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On the structure of parasitic gravity-capillary
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We present new numerical solutions for nonlinear standing water waves when the
effects of both gravity and surface tension are considered. For small values of the
surface tension parameter, solutions are shown to exhibit highly oscillatory capillary
waves (parasitic ripples), which are both time- and space-periodic, and which lie on the
surface of an underlying gravity-driven standing wave. Our numerical scheme combines
a time-dependent conformal mapping together with a shooting method, for which the
residual is minimised by Newton iteration. Previous numerical investigations typically
clustered gridpoints near the wave crest, and thus lacked the fine detail across the domain
required to capture this phenomenon of small-scale parasitic ripples. The amplitude of
these ripples is shown to be exponentially small in the zero surface tension limit, and their
behaviour is linked to (or explains) the generation of an elaborate bifurcation structure.
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1. Introduction

Historically, two-dimensional standing free-surface water waves have primarily been
studied in the absence of surface tension. Notable works include, for example, those by
Rayleigh (1915), Penney & Price (1952), Schwartz & Whitney (1981), Mercer & Roberts
(1992), Iooss, Plotnikov & Toland (2005) and Wilkening (2011). As nonlinearity increases,
the waves develop high curvature at the wave crest and thus the effect of surface tension is
expected to become important. An example solution is shown in figure 1(a). Of particular
interest are standing waves that contain small-scale ripples, primarily driven by the effect
of surface tension (parasitic ripples), approximately superimposed on a gravity standing
wave (figure 1b). The computation and analysis of such nonlinear gravity-capillary
standing waves is known to be challenging, and the pioneering work of Schultz et al.
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Figure 1. Two numerical solutions of (2.1) are shown at energy E = 0.4. The free boundary, y = ζ(x), is shown
for 11 values of time between t = 0 and t = 0.25, at which the maximal amplitude is reached. In (a), we have
a gravity standing wave with B = 0 and F = 0.3931. In (b), we have a gravity-capillary standing wave with
B = 0.003330 and F = 0.4213. These solutions were computed with 200 spatial and 500 temporal gridpoints,
and here B and F are the Bond and Froude numbers defined in (2.2a,b).

(1998) is one of the few numerical attempts combining both gravity and capillary effects
(cf. reviews by Schwartz & Fenton (1982), Dias & Kharif (1999), Perlin & Shultz (2000)
and references therein).

For the related case of steadily travelling gravity-capillary waves (Stokes waves), it is
known (e.g. Schwartz & Vanden-Broeck 1979; Champneys, Vanden-Broeck & Lord 2002)
that a small capillary effect results in a non-trivial bifurcation structure. Recently, it was
demonstrated that as surface tension tends to zero, a continuum of solutions exists that
exhibits highly oscillatory parasitic ripples (Shelton, Milewski & Trinh 2021; Shelton
& Trinh 2022). Thus, we might expect that time-dependent standing waves also exhibit
this phenomena. However, we remark that oscillatory capillary ripples were not obviously
present in the numerical standing-wave investigations of Schultz et al. (1998), and this
observation motivates the present study.

The purpose of this work is to show that these parasitic capillary ripples are, in
fact, present in the time-dependent formulation of a standing gravity-capillary wave. An
example solution containing these is shown in figure 1(b). Our results suggest that these
features were not captured by Schultz et al. (1998) due to their clustering of gridpoints
about the wave crest, which resulted in an insufficient number across the rest of the spatial
domain to resolve capillary ripples. We observe ripples that are highly oscillatory in space
and time, and both respective frequencies are inversely proportional to the small surface
tension parameter. When an amplitude condition (the wave energy) is fixed, a complicated
bifurcation structure is seen to emerge. The branches of solutions are characterised by
the wavenumber of the parasitic ripples, and along each branch, solutions transition
from containing small-amplitude capillary ripples (such as that in figure 1b) to these
ripples dominating the solution profile. This latter type is the nonlinear standing-wave
analogue of the resonances found by Wilton (1915) (cf. Appendix A). Given the already
remarkable complexity of the pure gravity-driven standing waves (Wilkening 2011), our
results indicate that the inclusion of even a small amount of surface tension enhances the
already rich dynamical structure of steep standing waves.

2. Mathematical formulation

We consider the time-dependent free-surface flow of a two-dimensional, inviscid,
irrotational and incompressible fluid of infinite depth. Standing-wave solutions are sought,
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Gravity-capillary standing waves

such that the free surface, ζ̂ (x̂, t̂), and velocity potential, φ̂(x̂, ŷ, t̂) have temporal period T .
We non-dimensionalise length scales by the wavelength λ, time by the physical interval
T , and the velocity potential φ̂ by λ2/T . The non-dimensional governing equations then
given by

φxx + φyy = 0 for y � ζ, (2.1a)

ζt = φy − ζxφx at y = ζ, (2.1b)

F2φt + F2

2
(φ2

x + φ2
y )+ y − B

ζxx

(1 + ζ 2
x )

3/2 = 0 at y = ζ, (2.1c)

φx → 0 and φy → 0 as y → −∞, (2.1d)

where the non-dimensional constants in Bernoulli’s equation (2.1c),

F =
√
λ

T
√

g
and B = σ

ρgλ2 , (2.2a,b)

are the Froude and (inverse)-Bond numbers, respectively. The Froude number
characterises the balance between inertia and gravity, and the Bond number characterises
the balance between gravity and surface tension. Here, g is the gravitational constant,
ρ is the fluid density, σ is the coefficient of surface tension, and T and λ are constants
introduced from our choice of non-dimensionalisation. Note that if we instead had a
wave speed c = λ/T associated with steadily travelling waves, then our expression for
the Froude number, F, in (2.2a) would be F = c/

√
gλ.

Furthermore, we enforce periodicity of the solutions in both time and space by enforcing

∇φ (x − 1/2, y, t) = ∇φ (x + 1/2, y, t) , ζ (x − 1/2, t) = ζ (x + 1/2, t) , (2.3a)

∇φ (x, y, 0) = ∇φ (x, y, 1) , ζ (x, 0) = ζ (x, 1) . (2.3b)

This results in a system with the two unknown constants, F and B. One of these will be
fixed, and the other determined as an eigenvalue of the system through the imposition of
an amplitude condition.

2.1. The time-dependent conformal mapping
The difficulty in computing numerical solutions to system (2.1) is that Bernoulli’s equation
(2.1c) holds along the unknown free surface, y = ζ(x, t), which is also a function of
time. In the study of steady flows, a well-established method is to invert the dependency
of φ(x, y) and ψ(x, y) to x(φ, ψ) and y(φ, ψ), for which the free surface, ψ = 0, is
parametrised by the velocity potential, φ. However, in time-dependent flows, the constant
value of the streamfunction, ψ , on the free surface will vary in time. To rectify this
issue, we employ the time-dependent conformal mapping developed by Dyachenko,
Zakharov & Kuznetsov (1996) and Choi & Camassa (1999), which maps the physical
fluid domain −∞ < y � ζ(x, t) to the lower-half (ξ, η)-plane. Under this mapping, the
free surface y = ζ(x, t) maps to the line η = 0, for which the free-surface dynamics may
be parametrised by ξ and t. The following formulation closely follows that presented by
Milewski, Vanden-Broeck & Wang (2010).

We express the governing equations under the conformal mapping x = x(ξ, η, t) and
y = y(ξ, η, t). The free-surface variables, Y and Φ, are defined by evaluating y = ζ(x, t)
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and φ(x, y, t) on η = 0, yielding

Y(ξ, t) = ζ(x(ξ, 0, t), t) and Φ(ξ, t) = φ(x(ξ, 0, t), y(ξ, 0, t), t). (2.4a,b)

Differentiation of (2.4a,b) with respect to ξ and t yields equations that may be solved
to obtain expressions for ζt, φx, φy, ζx and ζxx in terms of these free-surface variables.
Substitution of these resultant equations into the kinematic and dynamics boundary
conditions (2.1b) and (2.1c) yields the following two time-evolution equations:

Yt = YξH
[
Ψξ

J

]
− Xξ

(
Ψξ

J

)
, (2.5a)

Φt = 1
2

(
Ψ 2
ξ −Φ2

ξ

J

)
+ΦξH

[
Ψξ

J

]
− Y

F2 + B
F2
(XξYξξ − YξXξξ )

J3/2 . (2.5b)

Here, we have defined the Jacobian of the mapping as J = X2
ξ + Y2

ξ , and H is the periodic
Hilbert transform defined later in (2.6). Additionally, expressions for X(ξ, t) and Ψ (ξ, t)
are known from the harmonic relations

Xξ = 1 − H [Yξ ] and Ψξ = H [Φξ ]. (2.5c,d)

The spatial and temporal periodicity conditions from (2.3) require that

Φ (ξ − 1/2, t) = Φ (ξ + 1/2, t) , Y (ξ − 1/2, t) = Y (ξ + 1/2, t) , (2.5e)

Φ (ξ, 0) = Φ (ξ, 1) , Y (x, 0) = Y (x, 1) , (2.5f )

and the amplitude condition is taken to be the energy

E = 1
Ehw

∫ 1/2

−1/2

[
F2

2
ΨΦξ︸ ︷︷ ︸

kinetic

+ B(J1/2 − Xξ )︸ ︷︷ ︸
capillary

+ 1
2

Y2Xξ︸ ︷︷ ︸
gravitational

]
dξ. (2.5g)

In the energy expression (2.5g), the three components are the kinetic energy, capillary
potential energy and gravitational potential energy. We have also normalised with respect
to Ehw = 0.00184; this value is an approximation for the energy of the highest travelling
Stokes wave, to three significant figures. We computed this value numerically in the
present formulation with 4096 spatial gridpoints. It may also be found from table 2 of
Longuet-Higgins (1975) which lists values of the kinetic and gravitational energies for
different amplitudes, the sum of which is a factor of 4π2 larger than our current value. The
Hilbert transform, required in the evaluation of (2.5a)–(2.5d) is given by

H [Y](ξ) =
∫ ∞

−∞
Y(φ)
φ − ξ

dφ =
∫ 1/2

−1/2
Y(φ) cot[π(φ − ξ)] dφ. (2.6)

System (2.5) consists of the two coupled time-evolution integro-differential equations
for Y(ξ, t) and Φ(ξ, t). Typically, we fix the Bond number, B, and the amplitude specified
via the energy E in (2.5g). The unknown Froude number, F, is then determined as an
eigenvalue. Occasionally, in order to numerically continue along solution branches, E and
F are fixed and B is treated as the eigenvalue. Note that the energy (2.5g) is a conserved
quantity (cf. (1.4) from Zakharov 1968), and thus it may be evaluated at any point in time,
unlike other ‘amplitude’ norms such as the wave crest-to-trough distance, or individual
Fourier coefficients.
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2.2. The numerical method
Rather than numerically compute solutions throughout the entire time interval 0 � t � 1,
we use the symmetry remarked upon by Mercer & Roberts (1992) which requires only
0 � t � 1/4. Provided that at t = 0 the free surface, Y , is even and Φξ is odd about ξ = 0
and at t = 1/4 the fluid is at rest with Φξ = 0, at t = 1 the solution will have returned to
its initial state. These conditions are given formally by

Y(ξ, 0) = Y(−ξ, 0), Φξ (ξ, 0) = −Φξ(−ξ, 0), Φξ (ξ, 1/4) = 0. (2.7a–c)

We employ a shooting method to solve system (2.5) subject to conditions (2.7), in which we
begin with an initial guess for the solutions Y andΦ at t = 0. This is evolved to t = 1/4, at
which point we seek to minimise each of conditions (2.7) and (2.5g) with Newton iteration.
A detailed overview of this method is now provided.

(i) Initial guess. An initial guess for Y(ξ, 0), Φ(ξ, 0), and the eigenvalue (one of B
or F), is taken either from linear theory (Appendix A) or a previously computed
solution. In discretising the spatial domain ξ with N grid points, such that ξi =
−1/2 + i/N for i = 0, . . . ,N − 1, we define the solutions evaluated at each of these
collocation points by Yi(t) = Y(ξi, t) and Φi(t) = Φ(ξi, t). At t = 0, Yi(0), Φi(0)
and the unknown eigenvalue yields a total of 2N + 1 unknowns.

(ii) Time evolution. We discretise the time interval t ∈ [0, 1/4] into M + 1 points, which
yields tj = j/(4M) for j = 0, . . . ,M. The fourth-order Runge–Kutta method is used
to advance the solution from tj to tj+1. With knowledge of Yi(tj) and Φi(tj), the
conjugate functions Xi(tj) and Ψi(tj) are calculated from the harmonic relations
(2.5c) and (2.5d). We use the Fourier transform to evaluate the derivatives and
Hilbert transforms in (2.5a) and (2.5b). For instance, since the Fourier symbols
for differentiation and the Hilbert transform are 2πik and i · sgn(k), we have Yξ =
F −1[2πikF [Y]] and H [Y] = F −1[i·sgn(k)F [Y]], where F denotes the Fourier
transform and k is the wavenumber. The fast Fourier transform algorithm is utilised
to efficiently evaluate these identities. This allows for the calculation of the solutions
Xi(tj+1) and Φi(tj+1) at the next time step. We de-alias by setting the highest N/2
Fourier modes to zero after nonlinearities are computed.

(iii) Function to minimise. The previous step may be repeated until Yi(1/4) and
Φi(1/4) are known. We then employ Newton iteration and the Levenberg–Marquardt
algorithm on this system to minimise (2.5g) and (2.7) such that the square
of the l2-norm of the residual is below 10−10. This has been implemented in
MATLAB with the inbuilt function fsolve. The even/odd conditions at t = 0, (2.7a)
and (2.7b), are evaluated in Fourier space where we require Im[F [Y]] = 0, and
Re[F [Φξ ]] = 0.

The symmetry condition (2.7a) on Y(ξ, 0) gives N/2 equations; antisymmetry
(2.7b) on Φξ(ξ, 0) gives N/2 + 1 equations; the stationarity condition (2.7c),
Φξ(ξ, 1/4) = 0, gives N equations; and the amplitude constraint (2.5g) gives
1 equation. This formulation produces an overdetermined system with 2N + 2
equations and 2N + 1 unknowns.

For specified values of E and B for instance, this procedure yields a solution given by
Y(ξ, t),Φ(ξ, t), and the eigenvalue F. In the sections that follow, we will plot Y(X) by first
calculating X(ξ, t) = ξ − H [Y].
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3. Numerical results

3.1. Relationship to the study by Schultz et al. (1998)
Numerical solutions of the standing gravity-capillary waves were calculated by Schultz
et al. (1998). They focused on large-amplitude solutions, and included capillary effects in
order to compare with experimental wave profiles. However, their numerical solutions did
not contain the parasitic ripples that we display in this section (see e.g. their figure 5). This
is both because of the low number of spatial gridpoints they used (typically 32), as well as
the clustering of such points near the wave crest to resolve the high curvature region.

Indeed Schultz et al. (1998) were aware of this numerical limitation, as they had
observed the formation of capillary ripples in the experimental profiles. They believed
that these ripples were associated with resonances at certain values of the surface tension,
and on p. 270 they commented that:

The ripple generation is related to the existence of multiple solutions of gravity-capillary waves
at certain critical inverse Bond numbers [. . .]. The present calculation does not attempt to capture
the solutions with these ripples . . . by using a small number of nodes to exclude the resonant
superharmonics.

Here, we demonstrate that, while there are indeed solutions associated with resonances
where the oscillatory ripples dominate the solution profile, the parasitic ripples are present
throughout all solutions. Furthermore, the amplitude of non-resonant ripples increases
with energy. Thus, the underresolved solutions determined by Schultz et al. (1998) missed
these ripples.

3.2. Structure of gravity-capillary standing waves
The numerical method described in § 2.2 is now implemented. We begin with a linear
solution from Appendix A, which is used as a guess for our nonlinear solver when the
energy is small. The energy is then increased over successive runs of Newton iteration,
using a previously calculated numerical solution as an initial guess, until we reach a value
of E = 0.4. Numerical continuation is then used to explore the local branch structure at
E = 0.4.

Figure 2 displays the resultant (B,F)-bifurcation diagram from our investigations.
Multiple branches are found, which appear to become self-similar as B decreases.
These standing-wave solutions, such as (a,b) from figure 3, are observed to contain
small-amplitude parasitic capillary ripples, which are highly oscillatory in both space
and time. These two solutions have 200 gridpoints for ξ ∈ [−1/2, 1/2], 250 in time for
t ∈ [0, 1/4], and take approximately 5 min on a desktop computer to be calculated. Each
branch may be classified from the spatial wavenumber of the oscillatory ripples. This value
differs by one between adjacent branches, increases as B → 0, and may be confirmed to
be of O(1/B). The temporal wavenumber of the ripples also increases as B → 0. This
is shown in figure 4, in which the free surface at x = −1/2 is shown for t ∈ [0, 1/2] for
solutions with different Bond numbers. The temporal wavenumber also differs by one
between adjacent branches. Further, the amplitude of the ripples decreases as B → 0, and
the results in figure 5 suggest that this amplitude is exponentially small under this limit.
It is interesting to note the similarity between the amplitudes shown in figure 5 and those
in figure 5 of the exponential-asymptotic study by Shelton & Trinh (2023) for steadily
travelling gravity-capillary waves.

As each of the branches of solutions is continued, the capillary ripple amplitude
increases. Example solutions are shown profiles (c,d) of figure 3. More Fourier coefficients
were required to determine these. We used 400 spatial gridpoints and 1250 time steps, for
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Figure 2. The numerical bifurcation diagram of solutions is shown in the (B,F)-plane for fixed energy,
E = 0.4. Solutions (a–d) are displayed in figure 3 at t = 1/4.
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Figure 3. The free surface, y = η(x, t), is shown for 11 values of time in the interval t ∈ [0, 1/4] for
the four solutions labelled in the bifurcation diagram of figure 2. Each profile has energy E = 0.4, and
(a) B = 0.002830 and F = 0.4171, (b) B = 0.003650 and F = 0.4240, (c) B = 0.002846 and F = 0.4158,
(d) B = 0.003206 and F = 0.4190.

which each solution took approximately 60 min to determine. We note that while these
solutions still satisfy the same bound on the residual of 10−10, the decay of the Fourier
modes is unsatisfactory. This is shown in figure 6(b), in which the Fourier coefficient
decay at t = 1/4 is compared between solutions (a,d) from figure 3. This poor decay
for solution (d) may be in part due to the conformal map formulation, which distributes
gridpoints away from high-curvature regions. For most solutions in figure 2 this has not
been an issue, which may be confirmed from the Fourier coefficient decay in figure 6(b). In
figure 6(a), we plot each component of the energy (2.5g) across t ∈ [0, 1/4] for the same
two solutions, (a,d) in figure 3. The solution near the end of the computed branch (solid
marks) has more capillary and kinetic energy than that in the middle of the branch (hollow
marks). As the fluid is at rest at t = 1/4, when the wave reaches its maximal amplitude,
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Figure 4. The time evolution of the free surface at x = −1/2, y = η(1/2, t) is shown. This value of x = −1/2
corresponds to the wave trough in the solutions of figure 3. Note that to discern between each profile, we have
vertically shifted the lower two by −0.02 and −0.04. It is seen that as the Bond number decreases, the temporal
wavenumber of the parasitic ripples increases.
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Figure 5. The amplitude of the parasitic capillary ripples present in the solution, y = η(x, t), is shown at
t = 1/4. Multiple capillary ripple amplitudes are shown, corresponding to solutions across each branch of
figure 2 with energy E = 0.4. To measure the amplitude of this high-frequency component, lower modes have
been filtered out in Fourier space.

the kinetic energy is zero. We anticipate that the adjacent branches in figure 2 connect via
solutions whose fundamental wavelengths (in both space and time) are smaller than unity.
These solutions would be purely oscillatory, which is analogous to the bifurcation diagram
from Shelton et al. (2021), but our present numerical formulation is unable to resolve this
regime in practice.

4. Conclusions

We have numerically demonstrated that for small surface tension, gravity-capillary
standing waves contain parasitic capillary ripples, which are highly oscillatory in both
space and time. These ripples, for which the spatial and temporal wavenumbers are both
of O(1/B), result in a discrete set of solution branches existing in the limit of B → 0.
As each branch is traversed in the direction of decreasing surface tension, the oscillatory
capillary ripples transition from n to n + 1 periods (in both space and time). The amplitude
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Kinetic Capillary Gravitational

Figure 6. (a) Each component of the solution energy (2.5g) is shown throughout the time period. (b) The
magnitude of the Fourier coefficients is shown at t = 1/4, when the standing wave reaches its maximum height.
These are shown for the two solutions (a,d) from figure 3, where solid corresponds to solution (a) and hollow
to (d).

of these ripples is observed to be predominantly exponentially small in the surface tension
parameter, B, but rapidly increases when approaching the numerical endpoints of each
computed branch; the computational difficulty increases dramatically as these points are
approached, and our numerical algorithm is unable to resolve any further. To resolve the
bifurcation structure, we have implemented a numerical scheme that is capable of solving
for steep standing waves, and also has a sufficient number of gridpoints distributed across
the domain.

We conjecture that the discrete solution branches will connect to one another, and that
this occurs when the fundamental wavelengths (in both space and time) of the solution
are both smaller than one. These purely oscillatory solutions would be similar to those
observed in the steadily travelling bifurcation diagram by Shelton et al. (2021). However,
on the account of the challenging computations, the numerical formulation needed to
verify this is still lacking.

5. Discussion

In this work, we have focused on gravity-capillary standing waves in the small surface
tension limit of B → 0. The question of the full global structure of the (B,F, E )
bifurcation diagram is fascinating. As demonstrated by Wilkening (2011) for highly
nonlinear standing gravity waves, solutions exhibit a remarkably complex set of
dynamics, each distinguished by varying oscillations near the crest. Our work here also
demonstrates complicated behaviour for small surface tension. However, the B → 0 limit
contains structure that can perhaps be exploited in the future by exponential-asymptotic
methods.
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5.1. Temporally periodic travelling gravity-capillary waves
It was shown numerically by Wilkening (2021) that a continuous solution branch
exists between travelling and standing gravity waves. Intermediate states are solutions
which periodically repeat in time together with a shift in space. This travelling/standing
connection may be investigated in our present gravity-capillary formulation, for which the
bifurcation structure uncovered here could be connected to that of steadily travelling waves
from Shelton et al. (2021) which have similar structure.

It is unknown whether nonlinear travelling solutions exist with non-trivial temporal
periodicity. Asymptotically as B → 0, these solutions could correspond to unsteady
capillary ripples appearing as a perturbation to a leading-order steadily travelling gravity
wave. These solutions were conjectured to exist by Jervis (1996). Subsequent numerical
studies by e.g. Jiang et al. (1999) and Murashige & Choi (2017) have investigated a closely
related time-evolution problem with an initial condition of a steadily travelling gravity
wave, where surface tension is switched on for t > 0. In these works, unsteady parasitic
ripples are observed to form, but no condition on temporal periodicity is enforced.

5.2. Beyond-all-order asymptotics of nonlinear partial differential equations
In the perturbative study by Shelton & Trinh (2022), analytical solutions were found for the
parasitic capillary ripples present on steep travelling gravity waves using beyond-all-order
asymptotics. Since these solutions are steady in the co-moving frame, they are governed
by nonlinear integro-differential equations with just one independent variable – this is
opposed to our current formulation where solutions depends on both ξ and t. Many
unresolved complications arise, however, in exponential asymptotics for nonlinear partial
differential equations (Howls, Langman & Olde Daalhuis 2004; Body, King & Tew 2005;
Chapman & Mortimer 2005), and the beyond-all-orders analysis of such problems is an
exciting area of future research.
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Appendix A. Linear theory for standing waves

We consider the first two terms of a Stokes expansion by writing Y = Y0 + εY1, X =
X0 + εX1, Φ = Φ0 + εΦ1 and Ψ = Ψ0 + εΨ1. At O(ε0) in (2.5a) to (2.5d), we find the
solutions Y0 = 0, X0 = ξ , Φ0 = 0 and Ψ0 = 0. Next, at O(ε) we have the equations

Y1t = −H [Φ1ξ ] and F2Φ1t = −Y1 + BY1ξξ . (A1a,b)
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Gravity-capillary standing waves

In writing the solutions as a Fourier series of the form

Y1(ξ, t) = a0(t)+
∞∑

k=1

[ak(t) cos (2kπξ)+ bk(t) sin(2kπξ)] , (A2)

with a similar expansion for Φ1(ξ, t) in terms of the Fourier coefficients ck(t) and dk(t),
we find for k � 1 the two second-order differential equations(

a′′
k (t)

b′′
k (t)

)
= −2kπ

F2

(
1 + (2kπ)2B

)(ak(t)
bk(t)

)
. (A3)

Note that we necessarily have a0(t) = 0 in order for the k = 0 mode in Φ1(ξ, t) to be
temporally periodic.

We now express the solutions to (A3) as a Fourier series in time of the form

ak(t) = â(k)0 +
∞∑

m=1

[
â(k)m cos (2 mπt)+ ā(k)m sin(2 mπt)

]
, (A4)

with a similar expansion for bk(t) in terms of the Fourier coefficients b̂(k)m and b̄(k)m .
Substitution of (A4) into the differential equation (A3) yields the dispersion relation

F2 − k
2πm2

(
1 + (2kπ)2B

)
= 0. (A5)

Here, k � 1 is the spatial mode, and m � 1 is the temporal mode. Note that if m = k,
(A5) reduces to the steady dispersion relation for gravity-capillary waves. When (A5)
is satisfied, a non-zero mth mode in the Fourier series expansions for ak(t) and bk(t) is
permitted. Furthermore, the symmetry condition (2.5e) for Y(ξ, 0) requires that b̂(k)m = 0.
Asymmetry onΦ(ξ, 0), through the equation a′

k(t) = 2kπck(t), yields ā(k)m = 0. This gives
a linear solution of the form

Y1(ξ, t) = â(k)m cos (2mπt) cos (2kπξ)+ b̄(k)m sin (2mπt) sin (2kπξ),

Φ1(ξ, t) = −mâ(k)m

k
sin (2mπt) cos (2kπξ)+ mb̄(k)m

k
cos (2mπt) sin (2kπξ).

⎫⎪⎬
⎪⎭ (A6)

Multiple Fourier modes may be non-zero in the solution if the linear dispersion relation
(A5) is satisfied for two values of k = {k1, k2} and m = {m1,m2}. This yields

B = 1
4π2

(
m2

1k2 − m2
2k1

m2
2k3

1 − m2
1k3

2

)
and F2 = 1

2π

(
k1k2(k1 + k2)(k1 − k2)

m2
2k3

1 − m2
1k3

2

)
, (A7a,b)

which reduces to the steadily travelling (1, k) resonance found by Wilton (1915) when
m1 = k1 and m2 = 1 = k2.
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