(X - Y)x^L -U C{X)xi,Z A C( Y)x<t>Z — 0.

For brevity, we shall denote these C*-algebras by /, A and B, respectively.
If x is any point of X, the set of accumulation points of {$"(x) | n e Z} is closed

and </>-invariant and therefore must contain Y. We conclude that Y satisfies the
condition that UneZ </>"( W) = X, whenever W is a clopen set containing Y. So by
Theorem 2.2 of Poon [7], / is an AF-algebra. We conclude that the invertible
elements in the unitalized C*-algebra I~ are dense. From Corollary 2.3, we also
know that the invertible elements of B are dense. From Corollary 2.4, we see that
every invertible in B has the form uk

Y$v, where k e Z and v e GLi(B), Clearly, uY<b

lifts to ux<pe A and it is well-known that every element of GL°(B) may be lifted
to something in GL°(A) (3.4.4 of Blackadar [1]). We conclude that every invertible
in B may be lifted to an invertible in A.

We are now ready to show that the invertibles in A are dense. Let aeA and
e > 0. There is an invertible fee B such that | |q(a)-fe| | < e / 3 and there is an invertible
c e A s u c h t h a t q ( c ) = b. S i n c e \ \ q ( a ) - q ( c ) \ \ < e / 3 , w e m a y find d e l s u c h t h a t
| | a - c - d | | < 2 e / 3 . We may find an invertible eel~ such that ||(l + c~ 1 d ) -c | |<
e/3||c||. Then ce is invertible and

\\a- ce|| < | | a - c ( l + c~1d)|| + ||c|| ||(1 + c " ' d ) - e | | < 2 e / 3 + e/3 = e.

Finally, we consider (ii)=>(iii). Suppose that (iii) is false. That is, there are (at
least) two distinct minimal sets, Y, and Y2, for <j>. Since these are distinct, Yx n Y2

will be a proper subset of either Y, or Y2. Moreover, it is closed and ^-invariant
so, by the minimality of Y, and Y2, must be empty. We consider the short exact
sequence

0 -» C0(X - Y, - Y 2 ) J ^ Z -!» C(X)x^Z -^ C{ Y, u Y2)x*Z -» 0.

Again, we denote these C*-algebras by /, A and B, respectively, and note that
C( Y, u Y2)X<t,Z is *-isomorphic to [C( Y,)x(<,Z]©[C( Y2)x^Z]. Thus, Kt(B) = Z 0 Z ,
and is generated by the classes of

UI = UY^Y2,,,XY1+XY2 and u2= UYI^Y2^XY2 + XY,-

It is clear that q^: Kl(A)^Kl(B) takes [uK4>] to [uYl^Y2,>>] = [u1u2]. Recall that
["x,*] generates Ki(A) so we see that [M,] is not in the image of q% and so d[wi] ^ 0,
where d denotes the index map K,(B)-» K0(I). Let us compute d[u,]. Let E be any
clopen set in X containing Y, and disjoint from Y2. Let F = X — (E u <j>(E)). Note
that since </>( Y2) = Y2, </>(£) is also disjoint from Y2 so Y2c F. Let a = UX.^E + XF-
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Then a is a partial isometry in A with a*a -XE^F and aa* = X^E^F- Also note
that q(a) = ux. So, d[ul] = [x<t,(E)-E]-[XE-j>(E)]- Denote the projections by p, and
p2, respectively. Note that they are both elements of /. As we have already observed
[/»i]-[j>2] = 3[»]*0 in K0(I). However, in K0(A), [i(p,)]-[i(p2)] = «*3[i#,] = 0.
Suppose that there is a unitary win A such that wpx w* = p2. Then wpx is a partial
isometry in / (since px e /) with (wpx)(wpx)* = p2 and (wpx)*(wpx) =p, . This would
imply [/>2] = [Pi] in ^oU)- We conclude that while px and p2 determine the same
class in K0(A), they are not unitarily equivalent. Therefore, A fails to have the
cancellation property. •

4. Residual finiteness
In this section, we examine the relationship between the results of § 3 and the
property of residual finiteness of the C*-algebra C{X)x4>Z. We take a moment to
discuss, in general terms, why this is relevant. There are two canonical types of
examples of unital C*-algebras in which the invertibles are not dense: C(M),
where M is a compact metrizable space whose dimension is at least two (see Rieffel
[8]) and any C*-algebra containing a non-unitary isometry. Recall that a C*-
algebra, A, is called finite if every isometry in A is actually a unitary. Let us take
this second phenomenon one step further. A unital C*-algebra, A, is called residually
finite if every quotient of A is finite. If A has a quotient, A/1, which is not finite,
then the invertibles in A/1 are not dense and it follows that the invertibles in A
are not dense. We summarize by saying that there are two obstructions to the
invertibles in a C*-algebra being dense: a topological one and finiteness one.

In our situation, X is zero-dimensional and the group Z has a one-dimensional
dual. The C*-algebra C(X)x4,Z is a 'non-commutative X xZ = X xSu, which is
one-dimensional. Thus, one would not expect 'topological' obstructions to the
invertibles being dense, only finiteness. However, we shall produce an example of
a C{X)x4,Z which is residually finite and yet the invertibles are not dense.

We begin with a necessary and sufficient dynamical condition for C(X)x4>Z to
be residually finite. This is a more or less straightforward consequence of a result
of M. Pimsner.

We begin by making some definitions. Fix a metric d on X. For a positive real
number e, and points x and y in X, an e- chain from x to y is a finite sequence of
points (x,, x2,... ,xn) in X such that xx = x, xn= y and d(</>(x,), x,+1)< e, for i = 1,
2 , . . . , « - 1. A point x in X is chain recurrent for <j> if, for every e > 0, there is an
e-chain from x to x (of length at least two).

We remark that a point of x may be chain recurrent for <j> in X, but not when
considered as a point in some ^-invariant closed subset of X, since the e-chains
may not lie in the subset.

For any x in X, we let w+(x) and w (x) denote the accumulation points
of {</>"(x)|n>0} and {<£"(x)|/i<0}, respectively. These are both closed and
<£-invariant.

THEOREM 4.1. (Pimsner [5].) The C*-algebra C(X)xd>Z is finite if and only if each
point of X is chain recurrent for </».

https://doi.org/10.1017/S0143385700005484 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005484


206 /. F. Putnam

Pimsner actually showed much more; namely that these conditions are equivalent
to C{X)x4,Z being AF-embeddable.

THEOREM 4.2. The following are equivalent.
(i) C{X)x$Z is residually finite.

(ii) For every x in X and every e >0, there is an e-chain, (x,, x2,..., xn), from x to
x, with each JC, e {<£"(x) | n e Z}.

(iii) For each x in X, co+(x) n (o~(x) is not empty.

Proof. (i)=>(iii). We prove the contrapositive. Suppose there is an x in X with
u>+(x)na)-(x) empty. Let Y = {</,"(x)| n e Z J u w + (x)u a>~(x) and let E =
{(/>"fx)|n>0}u(u+(x). Then C{Y)x^,Z is a quotient of C(X)x^Z which contains
"Y.^XE+XY-E which is a non-unitary isometry. The proof of (iii)=>(ii) is straight-
forward, so we omit it.

(ii)=>(i). We need to show that for any ideal / in C(X)x<f,Z, the quotient
C(X)x#Z/1 is finite. We begin with the following special case. Suppose Y a closed
^-invariant subset of X. We consider / = C0(X - Y)x,,,Z. In this case, C(X)x<t>Z/I =
C(Y)Xj,Z and we will apply 4.1. Let x be any point in Y. Since Y is ^-invariant,
the entire orbit of x under <f> is in Y. Therefore, by (ii), we can find, for any e > 0,
an e-chain from x t o x within Y. By 4.1, C(Y)x<t,Z is finite.

As for the general ideal /, let us suppose that the quotient C{X)x4>Z/1, which
we denote B, is not finite. Then we may find an irreducible representation IT of B
(and also of C(X)x<j>Z) on the Hilbert space S€ such that ir(B) is not finite. By
analyzing TT\C(X), it can be shown that S€ is isomorphic to L2(X, / i), for some
(possibly infinite) ^-invariant measure /xonX and C(X) is represented on L2(X, /A)
as multiplication operators. Since TT{B) is not finite, ffl cannot be finite-dimensional.
Thus, Y = support (p) is closed, </>-invariant and infinite. Since IT is irreducible, Y
must contain a point whose orbit under <f> is infinite. We conclude that n{B) is
actually *-isomorphic to C(Y)x<t>Z, which we have already seen is finite. This
contradiction establishes the result. •

We conclude by giving an example of X and <f> such that C{X)x4>Z is residually
finite but the invertibles are not dense.

We provide a picture of X in figure 1. Each box is a clopen set. The points x0

and x, are fixed by </>. Also, <f> is such that ^ ' ( E ^ c E , <f>(Et) = E2, <J>{E2)GF,

x0 ,

FIGURE 1
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FIGURE 2

<£~'(F,) c F, <p(F]) = F2 and <A(F2) c £. We also show a 'finer' picture of X in figure
2, with arrows indicating </>.

From these figures, one can continue inductively to give a rigorous definition of
4> and X. It is clear that there are no clopen 0-invariant subsets of X, while {x0}
and {xj are each minimal sets for <j>. Thus, the invertibles in C{X)x4>Z are not
dense. It can also be seen that, for any x in X, ai+(x) n a>~(x) contains either x0 or
x, (or both) and so C{X)x<l,Z is residually finite.
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