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ANALYTIC SETS, BAIRE SETS AND 
THE STANDARD PART MAP 

C. WARD HENSON 

The problems considered here arose in connection with the interesting use by 
Loeb [8] and Anderson [1], [2] of Loeb's measure construction [7] to define 
measures on certain topological spaces. The original problem, from which the 
results given here developed, was to identify precisely the family of sets on 
which these measures are defined. 

To be precise, let <̂ # be a set theoretical structure and * ^ a nonstandard 
extension of ^f, as in the usual framework for nonstandard analysis (see [10]). 
Let X be a Hausdorff space in <Jlt and stx the standard part map for X, defined 
on the set of nearstandard points in *X. Suppose, for example, /x is an internal, 
finitely additive probability measure defined on the internal subsets of *X. 
Loeb's construction defines a standard measure %t by letting °n(B) = st(/x(5)) 
for internal B and then extending in a unique way to a countably additive 
measure. This measure is defined on all sets in the c-algebra generated by the 
internal sets. Loeb and Anderson use stx as a measure preserving map to define 
a measure v on X by 

v(S) = Mstx-HS)). 
The question considered here is: for which sets S is v(S) defined? That is, when 
is stx~

l(S) in the a-algebra generated by the internal sets? We give a complete 
answer (Theorem 2) when X is completely regular (which includes all the 
specific cases where this construction has been used). Namely, stx - 1(^) ls m the 
cr-algebra generated by the internal sets if and only if S is a Baire set in some 
(every) compactification of X. In particular, when X is compact, then the 
measure v is defined exactly on the Baire sets. When X is a complete metric 
space, then v is defined just on the separable Borel sets. 

In general it is useful to consider the situation where the internal measure /x 
is only defined on subsets of an internal set A which satisfies stx(A) = X. For 
example, A is often taken to be a *-finite set and /x to be given by a system of 
weights assigned to the elements of A. Thus we are led to ask when A P\ stx"-1 (S) 
is in the cr-algebra on A generated by the internal sets. This turns out to be 
independent of which set A is used, as long as it satisfies stx(A) = X. 

This also leads to consideration of another interesting question: which 
subsets of X are of the form stx(B), where B is in the cr-algebra on *X generated 
by the internal sets? (See Theorems 1 and 4). 
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664 C. WARD HENSON 

In answering these questions it is necessary to introduce the Souslin opera
tion, applied both to subsets of X and to subsets of *X. We let Seq denote the 
set of finite sequences of positive integers and let a range over all infinite 
sequences of positive integers. Given any family Ĵ ~ of sets, S is derived from Ĵ ~ 
by the Souslin operation if there is a system of sets (Fs\ s £ Seq) from Ĵ ~ so 
that 

S = U a C\n Fa\n-

(Here a\n is the finite sequence a(l), a(2), . . . , a{n).) Let Sf (<^~) denote the 
collection of all 5 which can be derived from #~ by the Souslin operation. We 
will make use of a number of well known facts about 5 ^ ( J r ) and the Souslin 
operation. For an exposition of this theory see [3] and [9]. The first of these 
facts is that 5^ (^) is already closed under the Souslin operation. In particular, 
it is closed under countable unions and intersections. If J ^ i s an algebra of sets, 
as will be true below, then t5^7(Jr) contains the o--algebra of sets generated by 
J^. That is, for each set B in that c-algebra there exist sets (As\ s £ Seq) in Ĵ ~ 
such that 

B = u« nnAaln. 
This direct and explicit representation of B will be of considerable importance 
below, where ^ is a family of internal sets. 

The second general fact about the Souslin operation which is useful here is 
the basic separation theorem for Sf \^) where J ^ is a semi-compact system of 
sets. (Theorem III. 14 of [9].) Our application of it here is to show that a set B is 
in the cr-algebra generated by the internal sets if and only if both B and its 
complement can be represented as above using the Souslin operation applied to 
internal sets. 

Another important separation theorem which we use here is due to Z. 
Frolik [5, Theorem 5]. It states that if X is a compact Hausdorff space and 
S Q X, then 5 is a Baire set in X if and only if S and X\S are derived from the 
closed subsets of X by the Souslin operation. 

We assume that the reader is familiar with the basic framework of non
standard analysis (see [10]). For convenience we make a strong saturation 
assumption about *^#, as is done in [10]. Namely, we assume that * ^ is K-
saturated for some cardinal number K which is greater than the cardinality of 
any set in < #̂. WThile the amount of saturation needed below varies from one 
result to the next, we leave to the interested reader the (easy) job of finding out 
in each case what is the minimum saturation assumption required for the proof 
to be valid. We adopt the following notation and terminology, most of which is 
familiar. A space is a completely regular, Hausdorff space. These are the only 
topological spaces we consider, and we assume that all spaces mentioned are in 
*Jt. Given a space X and its counterpart *X in * ^ , the standard part map for X 
is denoted by stx . (When X is the space of real numbers we just write st.) 
Also ns(*X) denotes the set of nearstandard elements of *X. Given any set 
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B Ç *X, stx(B) is the set {% G X\ for some p t B, stx(p) = x}. For 
S Ç X, s t x - 1 ^ ) is the set of nearstandard points {p £ *X\ stx(p) G S}. Both 
of these set mappings are used extensively below. 

Given a space X as above, recall that a subset of X is a Baire set if it is in the 
o--algebra on X generated by sets of the form 

{x £ X\ f(x) SOL] 

where/ is any continuous real-valued function on X and a is any real number. 
When X is a metric space then every closed set can be written in this form and 
so the Baire sets coincide with the Borel sets. 

The following Lemma gives the key property of the standard part map on 
which most of this paper rests. This ''descending chain" property also holds 
for many other kinds of functions and thus many of the results proved here are 
true in a more general setting. For example, see [6, Theorem 4] for a result 
about Loeb measures proved using the techniques developed here. They also 
apply to the quotient mappings which arise in the theory of nonstandard hulls 
of uniform spaces or locally convex spaces. 

LEMMA 1. If Ai ^D A2 ^2 . . . is a decreasing chain of internal subsets of *X, 
then 

stx (nnAn) = nnstx(An). 

Proof. It is clear that the left side is contained in the right side of this equa
tion. For the other direction, suppose x £ stx(An) holds for all n G N. Let Û be 
a fundamental system of open neighborhoods of x, so that the monad of x is 
C\{*V\ V (z Û}. Our blanket saturation assumption implies that we have 
card( Û) < K, where *<srff is /c-saturated. For each n £ N and V Ç 0 let 

s(n, v) = \p £ *x\ p e Ann*v\. 
Given finitely many Vi, . . . , Vk £ © and ni, . . . , nk £ N, we let V = 
V\ C\ . . . f~\ Vk and n = max(wi, . . . , nk) ; then 

s(nl9 v1) r\... n s(nk, vk) 2 {p e *x\ p e An^*v\ 
which is nonempty since x £ stx(An) and V is an open neighborhood of x. 

By the saturation assumption, there exists p G *X such that p G S(n, V) 
holds for every n £ N and V £ Û. That is, p Ç f\ An and p £ *V for every 
V G ©, so that stx(^) = x. This shows that x is an element of the left side of 
the equation to be proved. 

THEOREM l.IfB is derived from the internal subsets of *X by the Souslin oper
ation, then stx(B) is derived from the closed subsets of X by the Souslin operation. 
In particular, this is true if B is in the o-algebra on *X generated by the internal sets. 

Proof. Let (Es\ s £ Seq) be a family of internal subsets of *X such that 

B = U« Dn Ea\n. 
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We may assume that Es 2 Et whenever s ^ t. Then 

StX(B) = UaStX(nnEa\n) = U a f \ s t x ( £ a | J 

by Lemma 1. Thus stx(B) is derived from the sets (stx(Es)\ 5 Ç Seq) by the 
Souslin operation. Luxemburg has shown that, under our saturation assump
tions, stx(A) is closed in X whenever A is an internal subset of *X. (Proof. 
Suppose x (? stx(A) and let Û be a fundamental system of open neighborhoods 
of x in X. Now A does not intersect the set P|{*F| V Ç Û}. Hence, by our 
saturation assumption, there exists V £ Û so that A P *V = 0. But then A 
is disjoint from the monad of any y G V and so V is an open neighborhood of x 
which is disjoint from stx(^4)). Therefore, stx(B) is derived from the closed 
subsets of X by the Souslin operation. 

We remark that Lemma 1 and Theorem 1 are valid for any Hausdorff 
topological space X. However the results which follow below seem to require 
stronger hypotheses. Thus we have made the general restriction here only to 
consider completely regular, Hausdorff spaces. 

Our next result gives a complete answer to the question of which sets 5 have 
stx"1 (S) in the cr-algebra generated by the internal sets. For a compact space X 
these are just the Baire sets; for a general space the situation is a little more 
complicated. 

THEOREM 2. Let A be an internal subset of *X which satisfies stx(A) = X. For 
each S Ç X the following conditions are equivalent: 

(i) A P stx~~l(S) is in the a-algebra on A generated by the internal sets. 
(ii) For every space Y ~^_ X in which X is dense, S is a Baire set in Y. 

(iii) For some compact space Y 3 X, S is a Baire set in Y. 

Proof. First we consider a space Y which contains X as a dense subspace. 
Note that if p £ *X and x G X, then sty (£) = x holds if and only if stx(p) = x. 
Thus for any set Z C X, sty-^Z) = *X H s t x " 1 ^ ) . Also, we have 

X = stx(A) Q stY(A); 

since stF(^4) is closed in F, we conclude that stY(A) = F. 
Now we prove (i) implies (ii). Let B = A Pi s t x

_ 1 (5) , which equals 
A r\ s tF

_ 1 (S) by the argument above. Also this shows S = stY(B) and 
Y\S = sty (A\B). Since both B and A\B are in the o--algebra on A generated by 
internal sets, Theorem 1 implies that 5* and Y\S are both derived from the closed 
subsets of F by the Souslin operation. This holds whenever F contains X as 
a dense subspace. 

Consider such an extension F of X and let Y be any compact space con
taining F as a dense subspace. The argument above shows that 5 and Y\S are 
derived from the closed subsets of F by the Souslin operation. Therefore by the 
Baire Separation Theorem due to Z. Frolik [5, Theorems 3 and 5] 5 is a Baire 
set in F. It follows that 5 is a Baire set in F, proving (ii). 
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Evident ly (ii) implies (iii). To show tha t (iii) implies (i), let 7 be a compact 
space which contains X and in which 5 is a Baire set. We may assume t h a t X is 
dense in F, passing to the closure of X in F if necessary. Now the set of subsets 
of X which satisfy (i) is evidently a c-algebra on X. T h u s we need only show 
tha t (i) holds for S of the form 

s = {x e x\ f(%) = o} 
w h e r e / : F—> R is continuous. But for this S, 

AHstx-^S) = Ar\stY-l(S) 

= {P£A\ st (*/(£)) = 0} 

= Un{ptA\ \*f(p)\ < \/n) 

which is a union of internal subsets of A. 

This last calculation and others of a related kind occur first in [7]. The 
observation t ha t when X is a compact space, then stx~

l{S) is m the a-algebra 
generated by the internal sets a t least when 5 is a Baire set, is used repeatedly 
in the work of Loeb and Anderson. Note t ha t the assumption tha t A C\ stx~

l (S) 
is in the cr-algebra generated by internal sets turns out to be independent of A 
(as long as A is internal and stx(A) = X). T h a t is, any such condition implies 
the apparent ly stronger condition tha t stx~

l(S) is in t ha t cr-algebra. Moreover, 
the proof of Theorem 2 shows t ha t when such a condition is t rue of S, then 
s t x - 1 ^ ) is actually in the o--algebra on *X generated by s tandard sets *Z, 
where Z is the zero-set of some continuous func t ion / : X —» R. 

Frolik [5] has called a space X bianalytic if there exists a compact space F 
containing X such tha t X is a Baire set in F. (See also the exposition in 
[4, Chapter 9] where these spaces are called absolute Baire Spaces.) Evident ly 
any set S satisfying the conditions in Theorem 2 is bianalytic. 

COROLLARY 2.1. Let A be an internal subset of *X such that stx(A ) = X. Then 
A C\ ns(*X) is in the a-algebra on A generated by the internal sets if and only if X 
is a bianalytic space. 

Proof. This is immediate from the equivalence between (i) and (iii) in 
Theorem 2 (for 5 = X). 

All bianalytic spaces are Lindelôf and therefore a metrizable bianalytic space 
is separable [5]. These spaces are exactly the separable, metrizable spaces X 
with the property t ha t if F is metrizable and has X as a subspace, then X is a 
Borel set in F. Such spaces are called absolute Borel spaces in [4], where an 
exposition of their properties can be found. For our purposes, the essential 
feature of the metric case is t ha t the "dense subspace" requirement in condi
tion (ii) of Theorem 2 can be dropped. T h a t is, if F is a metrizable space and X 
is a bianalytic subspace of F, then X is a Borel set in F, not jus t in the closure 
of X. T h u s Theorem 2 can be restated in the metric case as follows: 
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COROLLARY 2.2. Let X be metrizable and let A be an internal subset of *AT which 
satisfies stx(A) = X. For any S C X, A Pi s t x - 1 ^ ) ^ in the a-algebra 
generated by the internal subsets of A if and only if S is separable and is an 
absolute Borel space. 

We remark that a separable, complete metrizable space is an absolute Borel 
space. Moreover, if Y is an absolute Borel space and X is a Borel subset of Y, 
then X is also an absolute Borel space. 

A space X is analytic if there exists a compact space Y 2 X such that X is 
derived from the closed subsets of Y by the Souslin operation. This implies 
that for any space F 3 I , the same derivation of X from closed subsets of Y is 
possible. (See [5] for an exposition and references. We have presented a 
definition best suited to the point of view taken here.) 

COROLLARY 2.3. Let A be an internal subset of X which satisfies stx(A) = X. 
If S C X and A P st^-*1 (S) is derived from internal subsets of A by the Souslin 
operation, then S is analytic. 

Proof. Since X is completely regular, it is dense in some compact space Y. 
Also, as shown in the proof of Theorem 2, stF(^4) = Y and A P st^""1^) = 
A P s t x - 1 ^ ) . Therefore S equals stF(^4 P stY~~l(S)) and Theorem 1 implies 
that S is derived from the closed subsets of Y by the Souslin operation. Hence 5 
is analytic. 

In many cases the converse to Corollary 2.3 is true. For example, it is true if 
X is a compact space in which every closed set is a GB (the perfectly normal 
compact spaces). In that case, if C is a closed set in X then C = Pin Vn for 
some open sets Vn and therefore stx~

l(C) = Dn *Vn. Moreover, if S = 
U« C\n Ca\n is an analytic set in X then 

S t x - K S ) = P l « U n S t x - H C a l » ) 

which is therefore derived from the internal subsets of X by the Souslin 
operation. 

This also shows that the converse to Corollary 2.3 is valid for any space X 
which has a perfectly normal compactification. For example, it is true when X 
is a separable metric space. However, the converse to Corollary 2.3 is false in 
general and we do not know exactly which topological condition (if any) is 
equivalent to the nonstandard condition on 5 given there. The following result 
suggests that the correct condition may be that S can be derived from the 
Baire sets by the Souslin operation (in every extension of X). 

THEOREM 3. Let A be an internal subset of *X such that stx(A) — X. If S is a 
compact subset of X and A C\ s t ^ - 1 ^ ) can ^e derived from the internal subsets of A 
by the Souslin operation, then S is a G$ set. 
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Proof. Let © be the family of all open sets in X which contain S. Since S is 
compact 

s t x - i ( 5 ) = n { * F | F G €] and so 

A nstx-KS) = C\{A n*v\v G &\. 

This set is therefore the intersection of fewer than K internal sets, where *^# is 
K-saturated. It follows that if (Bn\ n G N) are internal sets and A C\ stx~

l(S) (~\ 
On Bn = 0, then there exist Vi, . . . , Vn G © and K N such that 

Ar\*v1r\.. .r\*vnr\Blr\.. .r\Bk = 0. 
Now suppose A C\ stx_1(^) is derived from internal subsets of A using the 

Souslin operation. Let s$ § be the countable algebra of subsets of A generated by 
the internal sets used. All sets in se\ are internal. Let seY = {B G s/$\ 
^ H s t x - U S ) QB}; we claim that A H s tx" 1 ^) = f W o ' . If not, there 
exists £ G f W o ' with £ G A H s t x " 1 ^ ) . Let J / 0 " = {B G J / 0 | £ G 5} and 
let P = n ^ V ' . The set P has the property that, for each B G s/0j either 
P Q B or P f~\ B = 0. Since A H stx -1(S) is derived from sets in J / 0 by the 
Souslin operation, it follows that P Q A C\ s tx" 1 ^) or P C\ A C\ s t * - 1 ^ ) = 0. 
Since p G P the first is impossible. Therefore, by the saturation argument 
given above, there exists B G seV such that 5 H ,4 H s tx^ 1 ^) = 0- But then 
^4\P is in s/0'. This implies p G ^4\P and p d B, which is impossible. 

Thus we have shown that there exist internal sets (Bn\ n G N) such that 

n ^ n * F | F G 0\ = Anstx-'(s) = nnBn. 

By a familiar saturation argument it follows that there exist V\ 2 V2 2 • • • • in 
^ so that A C\ s t x - 1 ^ ) = C)n {A C\ *Vn). Also, since 5 is compact we may 
assume that Vn contains the closure of Vn+\ for every n G N. Then applying the 
standard part function shows (Lemma 1) that 

5 = n„ vn, 
which completes the proof. 

The method used in proving Theorem 3 actually proves the following, more 
general result, which fits with the methods of [6] : Let Ĵ ~ be a filter of subsets of 
X in ^ # and let J^0 be a countable algebra of internal subsets of *AT; then the 
filter monad of #~ (= H{*S\ S G ̂ H ) is in the complete Boolean algebra of 
subsets of *X generated by s/0 only if Ĵ ~ has a countable basis. 

For completeness we include here a strong converse to Theorem 1 for spaces 
without isolated points. It shows that the introduction of the Souslin operation 
was necessary for solving our original problems. The requirement that X have 
no isolated points may not be needed at all in this result. We know that the 
same result can be proved under the hypothesis that X has only countably 
many isolated points, but we have chosen to omit the extra details. We do not 
know what happens in general if there are uncountably many isolated points. 
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THEOREM 4. Let X be a space with no isolated points and let A be an internal 
subset of *X such that §tx(A) = X. For each S C X which is derived from the 
closed sets in X by the Souslin operation, there exist internal subsets of A (Amn\ 
m, n G N) such that S = s t x ( P u Un Amn). 

Proof. First we introduce some notation. Given a set B C *X} write 
stx(B) = T to mean that stx(B) = T and for each x G T there exist infinitely 
many p G B which satisfy stx(p) = x. 

Note that if A and X are as stated, then stx(A) = X must hold. (Indeed, 
given x G X let ^ be a fundamental system of open neighborhoods of x. Since x 
is not an isolated point, for each V G Û the set A P\ *F must be infinite. 
Using the saturation assumption it follows that 

A n stx-H*) = 4 n n{*F| F G ^} 
is also infinite, as claimed). 

Now we will prove the following technical fact: 

LEMMA 2. A ssuTYie B is internal, stxCS) = T\ and T2 is a closed subset of 2 \. 
Then there exist disjoint internal sets B\,B2 contained in B such that stx(Bj) = Tj 

for j = 1 and 2. 

Proof. The proof is a straightforward saturation argument. First choose 
disjoint sets Di, D2 contained in B such that stx (Dj) = T j and for each x G T j 
there are exactly Ko elements in Dj C\ stx~

l(x) (j = 1, 2). Note that * ^ is 
K-saturated for a cardinal K > card(I}i U D2). 

Let © be the family of all open sets V whose closure is disjoint from T2. 
Since X is completely regular, X\T2 = U { F | V^ Û). Since © is a standard 
family in ^# , *<̂ # is ^-saturated for a cardinal K > card( Û). Note that for 
each x G X, if x G 2̂ 2 then the monad of x, s t x - 1 ^ ) is disjoint from *F for 
every V G €?; if x G ^2 then the monad of x is contained in *F for some 
V G €. 

Now we will show that there exists an internal set B2 Cl B such that D2 C Z?2, 
D i n 5 2 = 0 and B2 H *F = 0 for every F G ^ . Using the saturation 
principle, it suffices to consider finitely many objects, a1} . . . , am G £>i, fri, . . . , 
bn G #2 and Fi, . . . , Vk G ^ , and to find an internal set B' Q B such that 
61, . . . , 6n G JB', ai, . . . , am G 5 ' and 5 ' H (*Fi U . . . U *7*) = 0. But 
B' = B\(*Vi VJ . . . U *Fyt VJ {ai, . . . , am}) satisfies these conditions. (Since 
each bj is in the monad of a point in T2l it is outside of *F for every FG ^ . 
Since Di r\ D2 = 0, no bj is equal to any at. Thus bi, . . . , bn are all in i?'. The 
other requirements are obviously met.) Thus such a set B2 exists; we let 
Bi = B\B2. Then B\, B2 are disjoint and D5 C 1 -̂ for j = 1, 2. Thus 
stx(^Sj) 3 stx(Dj) = ^ for eachj. Moreover, BxQ B so we have s t x (^ i ) = T\. 
Also since B2 is disjoint from *F for each V G ^ , it follows that stxC^2) is 
disjoint from F. Therefore stx (£2) Çk T2, and hence stx (£2) = T2. This com
pletes the proof that Blf B2 exist as claimed. 
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This lemma can be strengthened in the following way: if B is internal and 
stx(B) = T, then for each sequence (Tn\ n £ N) of closed subsets of T there 
exists a sequence (Bn\ n Ç N) of pairwise disjoint, internal subsets of B such 
t ha t stx(Bn) = Tw for all w f N. The sets £ w are obtained inductively; a t the 
nth stage we have sets B\, . . . , Bn-\ as desired together with an internal Bn' 
which is disjoint from each of Bi, . . . , Bn-\, contained in B and satisfies 
stx(Bn') = T. Using the fact jus t proved, Bn' is split into two internal sets Bn 

and B'n+i such tha t stx(Bn) = Tn and stx(B'n+i) = T. 

Now we are ready to prove the theorem. Let S be a set derived from the 
closed subsets of X by the Souslin operation. T h a t is, there is a family 
(Es\ s Ç Seq) of closed subsets of X such tha t 

We may assume tha t Es^_ Et whenever 5 ^ t and tha t E^ = X. 
Using the fact proved above we now construct a family (Bs\ s £ Seq) of 

internal subsets of A with the following properties: 
(i) stx(Bs) = Es for all s G Seq. 

(ii) Bs 3 Bsk for all 5 G Seq, K N. 
(iii) Bsk r\ Bsm = 0 for all 5 G Seq and all distinct k,m £ N. (We con

s t ruct the sets Bs by induction on the length of the sequence s, first sett ing 
B^ = A. Given BS} use the fact proved above to obtain the sequence (Bsk\ 

k e N)). 
Now by Lemma 1, 

5 = stx(u« n„£aln). 
So it suffices to show tha t U« f\nBa\n is of the form Om \JnAmn for some 
internal sets (Amn\ m, n G N ) . But the conditions (ii) and (iii) imply t ha t p 
is an element of Ua f\nBa\n if and only if (a) p 6 Bn for some n G N, and 
(b) for each 5 £ Seq, if p Ç i^s, then >̂ G Bsk for some ^ G N. T h a t is, 

u« nnBa]n = (unBn) n n,€seQ (^\^,) u u*^*). 
This set is of the desired form, completing the proof of Theorem 4. 

W e conclude this paper with a few methodological remarks. The key to our 
proof of Theorem 2 was the representat ion by the Souslin operation of sets in 
the or-algebra generated by the internal sets. This has the advantage of giving a 
specific representation in terms of countably many internal sets instead of the 
usual inductive procedure for generat ing sets in the cr-algebra. I t is therefore 
useful to know just how much is lost by using this Souslin representation. The 
next result shows tha t nothing is lost, as long as we simultaneously represent a 
set and its complement in this way. 

T H E O R E M 5. Let A be an internal set and S a subset of A. Then S is in the 
G-algebra on A generated by the internal sets if and only if S and A\S are derived 
from the internal subsets of A by the Souslin operation. 

https://doi.org/10.4153/CJM-1979-066-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-066-0


672 C. WARD HENSON 

Proof. This is an immediate consequence of a separation theorem for the 
Souslin operation applied to families of sets which are semicompact (see 
[9, Theorem 111.14]). When *«̂ # is Xi-saturated, any family of internal sets is 
semi-compact. 

We remark that a more precise version of Theorem 5 is sometimes useful. 
Suppose (Bn\ w ^ N ) are internal subsets of A from which S and A\S are 
derived using the Souslin operation. Then [9, Theorem 111.14] actually shows 
that S is in the c-algebra on A generated by the sets (Bn\ n £ N). 
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