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Deep water waves in two-dimensional flow can have curvature singularities on the
surface profile; for example, the limiting Stokes wave has a corner of 2π/3 radians
and the limiting standing wave momentarily forms a corner of π/2 radians. Much
less is known about the possible formation of curvature singularities in general. A
novel way of exploring this possibility is to consider the curvature as a complex
function of the complex arclength variable and to seek the existence and nature of
any singularities in the complex arclength plane. Highly accurate boundary integral
methods produce a Fourier spectrum of the curvature that allows the identification of
the nearest singularity to the real axis of the complex arclength plane. This singularity
is in general a pole singularity that moves about the complex arclength plane. It
approaches the real axis very closely when waves break and is associated with the
high curvature at the tip of the breaking wave. The behaviour of these singularities
is more complex for standing waves, where two singularities can be identified that
may collide and separate. One of them approaches the real axis very closely when a
standing wave forms a very narrow collapsing column of water almost under free fall.
In studies so far, no singularity reaches the real axis in finite time. On the other hand,
the surface elevation y(x) has square-root singularities in the complex x plane that do
reach the real axis in finite time, the moment when a wave first starts to break. These
singularities have a profound effect on the wave spectra.

Key words: waves/free-surface flows

1. Introduction
Detailed knowledge of the behaviour of water waves has immediate and important

applications in a variety of fields, notably climatology, marine transport and coastal
environments. What makes detailed studies of water waves difficult is the nature of
the nonlinear surface conditions. Progress, then, has often relied on simplifications to
the nonlinear behaviour in a variety of techniques, in particular simple linearization,
amplitude expansions or weakly nonlinear theories. Recently, there have been new
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developments in mathematical theory of the full nonlinear motion based on modern
techniques in functional analysis; see, for example, Craig & Wayne (2007).

The challenge in rigorous mathematical analysis is the possibility of waves breaking
or forming singularities in slope or curvature in finite time. Two striking examples
confirm that the possibility is real. Toland (1996) proves that the limiting Stokes
wave has a corner of angle 2π/3 radians that retains its form as the wave propagates.
Okamura (1998) proves that the limiting standing waves reaches a crest with a corner
of π/2 radians momentarily before subsiding with the disappearance of the corner
until the next event. Consequently, long time existence in Sobolev spaces is difficult
to establish without restrictions on the initial data that exclude these possibilities.
Nevertheless, some progress has been made. Existence and uniqueness of solutions
have been proven locally in time if the initial conditions are analytic by Shinbrot
(1976) and Kano & Nishida (1979). Recently, new results by Wu (1997, 1999)
prove existence and uniqueness in certain Sobolev spaces for both two- and three-
dimensional motion for finite time, provided that the initial wave surface does not
self-intersect or that the initial motion satisfies the Taylor condition, that is, the surface
does not accelerate faster than gravity in the inward direction normal to the water
surface. One of the results we report is that the Taylor condition is satisfied even after
the waves have broken.

Provided the initial data are small enough, long time existence and uniqueness has
been established for two-dimensional motion by Wu (2009) and global existence and
uniqueness in time has been established for three-dimensional motion by Germain,
Masmoudi & Shatah (2009). All these results hold under the assumption that the
surface returns to a flat surface in the far field, but it seems plausible that similar
results will hold for periodic domains, a case that is more practical in ocean studies.

While general rigorous theory establishes the mathematical context in which water
waves appear, it is often specific generic solutions that shed insight. Progress has
been made here too, based on numerical simulations and new asymptotic approaches.
In particular, a new conceptual paradigm has emerged from the pioneering work of
Moore (1979) on the spontaneous appearance of curvature singularities on vortex
sheets. A vortex sheet may be used to represent the interface between two immiscible,
incompressible fluids in the limit of zero viscosity. Moore’s study considers the
densities of the two fluids to be comparable and is restricted to two-dimensional
periodic flow with an analytic initial condition. His results suggest the appearance of
3/2-branch-point singularities in the complex plane of the surface parametrization
variable. Specifically, if the surface location is expressed in parametric form
(x(p, t), y(p, t)) where p is a Lagrangian variable, then (x(p, t), y(p, t)) ∼ (p − ps)

3/2

near a point ps in the complex plane of p. There may be several such points and
they move about the complex plane while retaining the 3/2-power singularity in
(x(p), y(p, t)). They can approach and reach the real axis in finite time, at which
point they are curvature singularities on the vortex sheet. Note that the circulation
variable Γ may be the choice for the surface variable; then the curvature behaves as
κ ∼ (Γ − Γs)

−1/2, where Γs moves in the complex circulation plane and reaches the
real axis in finite time. Since curvature and circulation are real physical quantities, this
singularity is not an artifact of the parameterization.

Further work has recast Moore’s results as arising from the analytic continuation of
the interface conditions specified along the real axis of p into the complex p-plane.
In particular, the motion of the surface may be described by boundary integrals;
there are several different formulations, but the ones by Baker, Meiron & Orszag
(1980, 1982) have particular advantages for analysis and numerical methods. The
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Singularities in deep water waves 85

first successes from the analytic continuation of boundary integrals for understanding
singularity formation on vortex sheets came from the work of Caflisch & Semmes
(1990) and Caflisch & Orellana (1989) among others. Analytic continuation creates
complex hyperbolic partial differential equations with a remaining boundary integral
that is exponentially small in the distance from the real axis. Asymptotically, then, it
is easy to understand the formation of the Moore singularities far from the real axis,
and Cowley, Baker & Tanveer (1999) have developed a consistent asymptotic theory
that describes the nature of the vortex sheet as a Moore singularity approaches and
reaches the real axis. Direct numerical calculations of vortex sheet motion have been
used by Krasny (1986) and Shelley (1992) to locate the presence of singularities in
the complex plane through the nature of the decay of the Fourier series as described
by Sulem, Sulem & Frisch (1983), and the results confirm the asymptotic theories.
Further work by Nie & Baker (1998) has established that Moore singularities are
present in axisymmetric vortex sheets, and by Ishihara & Kaneda (1994) and Hou &
Hu (2003) in three-dimensional vortex sheets.

The knowledge gained from understanding the formation of curvature singularities
on vortex sheets has led directly to understanding their formation in more general
cases, specifically when the densities of the two fluids separated by a free surface
are different. In particular, Baker, Caflisch & Siegel (1993) find Moore singularities
during the two-fluid Rayleigh–Taylor instability, where heavier fluid falls into lighter
fluid. Vorticity is generated along the sides of the developing spikes, thus effectively
creating a vortex sheet of almost uniform strength that then becomes unstable to the
Kelvin–Helmholtz instability. The result is the appearance of Moore singularities that
track towards and reach the real axis in finite time. The location of the formation of
the curvature singularities on either side of the falling spike changes with changes in
the density difference. The closer the density of the lighter fluid approaches to zero,
the closer the pair of curvature singularities appear to the tip of the spike. Indeed,
when the lighter fluid has zero density, the Moore singularities cancel each other
leaving no apparent singularity in (x(p), y(p)). The same phenomenon occurs when
light fluid lies above heavier fluid. In this case, the interface exhibits gravitationally
stable waves and the Moore singularities stay away from the real axis when the waves
do not break, but there appears to be no singularity in (x(p), y(p)) when the fluid
above has no density.

The apparent change in the nature of the singularities when one of the fluids has
no density motivated Tanveer (1991, 1993) to study free surface flow of a single fluid.
He uses a conformal map from a periodic domain to a unit circle. If z = x + iy is a
complex spatial variable for a 2π-periodic domain in x and y is a vertical coordinate
directed upwards, and η is the variable in the circle, then the map is

z(η, t)= 2π+ i ln(η)+ if (η, t), (1.1)

where f (η, t) is analytic in a disk that contains the unit disk and so has a convergent
Taylor series. Tanveer (1991) considers propagating waves of permanent form and
proves that the only possible singularities in f are of the square-root type. In particular,

f (η, t)=
∞∑

n=0

dn(t)(η − ηs)
n/2, (1.2)

where ηs lies outside the unit disk. Two such singularities merge and become a cube-
root singularity as the family of permanent waves reaches its limiting form. Thus a
corner singularity appears with an angle of 2π/3 radians. Subsequently, Tanveer (1993)
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shows how such square-root singularities arise from general initial conditions. There
is no contradiction with the previous numerical results of Baker et al. (1993) because
of the unknown relationship between the Lagrangian variable p and the conformal
mapping variable η. Indeed, while z(p) may be analytic outside the unit disk, there
may be singularities in the map between p (as a complex variable) and η. Indeed,
results reported in this article confirm the presence of such singularities and their
correspondence to the square-root singularities in f (η).

What then is the consequence of square-root singularities in f (η)? What is needed
to answer this question is a choice of variables that is independent of parametrization,
and the obvious choice is the arclength variable. We show in this article that the
curvature of the surface of deep water waves contains pole singularities in the complex
arclength plane, and that these poles correspond directly to the square-root singularities
in the η-plane and to zeros in zp in the Lagrangian variable. The evidence is obtained
by direct numerical simulations with exceedingly high accuracy that allows form fits
to the Fourier spectra of the curvature in arclength to identify the type and location of
singularities nearest to the real axis. Initially, the water surface is chosen to be analytic
in the Lagrangian variable, but it contains a location where zp = 0. By constructing
the conformal map from η to p, we confirm that there is a corresponding initial
square-root singularity in f (η) and a pole singularity in the curvature κ(s). These
singularities are then tracked as the water surface evolves. We take two sets of initial
conditions: one set is associated with travelling waves and the other set with standing
waves. In both cases, the singularities are of only one type, the square-root type in the
η-plane predicted by Tanveer (1993), or a pole singularity in the arclength plane. Their
presence appears generic.

The evidence is also strong that the curvature pole singularities do not reach the real
axis in finite time. What then is their relevance? The first observation established in
this article is their connection to breaking waves. For propagating waves, the curvature
singularities are associated with the wave crests where the curvature is largest. When
the wave amplitudes are small, the singularities track through the complex arclength
plane a certain distance above the location of the maximum curvature on the real axis.
For larger amplitudes, the singularities move up and down as nonlinearity modulates
the wave. For large amplitudes, the waves quickly steepen and break. Here the
curvature singularities move steadily towards the real axis and approach it closely.
When the wave breaks there is a noticeable slowdown in the approach to the real axis
and it seems unlikely that they will reach the real axis before the tip of the breaker
meets the water surface below it.

Another way to look at the potential for waves to break is to examine the wave
profile y(x, t) and ask whether there are singularities in the complex x plane. Indeed
there are and they are of the square-root type. When a wave first breaks, the slope
becomes infinite. At this moment the square-root singularity has reached the real
axis. There is a clear record of the singularity approaching the real axis steadily,
which suggests the possibility of predicting wave breaking well in advance. Even in
the absence of wave breaking, square-root singularities in y(x) affect the tail of the
wave spectra very strongly. Our results suggest a different approach to understanding
possible statistical equilibrium of wave spectra as being the consequence of square-
root singularities travelling above the real axis as water waves propagate.

The initial condition to simulate standing waves is just a sinusoidal wave profile
released from rest. The expectation was that curvature singularities would reach the
real axis for waves of sufficient amplitude, forming corners as in the limiting standing
wave. To our surprise, this possible behaviour is not generic. Indeed, the curvature
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Singularities in deep water waves 87

singularities approach the real axis very closely, and the profile forms very narrow
spikes of fluid which collapse under gravity and are re-absorbed by the water surface
in a smooth way. Of course, surface tension effects will be important under these
conditions, effects that we have neglected in this study.

There have been other attempts to determine the possible singularity structure of
water waves. Kuznetsov, Spector & Zakharov (1994) use the Hamiltonian formulation
for water waves, but neglect gravity and expand the Hamiltonian in an approximation.
Their predicted singularities do not agree with the results of this study. Fontelos & de
la Hoz (2010) use a boundary integral formulation and seek self-similar solutions that
might match their numerical results. There are several undetermined parameters in the
self-similar solutions which raises difficulties in matching to numerical results. This
approach failed in studies of singularity formation on vortex sheets. Indeed, Cowley
et al. (1999) use the presence of 3/2-power singularities in the complex plane to
match with the appropriate self-similar solution. We repeat the calculation of Fontelos
& de la Hoz (2010) and find pole singularities in the complex arclength plane for
the curvature. Since Fontelos & de la Hoz (2010) do not use this information in the
match to the self-similar solutions, their results may be in error. We suggest, then,
that it is the approach of this work, following previous work, that is best capable of
understanding possible curvature singularity formation on free surfaces.

There have been successful local models for breaking waves. In Longuet-Higgins
(1980), a tip of a plunging breaker is modelled as a hyperbola whose asymptotes
are collapsing. The form of the solutions appears very similar to those observed in
numerical simulations and in observations of actual breaking waves. We reproduce
the results in Longuet-Higgins (1980) for Lagrangian motion and show clearly the
consistency of the results with the presence of pole singularities in the complex
arclength plane. By using a variant of the Taylor condition, a model for the inside
curl of a breaking wave has been developed by Longuet-Higgins (1982) that agrees
very well with observed surface profiles. This too has a direct connection to a pole
singularity, different from the one near the tip and further away from the real axis
of the complex arclength plane. Both these models support the view that the pole
singularities do not reach the real axis in finite time.

2. Boundary integral technique
The motion of deep water waves is usually modelled as the motion of a sharp

interface above water considered to be an incompressible, inviscid fluid. In the absence
of wind shear, the motion of the air above the interface is neglected because the
air density is extremely small compared to the density of water. In addition, surface
tension may be neglected if the water waves have wavelengths longer than a few
centimetres, an assumption made in this paper. In general, water waves propagate with
a spanwise extent that is much longer than their wavelength. Thus it is reasonable to
assume two-dimensional motion.

2.1. Mathematical formulation
Align the coordinate system so that x is a horizontal coordinate in the direction of
propagation of the waves and y is a vertical coordinate opposite to the direction of
gravity. The location of the water surface may be expressed in parametric form as a
complex-valued function z(p, t)= x(p, t)+ iy(p, t), where p is a Lagrangian marker.

If the motion of the water is irrotational, a common assumption in studies of water
waves, then the velocity may be expressed in terms of a velocity potential φ. The
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velocity potential satisfies Laplace’s equation in the region occupied by the water.
Bernoulli’s equation evaluated at the surface, where the pressure is a constant set to
zero for convenience, provides an evolution equation for the velocity potential. All
that is needed is the calculation of the normal derivative of the velocity potential to
complete the specification of the velocity of the surface, and that is precisely what
boundary integral techniques can do.

There are many ways boundary integral equations can be derived to determine the
normal derivative of the velocity potential at the surface given the potential along it.
A very successful method, and the one adopted in this paper, is presented in Baker
et al. (1982) and used in many other studies of free surface flows, for example Baker
et al. (1980), Baker (1983), Baker et al. (1987) and Baker & Moore (1989). The
basic idea in the method is to use a dipole distribution µ(p, t) along the surface to
generate a complex velocity potential Φ = φ + iψ , where ψ is the streamfunction, the
conjugate harmonic function to φ. In particular, for a water surface that is 2π-periodic,
the complex velocity potential along the surface is given by

Φ(p)= 1
4πi
−
∫ 2π

0
µ(q)zq(q) cot

(
z(p)− z(q)

2

)
dq+ µ(p)

2
, (2.1)

where the principal value of the integral must be taken. The Lagrangian parameter p is
chosen so that

z(p+ 2π)= p+ z(p), (2.2)

a statement of the 2π-periodicity of the wave. Dependence on time has been
suppressed in (2.1) and (2.2) for convenience.

The complex velocity w= u+ iv at the surface determines its motion,

∂z

∂t
(p)= w(p). (2.3)

Partial time derivatives are used to emphasize that the motion is Lagrangian, that is, p
is kept fixed. The complex velocity along the surface is given by

w∗(p)= Φp(p)

zp(p)
, (2.4)

where w∗ denotes the complex conjugate of the complex velocity w.
An evolution equation for the dipole strength is derived from the evaluation of

Bernoulli’s equation at the surface where the pressure is set to zero:

∂µ

∂t
(p)=−2Re

{
1

4πi
−
∫ 2π

0

∂µ

∂t
(q)zp(q) cot

(
z(p)− z(q)

2

)
dq

}
+ r(p), (2.5)

where

r(p)=−2Re
{

1
4πi
−
∫ 2π

0
µ(q)wp(q) cot

(
z(p)− z(q)

2

)
dq

}
+ 2Re

{
1

8πi
−
∫ 2π

0

µ(q)zp(q)[w(p)− w(q)]
sin2(z(p)− z(q)/2)

dq

}
+ w∗w− 2gy. (2.6)

This is a Fredholm integral equation of the second kind for the rate of change of the
dipole strength.

In summary, (2.3) and (2.5) constitute a set of evolution equations for z and µ. More
details may be found in Baker et al. (1982). If z and µ are known at some time t, (2.1)
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Singularities in deep water waves 89

may be evaluated to obtain the complex potential at the surface. Then the surface
velocity w may be obtained from (2.4) and the surface location updated by (2.3). Next,
r(p) may be evaluated and the integral equation for the rate of change of the dipole
strength may be determined by (2.5).

Since the formulation of the boundary integral techniques involves a Lagrangian
coordinate, even breaking surface waves can be tracked but only until the tip of the
plunging wave reaches the surface below it. At this moment, the formulation fails. The
surface re-connects through a complicated physical process.

Putting aside examples of topological changes, questions remain about whether
the water surface can form curvature singularities in finite time. There are known
examples of curvature singularities in water waves, for example the limiting form of
the Stokes wave which has a corner of 2π/3 radians at its peak and the limiting form
for a standing wave that momentarily forms a corner of π/2 radians. But these events
appear to be very special cases. Can curvature singularities arise spontaneously under
more general conditions? To shed light on this question, highly accurate numerical
solutions to the evolution equations must be constructed with a view to studying the
mathematical nature of the curvature.

2.2. Numerical procedure
Suppose that z(p) and µ(p) are known at some time t at equally spaced points
in p. Denote as zj and µj the values at these points. There are four components
to a numerical method that advances these values in time: numerical differentiation,
evaluation of the surface integrals, solution of the integral equation and discrete time
stepping. Each component will be described first before providing an outline of the
numerical procedure.

Spectral representations present the most accurate numerical methods and since the
motion of the water waves is assumed to be 2π-periodic, a Fourier series may be used
for spectral accuracy. The functions x(p)− p, y and µ are 2π-periodic functions of p of
the form

f (p)= f̂ e
0 +

∞∑
k=1

[f̂ e
k cos(kp)+ f̂ o

k sin(kp)], (2.7)

where the superscripts o, e denote the coefficients of the odd and even modes. Divide
a 2π-period of p into N intervals of equal spacing h= 2π/N. A spectral approximation
to f (p) is the truncated sum evaluated at the discrete points pj = jh:

fj = f̂ e
0 + f̂ e

N/2(−1)j +
N/2−1∑

k=1

[f̂ e
k cos(kjh)+ f̂ o

k sin(kjh)]. (2.8)

The fast Fourier transform (FFT) may be used to calculate the Fourier coefficients
from the discrete function values, and its inverse transform restores the function values
from the Fourier coefficients.

In several steps of the numerical procedure, derivatives must be calculated.
Spectrally accurate derivatives may be obtained through the differentiation of the
Fourier series (2.8). Denote the first and second derivative by (D f )j = fp(jh) and
(D2f )j = fpp(jh). Then

(D f )j =
N/2−1∑

k=1

k[f̂ o
k cos(kjh)− f̂ e

k sin(kjh)], (2.9)
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(D2f )j =
N/2−1∑

k=1

k2[−f̂ e
k cos(kjh)− f̂ o

k sin(kjh)]. (2.10)

For analytic functions, the Fourier coefficients f̂ e
k and f̂ o

k decay exponentially in k.
When calculated by the FFT, however, the tail of the spectrum f̂k will settle at the
level of round-off. When the spectral derivatives are sought numerically as in (2.9)
and (2.10), the round-off errors will be multiplied by k, sometimes large depending on
spatial resolution. This will lead to a serious misrepresentation of the Fourier spectrum
for the derivative, especially in the tail of the spectrum where round-off errors usually
dominate. If this process is repeated, as during the time evolution of the surface,
then the tail of the spectrum can grow unstably, leading to an eventual failure of the
calculations. To alleviate this problem it is essential to use smoothing techniques to
manually control the growth of round-off errors in the tail of the spectrum. A standard
approach is to replace (2.9) by

(D f )j =
N/2−1∑

k=1

kS(k)[f̂ o
k cos(kjh)− f̂ e

k sin(kjh)] (2.11)

to calculate the derivatives, where S(k) is used to suppress the ill-posed effects due
to round-off errors. In addition, aliasing errors may be introduced in the spectral
calculation of derivatives without smoothing which can also lead to numerical
instability (see Gottlieb & Orszag 1977). Consequently, smoothing or filtering
techniques have been used extensively.

In general, smoothing may be realized through a convolution with an appropriate
function or by multiplying the Fourier coefficient with its Fourier transform S, for
example see Krasny (1986). Krasny’s choice of the function S takes the form

S(|f̂k|)=
{

1 if |f̂k|> ε0,

0 if |f̂k|< ε0,
(2.12)

where ε0 is a prescribed level just above machine precision. A modified version of this
sharp cutoff filter is built on the tanh function,

S(η)= 1
2

[
1+ tanh

(
η + L

d

)]
, (2.13)

where η = log10|f̂k|, and L and d are location parameters controlling the position and
width of the smooth transition in the tanh profile. Note that round-off errors in the
Fourier coefficients will not be removed completely, but reduced to lower values. The
filter (2.12) can be applied afterwards with values of ε0 just above the new round-off
level to remove these amplitudes completely. The result has a smoother decay in the
tail of the spectrum.

Alternatively, the function S(k) in (2.11) is selected to be a fast decaying function
of the wavenumber k, taking values S(k) = 1 for small k and S(k) = 0 for large k. For
example,

S(k)= 1
2

[
1− tanh

(
2kπ/N − ξ0

d

)]
, (2.14)

where 1 6 k 6 N/2 and ξ0 locates the centre of the transition zone, usually as
some fraction of π. The parameter d controls the width of the transition zone.
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Singularities in deep water waves 91

This filter is very efficient in reducing the high modes. However, poor choices of
ξ0 and d may lead to unnecessary reduction of the amplitudes of lower modes
that are still important. Another choice S(k) = exp[−10(k/N)25] was introduced by
Hou, Lowengrub & Shelley (1994). More filtering options based on wavenumber are
available in Vichnevetsky & Bowles (1982).

In practice, the Fourier coefficients are calculated, multiplied by S(k) and then
transformed back to the physical domain. To calculate derivatives, just use (2.11)
before the inverse transform. In the work reported here, all filters are tried, sometimes
in combinations, and the parameters adjusted to ensure that a significant part of the
spectrum is independent of filtering technique. Typically, the spectrum decays down to
the filter level and there is no further part to the spectrum for higher wavenumbers.
However, as resolution deteriorates, the tail of the spectrum can rise above the filter
level and eventually the calculation will fail. The choice of parameters is delicate
and it may require trial-and-error to pick the appropriate value so that a sufficient
portion of modes are unchanged while the undesirable high modes are suppressed.
Poor choices of parameters may lead to noticeable decreases in total energy per time
step, which is a conserved quantity and is used as a diagnostic tool for checking the
accuracy of the numerical results.

The integrals in (2.1) and (2.5) are principal-valued integrals. Numerical treatment
of the integrals is vastly improved by removing the pole singularity in the integrand
through an appropriate subtraction of a known principal-valued integral. To be specific,
note that

−
∫ 2π

0
zp(q) cot

(
z(p)− z(q)

2

)
dq= 0, (2.15)

hence (2.1) may be rewritten as

Φ(p)= 1
4πi
−
∫ 2π

0
[µ(q)− µ(p)]zp(q) cot

(
z(p)− z(q)

2

)
dq+ µ(p)

2
. (2.16)

The integrand in (2.16) is now analytic and thus amenable to the spectrally accurate
composite trapezoidal rule. The appropriate limit of the integrand at the point
q = p must be used. One approach to bypass this requirement is the alternate point
quadrature adopted in Baker (1983), where the trapezoidal rule skips over the point
q= p, maintains spectral accuracy and reduces the operations by half. Specifically, the
integral in (2.16) is approximated by

1
Ni

∑
k+j=odd

(µk − µj)(Dz)k cot
(

zj − zk

2

)
, (2.17)

where (Dz)k = zp(kh) uses the formula (2.11). All other integrals are handled in the
same way, in particular the integrals in (2.6) that are used to solve for ∂µ/∂t. Strictly
speaking, pole removal is not necessary for the alternate point quadrature, but it helps
to keep round-off errors down since the integrand remains bounded. Otherwise, the
points on either side of the pole singularity give large values of opposite sign in the
integrand that may not be cancelled accurately enough.

Equation (2.5) must be solved for ∂µ/∂t. Fortunately, an efficient iterative method is
available,

∂µj

∂t

(n+1)

=−2Re

{
1

Ni

∑
k+j=odd

(
∂µk

∂t

(n)

− ∂µj

∂t

(n))
(Dz)k cot

(
zj − zk

2

)}
+ rj, (2.18)
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where the pole subtraction (2.15) and the alternate point quadrature are used. Provided
the resolution of the surface is accurate, the method will converge and the rate
of convergence is large when the surface is nearly flat. The numerical solution is
considered found when the absolute difference between two successive iterates is
smaller than a prescribed error tolerance ε1,

max
j=1,...,N

∣∣∣∣∂µj

∂t

(n+1)

− ∂µj

∂t

(n)∣∣∣∣6 ε1. (2.19)

Generally, approximately 10 iterations are required so that the absolute difference
between two successive iterates is smaller than 10−13. The cutoff filter level (2.12) is
often set at this level. Convergence is improved when the initial iterate is picked as the
solution from the previous time step.

After calculating the complex velocities w and the time derivatives of the dipole
strength ∂µ/∂t, the rates of change of the wave profile z = x + iy and the dipole
strength µ are known and they may be updated by a suitable ODE solver. Many
accurate and stable schemes are available. The standard fourth-order Runge–Kutta
method is chosen in our algorithm.

The numerical method proceeds as follows. Knowing zj and µj, the velocity
potential at the surface (2.16) is evaluated by using (2.17) once the derivative (Dz)j
has been determined from (2.11). Using (2.11) again determines Φp and hence the
velocity (2.4). The time derivative of z is now known (2.3). Next, (2.6) is evaluated
and the integral equation solved by iteration (2.18). Thus the time derivative of µ is
known and the time derivatives may be passed to the ODE solver.

The first-order Stokes wave, 2π-periodic and travelling to the right,

x(p)= p− ε sin(p−√gt), y(p)= ε cos(p−√gt),
µ(p)= 2ε

√
g sin(p−√gt),

}
(2.20)

provides a good test of the algorithm and the code. The time scale is set with g = 1
and an initial condition is obtained by setting t = 0.

Resolution studies confirm spectral accuracy in space and fourth-order accuracy
in time. The expectation is that the numerical solutions converge to a solution of
the full nonlinear equations and not the linear solution given above. The difference
though should be O(ε3) according to higher-order terms in the Stokes expansion for
a travelling wave of permanent form, and the numerical results confirm the expected
behaviour.

It is difficult to verify completely the accuracy of the code for the fully
nonlinear water wave problem simply because a general exact solution is unavailable.
Fortunately there is an important invariant of the wave motion, which is the total
energy. As in Baker et al. (1982), the kinetic energy EK and the potential energy EP

may be expressed as

EK = 1
2

∫ 2π

0
ψφq dq, (2.21)

EP = g

2

∫ 2π

0
y2xq dq, (2.22)

where ψ and φ are the streamfunction and potential defined in (2.1). The total
energy per spatial period ET = EK + EP is conserved in time. The energy ET may

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.283


Singularities in deep water waves 93

D
ig

its
 in

 f
ra

ct
io

na
l c

ha
ng

e 
of

 e
ne

rg
y

t

10

11

12

13

14

15

0 5 10 15 20 25 30

 = 0.1, Δt =    400
 = 0.2, Δt =    800

 = 0.3, Δt =     1600

FIGURE 1. Number of digits in the fractional change of the total energy versus time,
ε = 0.1, 0.2, 0.3, different 1t.

be evaluated with spectral accuracy because it involves the numerical integration of
periodic functions.

As a simple test, take (2.20) at t = 0 with ε = 0.1, 0.2, 0.3 as the initial conditions
and execute the code with N = 64 and 1t = π/400,π/800,π/1600, respectively.
Apply the tanh filter (2.13) with L = 12 and d = 0.5 and choose ε1 = 10−13 in the
convergence criterion (2.19). Run the code until t = 10π. Let ET(t) denote the total
energy at time t. As in Ceniceros & Hou (1998), monitor the number of digits in the
fractional change of energy, that is,

number of digits=−log10

|ET(t)− ET(0)|
|ET(0)| . (2.23)

Figure 1 shows the number of digits in the fractional change of the total energy versus
time for the different cases. In all cases, the energy has about 11 digits of accuracy
provided a small enough time step is used. Note that smaller time steps are needed for
this level of accuracy as the amplitude is increased. The energy oscillates with a very
small amplitude around the exact value causing the difference to be zero periodically,
as revealed by the spikes in the graphs. We conclude that the method is very accurate
and reliable.

3. Travelling waves
The first-order Stokes wave (2.20) provides an initial condition that is analytic in

p and is not already a breaking wave for all amplitudes ε < 1. Of course, above the
linear level, the wave does not retain its permanent form as nonlinear effects come
into play during its motion. Indeed, as will be shown, these waves can break and form
plunging tips of high curvature. The question, then, is whether curvature singularities
can arise in finite time and if so, what is their nature?

To address these questions, a specific case of a plunging breaker will be studied
in detail. Figure 2 shows the plunging breaker that forms for ε = 0.5. The
results are obtained through a series of calculations because the evolving surface
requires increasing resolution for accuracy. The calculation starts with N = 2048
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x
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3.5 4.0 4.5 5.0 5.5 6.0

FIGURE 2. The plunging breaker when ε = 0.5. The profiles are shown in sequence at
t = 3.1, 3.2, . . . , 4.0.

Interval N

0 6 t 6 3.54 2048
3.54 6 t 6 3.8 4096
3.8 6 t 6 4.0 8192

TABLE 1. Spatial resolution in each time range.

and 1t = 0.0002. The plain filter (2.12) with ε0 = 10−11 is applied whenever a
derivative is needed. The filter (2.14) is applied after each time step, with ξ0 = π/4
and d = π/40, to x, y and µ to contain the growth of round-off errors. The tolerance
level in (2.19) is set at ε1 = 10−10. At t = 3.54, the amplitudes of the Fourier spectrum
begin to rise in absolute value above round-off errors near the end of the discrete
Fourier range N/2 = 1024. If the calculation is continued in time, accuracy is lost as
the Fourier spectrum continues to rise in magnitude. Instead, the spatial resolution is
doubled using interpolation based on the Fourier series. Now the spectrum is fully
resolved but continues to rise in absolute value until another re-doubling is necessary.
Table 1 presents the choice of N during each time range. By increasing resolution, the
number of digits of accuracy in the energy is better than 10 throughout the calculation.
The time step remains at 1t = 0.0002.

Quite clearly displayed in figure 2 is the increasing sharpness of the tip of the
plunging breaker. The curvature of the surface is given by

κ(p)= xpypp − ypxpp

(x2
p + y2

p)
3/2
, (3.1)

and the curvature profile for the surface shown in figure 2 at the last time t = 4.0
is displayed in figure 3 along with the time evolution of the minimum. The results
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FIGURE 3. Profile of curvature at t = 4.0 and time evolution of the minimum of curvature
from t = 3.56 to t = 4.0 in increments of 0.02.

show how narrow the tip is and how quickly it grows. This behaviour is certainly a
candidate for the formation of a curvature singularity in finite time.

3.1. Curvature singularities
In general, it can be quite difficult to assess whether a singularity forms in finite
time. One way forward that is both intellectually pleasing and practical is to search
for isolated singularities in the complex p plane. If found, they can be tracked to
see whether they will reach the real axis in finite time. This approach has been
used successfully in several studies of curvature singularity formation in free surface
flows, for example, Krasny (1986), Shelley (1992), Baker et al. (1993), Nie & Baker
(1998), Ely & Baker (1993) and Cowley et al. (1999). Basically, the method uses the
asymptotic behaviour of the Fourier coefficients for large wavenumbers to detect the
nearest isolated singularity in the complex plane; details are provided in Appendix A.

It is crucial that the Fourier spectrum is accurate over a wide range of wavenumbers
to allow a successful form fit. Curvature spectra for the profiles in figure 2 are shown
in figure 4 for 3.6 6 t 6 4.0 with time increments of 0.1. The regular pattern in
the spectra confirms the possibility of a singularity in the complex physical plane
because it has the appearance of the form (A 3). The sliding fit over k is applied to
the curvature spectrum at t = 3.6 for example, and the results are shown in figure 5.
For a range in k, in particular 100 < k < 400, the sliding form fit gives consistent
results that approach limiting values. Estimates for the accuracy of the surface profile
suggest the errors are about 10−11, which implies that the accuracy in the curvature
is about 10−6. Even though the curvature spectra in figure 4 appear well resolved,
the accuracy in the data limits the range where the form fit succeeds to k < 500, the
value where the curvature spectrum at t = 3.6 reaches 10−6. The results displayed
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FIGURE 4. Curvature spectra expressed in the form (log10|κ̂k|). From bottom up the data are
shown at t = 3.6, 3.7, 3.8, 3.9 and 4.0.

in figure 5 suggest that µ = −1.5, δ = 0.03585, and then γ = 3.3161 is calculated
by the procedure described in Appendix A. The results were also checked with the
least-squares fit and the results are consistent. Consequently,

κ(p)∼ (p− ps)
−1.5, (3.2)

where ps = γ + iδ = 3.3161 + 0.03585i. As discussed in Appendix A, there is another
singularity below the real p axis which is the complex conjugate of the one above
because the curvature is a real-valued function along the real p axis. This will be true
for all the results reported in this article, so for convenience only the singularity in the
upper half-plane will be studied.

Having established the nature of the curvature singularity at t = 3.6, the obvious
next step is to verify its presence at all times and to determine if it reaches the
real axis in finite time. So the sliding fit is applied to the curvature spectra at each
time step. What is important in all the results is that irrespective of the time is, the
exponent of the singularity µ is −1.5. It is the location of the nearest singularity to
the real axis, or the width of the analyticity strip, δ(t), that changes in time. Figure 6
shows the change in δ, and compares its behaviour with the rapid decay of 1/max |κ|.
Initially, δ ≈ 0.7. As t passes 0.5, δ starts decreasing. As t reaches 3, the wave starts
to break and the decay of δ slows down. As the tip of the plunging breaker becomes
increasingly sharp, δ approaches the real axis but at an ever slowing pace and does
not appear to reach the real axis in finite time, certainly not before the tip reaches the
water surface below it.

One possible origin of the curvature singularity in the complex p plane is that x(p)
and/or y(p) have square-root singularities at ps. However, attempts to fit the spectra
of x(p) − p and y(p) fail to identify such a singularity. There must be another reason
for the occurrence of curvature singularities. Since the curvature singularity is already
present in the initial condition, it is worthwhile to explore the initial curvature. Note
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FIGURE 5. The parameters in the fit (A 3) to the spectrum of κ(p) at t = 3.6 for ε = 0.5.
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FIGURE 6. The quantities 1/max |κ| and δ as functions of t for ε = 0.5.
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first that the curvature (3.1) can also be expressed as

κ = 1
sp

Im
{

zpp

zp

}
=− i

2
√

zpzp

(
zpp

zp
− zpp

zp

)
. (3.3)

In this form, it is easy to analytically continue κ into the complex p plane by replacing
the complex conjugate z with z∗(p)= z(p) as done by Cowley et al. (1999). The initial
condition (2.20) gives

zp = 1− εeip, zpp =−iεeip (3.4)

z∗p = 1− εe−ip, z∗pp = iεe−ip. (3.5)

Clearly, zpp and z∗pp are analytic, but zp and z∗p have zeros, and these zeros lead
to branch-point singularities in the curvature of power −3/2, exactly as found
numerically. The zeros of zp and z∗p occur at p = i ln(ε) and p = −i ln(ε) respectively,
which means it is the zero of z∗p, in the upper half-plane that is detected numerically.
For ε = 0.5, the zero occurs at 0.693i, which is the initial value shown in figure 6.

The question naturally arises of whether this curvature singularity in the complex
p plane is simply an artifact of the parameterization. The matter is easily settled by
considering the curvature as a function of the arclength variable s. For the initial
condition (2.20), it is straightforward to determine the behaviour of the curvature in
terms of the arclength. Consider the curvature near the point ps = −i ln(ε). First, note
that

zp ∼ 1+ ε2, zpp ∼−ε2i, (3.6)
z∗p ∼ i(p− ps), z∗pp ∼ i, (3.7)

which means that

s2
p = zpz∗p ∼ i(1+ ε2)(p− ps) or s− s0 ∼ 2

3

√
i
√

1+ ε2(p− ps)
3/2, (3.8)

where the location of the singularity in the complex arclength plane is s0. Since
z∗pp/z

∗
p ∼ 1/(p− ps), the dominant contribution to the curvature near ps is

κ ∼ i

2
√

i
√

1+ ε2(p− ps)3/2
∼ i

3(s− s0)
. (3.9)

The next step, then, is to determine the curvature as a function of the arclength
and seek a form fit to its spectrum to locate any singularities and their nature. For
this purpose it is necessary to redistribute the markers along the interface so that the
new markers correspond to equal spacing in arclength. The procedure described in
the Appendix of Baker & Nachbin (1998) is followed. Once the new markers are
located, the curvature values at these locations are found using Fourier interpolation.
Take the data for ε = 0.5 at t = 2.35 as an example. The curvature spectra for the two
distributions of markers are shown in figure 7.

Clearly the spectra show a pattern that suggests that the form fit described in
Appendix A is plausible. The issue is whether the data contain enough accuracy to
produce consistent results. The results from the sliding fit procedure are shown in
figure 8. The power is clearly µ = −1 and C is near 1/3, matching the predictions
from (3.9). Recall that the data for the curvature are accurate enough when the
spectrum reaches about 10−6 and from figure 7 this occurs near k ≈ 250. Given this
limitation, the form fit is certainly consistent. Indeed, it is usually easier to find
consistent form fits when the curvature is expressed as a function of arclength.
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FIGURE 8. The parameters in the fit (A 3) to the spectrum of κ(s) at t = 2.35 for ε = 0.5.

The sliding fit is applied to the calculated curvature spectra for each time at which
reliable data are available, and the results give the power as µ = −1 in all cases. The
distance δ of the pole singularity from the real axis is shown in figure 9. Compared to
figure 6, the pole singularity is nearer to the real axis in the complex arclength plane
than the 3/2-power singularity in the complex p plane. Indeed, it becomes extremely
difficult to fit the data at later times because the singularity is so much closer. The
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FIGURE 9. The quantities δ and log10(δ) as functions of t for ε = 0.5.

decrease of δ appears slightly faster than exponential but given that the singularity in
the complex p plane is slower than exponential, the evidence on whether a singularity
forms in finite time is inconclusive. Presumably, the tip of the plunger where the
curvature singularity might form is falling freely under gravity. The evidence in Baker
et al. (1993) and Tanveer (1993) suggests no curvature singularity formation in finite
time for a falling spike undergoing Rayleigh–Taylor instability. Certainly, a more
definite study of falling spikes would be desirable to settle the matter, but it may be
only of mathematical interest since surface tension effects will come into play long
before singularity formation.

The evidence for pole singularities in the complex arclength plane is not just
numerical. The theoretical work of Tanveer (1993) also predicts these singularities
as generic in nature. In his work, Tanveer uses a conformal map from the unit disk
into a periodic strip below the water surface in the physical plane. With η the complex
variable inside the unit disk, the mapping takes the form

z(η, t)= 2π+ i ln(η)+ if (η, t), (3.10)

where f (η, t) is analytic in a region that contains the unit disk and may have square-
root singularities outside the unit disk. In particular, the general expansion near a
generic singularity is

f (η, t)=
∞∑

n=0

dn(t)(η − ηs)
n/2. (3.11)

Thus,

zη ∼ id1

2
√
η − ηs

, z∗η ∼ b1, (3.12)
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FIGURE 10. The distance δ(t) from the real axis of the curvature singularity in the complex s
plane for different ε.

where z∗ = z(1/η) is the analytic continuation of complex conjugation and it has no
singularity at ηs. Furthermore,

zηz
∗
η = s2

η ∼
ib1d1

2
√
η − ηs

, s− s0 ∼ 4
√

ib1d1

3
√

2
(η − ηs)

3/4, (3.13)

which means that the analytically continued curvature (see (3.3)) is dominated by

κ =− i
2
√

zηz∗η

(
zηη
zη
− z∗ηη

z∗η

)
∼ i

2
√

2ib1d1
(η − ηs)

−3/4 ∼ i
3(s− s0)

, (3.14)

a result that agrees with (3.9). In summary, note that the square-root singularity in
z(η) corresponds to a zero in z∗p and both lead to a pole singularity in κ(s). As an
additional check, the conformal map between η and p is constructed numerically for a
few profiles and it is verified that a square-root singularity in z(η) maps to a zero in
z∗p(p).

So far, results have been shown for the case ε = 0.5. Numerical simulations and
analysis of the results are also conducted for a range of ε. In all cases, the detection
of singularities gave the same type of singularities in the complex p and arclength
planes. The main difference is in the trajectory of these singularities. In particular
the distance δ of the curvature pole singularities from the real axis in the complex
arclength plane are shown in figure 10 for various amplitudes ε. For small enough
amplitudes, the waves do not break, and the pole singularity remains bounded away
from the real axis. Periodically the waves develop smooth crests, observable when the
pole singularity approaches the closest to the real axis. For ε = 0.4, 0.5, the waves
break, and the pole singularity approaches the real axis rapidly.
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3.2. Singularities in local models
In addition, local solutions have been found that match the surface profile at the tip
(Longuet-Higgins 1980) and the curling forward face of a breaking wave (Longuet-
Higgins 1982). In Appendix B, we reproduce the solution found by Longuet-Higgins
(1980) but in terms of Lagrangian motion. We show that

z(p, t)= [a sinh(p+ f )+ ib cosh(p+ f )]eiδ − gt2

2
(3.15)

is an exact solution to Euler’s equation with free surface boundary conditions provided
that the real-valued functions a(t), b(t), f (t) and δ(t) satisfy certain first-order
differential equations. Of course, the Lagrangian surface variable p will be different
from the one introduced by the initial condition (2.20), but since z(p, t) in (3.15) is
analytic in p, it is only where zp or z∗p have zeros that there are curvature singularities
and they will be of the same type as in (3.9). Specifically, zp has a zero at

p=−f + iε, tan(ε)= a

b
. (3.16)

The zero lies directly above the location of the maximum curvature on the real p-axis.
Unfortunately, since the definitions of p in (3.15) and in the results displayed in
figure 6 are different, a detailed comparison is not possible. Nevertheless, the trend in
δ is similiar to that predicted by (B 18).

The location in the complex arclength plane can be determine from the integral
of sp,

s0 =
√

2ρ
∫ −f+iε

−f
[cosh(2(p+ f ))− cos(2ψ)]1/2 dp, (3.17)

where the origin of the arclength is picked to coincide with the maximum in the
curvature at p=−f . For small ε,

s0 = i
π

2
ρε2 ≈ C

(C1t + 1)3
, (3.18)

where we use the approximations (B 18). Given the limited range in time 3.5< t < 4.0
for which this approximation may be valid, a detailed match with numerical results
is not possible. Nevertheless, it does account for the close approach to the real axis
without the pole singularity reaching it in finite time.

A different local model developed by Longuet-Higgins (1982) captures the shape of
the forward curling part of a breaking wave very well. The derivation uses the fact that

∂2z

∂t2
+ ig= iR(p, t)

zp

sp
. (3.19)

Recall that the partial derivative in time keeps p fixed; in other words, the motion is
Lagrangian. The statement (3.19) has a direct connection to the Taylor condition since

R= xp

sp

(
∂2y

∂t2
+ g

)
− yp

sp

∂2x

∂t2
= n · (xtt − g) (3.20)

measures the normal component of the upper acceleration of a fluid particle on the
surface which must be less than the gravitational acceleration. In other words, for the
normal pointing away from the fluid, R > 0. In figure 11, the profile of R(p) for the
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FIGURE 11. Profiles of R(p) for the travelling wave with ε = 0.5 for a sequence of times:
t = 1, 2, 3, 3.3. The profiles shift to the right with the travelling wave.

wave shown in figure 2 (ε = 0.5) is shown for a sequence of times t = 1, 2, 3, 3.3. In
all cases R(p) > 0, even when the wave has clearly broken at t = 3.3 (as shown in
figure 2). However, R(p) approaches zero at the tip of the plunging breaker, located
near p = 3.2, indicating that the tip approaches free fall, one of the assumptions in
Longuet-Higgins (1980).

In Longuet-Higgins (1982), the assumption is made that r(p, t) = R(p, t)/sp(p, t) is
only a function of time. Since sp is more or less uniform, but small between p = 3.2
and p = 4.2, the region of the forward face, r follows R closely except that its
values are much larger. It looks like an inverted quadratic peaking near r = 7. On the
other hand, even if r is a quadratic, it is possible that z is a cubic as assumed in
Longuet-Higgins (1982). Specifically,

z= 1
3 − 3p2 + i(2p− p3). (3.21)

Longuet-Higgins shows that this cubic, tilted appropriately, matches experimental
observation of the surface of a plunging breaker very well, a plunging breaker very
similar to the one shown in figure 2.

The main interest here is the nature of the singularity in the approximation (3.21).
Clearly z(p) is analytic but zp has zeros at i(1 ± 1/

√
3). The one closest to the real

axis induces a pole singularity in the complex arclength plane at s0 = 0.66i. This pole
singularity is much further from the real axis than the one that is associated with the
high curvature at the tip of the plunging breaker. Nevertheless, it is now clear that
multiple pole singularities are possible in water wave propagation. In the next section,
direct evidence for multiple poles will be presented.

3.3. Profile singularities
It might seem that the rapid approach to the real axis of pole singularities in the
curvature is a signal that breaking waves have occurred. But it also seems plausible
that pole singularities might approach the real axis as a signal that waves are cresting.
This topic is reserved for the next section. Instead, consider breaking as the occurrence
of the wave slope becoming vertical and the wave profile becoming multivalued as
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FIGURE 12. Vertical distance to the real axis of the profile singularity as a function of t for
ε = 0.5, and an enlarged view.

the wave folds over. It is then appropriate to ask whether yx(x, t) = yp(p, t)/xp(p, t)
becomes infinite in finite time. Indeed, we can ask a more general question. Are there
any y(x) singularities in the complex x plane? We can answer this question by seeking
a form fit to the Fourier coefficients of y(x) given by

yk = 1
π

∫ 2π

0
y(p)eikx(p)xp(p) dp. (3.22)

A sliding fit of the spectrum ŷk matches very well to

yk(t)∼ C(t)e−δ(t)kk−1.5, (3.23)

indicating that y has the following asymptotic expansion near xs:

y(x)∼√x− xs, (3.24)

where xs = γ (t) + iδ(t) is the singularity location in the complex x plane. Since this
singularity appears in y as a function of x, it may be called a ‘profile singularity’.

The distance δ of the square-root singularity from the real x axis is shown in
figure 12 for the case ε = 0.5, a case where the wave breaks. Clearly, the singularity
moves towards and reaches the real axis at about t = 2.91. At this moment, the wave
becomes vertical and thereafter the wave folds over. The role of the profile singularity
and the curvature singularity becomes more transparent when their distances from the
real axis are compared as in figure 13. Even though the distances are measured in
different complex planes, they both clearly approach the respective real axes prior
to the wave breaking. Once the wave breaks the curvature singularity slows down
noticeably as a plunging tip is formed and falls freely under gravity.
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FIGURE 13. The distances δ(t) of the profile singularity and the curvature singularity from
their respective real axes for ε = 0.5.

Square-root singularities in the profile are found for all the choices of ε that were
made. Their distances from the real axis of the x-plane are shown in figure 14. The
pattern is clear. When the waves break, the profile singularity reaches the real axis in
finite time. When they do not, the profile singularity stays away from the real axis. But
there is a different feature in the results. When the profile singularity for non-breaking
waves recedes periodically, the wave flattens out somewhat. The form fit is much less
reliable and the evidence suggests the possibility of more singularities appearing at
comparable distances from the real axis. The form fit is designed to identify only the
nearest singularity to the real axis. A different form is needed when there are more
singularities; see Cowley et al. (1999). If this is true, then a simple connection of
a single square-root singularity with a single travelling wave is not possible. On the
other hand the presence of multiple square-root singularities offers a different view of
the origin of the wave spectrum. Each singularity induces a tail in the spectrum of the
form (A 4) and the wave spectrum is the result of their accumulated effects. Since the
singularities capture the fully nonlinear effects of wave motion, even the exponentially
small effects, the resulting spectrum can be significantly different from that generated
by weakly nonlinear theories.

In order to remove the possibility that the presence of these singularities depends
on the choice of initial condition (2.20), other initial conditions are used, in particular,
x(p) = p replaces the choice in (2.20). The same singularities are found and their
behaviour is similar. We also used the initial condition in Fontelos & de la Hoz (2010),
and we find a pole singularity in the curvature in the complex arclength plane.

For travelling waves that break, a pole singularity in the curvature approaches the
real axis very closely. The question arises of whether these singularities can approach
the real axis under different circumstances. Two candidates immediately spring to
mind: the corner singularity that occurs in the limiting form of the Stokes wave and
the momentary formation of a corner singularity for the limiting form of standing
waves. We have not succeeded in finding the instantaneous formation of corner
singularities in travelling waves, although we have not conducted an exhaustive search.
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FIGURE 14. The distance δ(t) of the profile singularity from the real x axis for different ε.

Alternatively, large-amplitude standing waves may well develop corner singularities
and we explore this possibility in the next section.

4. Standing waves
Standing waves are waves that do not propagate. The simplest example is the wave

trapped between two vertical boundaries. The linear wave,

x(p)= p, y(p)= ε cos(p) cos(t), φ(p)=−ε exp(y) cos(p) sin(t), (4.1)

is a standard example of a standing wave. Note that the wave profile is even and
2π-periodic. One can easily imagine vertical boundaries at x = 0 and x = 2π, but for
our purposes it is better to regard the wave profile as periodic with certain symmetries.
After one period, the wave returns to exactly the same shape, and it is possible to
calculate waves of larger amplitude with this property. For example, Penny & Price
(1952) calculated a perturbation expansion to fifth-order using the wave amplitude
as the parameter. Mercer & Roberts (1992) use a numerical method to calculate
two-dimensional standing water waves of larger amplitudes. In this section, we are
interested in whether corner singularities can arise spontaneously starting with the
initial condition in (4.1) but with large amplitudes.

For low amplitudes, the waves show a gradual adjustment due to nonlinear effects.
Far more interesting is the case ε = 0.5. Figure 15 shows successive profiles of the
surface location. Observe that the profiles are plotted at approximately one-eighth-
period increments so it is easy to see the wave motion. The resolution is set as
N = 1024,1t = π/4000. The tanh filter (2.13) is applied with L = 12 and d = 0.5
whenever a derivative is calculated and in the smoothing procedure after each time
step. The error tolerance ε1 = 10−13 is used in the iterative solution for ∂µ/∂t. The
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FIGURE 15. Successive wave profile plots for ε = 0.5.

total energy ET(t) remains conserved to more than 10 digits. After about a half-period,
a new crest has emerged at x = π, which subsequently splits into two outward moving
waves. These waves collide at x = 0, 2π and form high peaks at the two ends. After
reaching a maximum height the peaks begin to collapse rapidly.

More resolution is needed to continue the calculations with high accuracy. A restart
is performed at t = 7.854 with N = 2048 and 1t = π/20 000. The collapsing peak at
x = 0 is shown in detail in figure 16 at successive times from t = 2.175π to t = 2.75π.
As the peak collapses it sharpens with high curvature developing at the peak, but
eventually the peak is absorbed back into the background wave profile and disappears.
Similar patterns in behaviour have been calculated before by Longuet-Higgins &
Dommermuth (2001).

The dynamics of the process is revealed by considering the trajectory of the
Lagrangian marker centred on the peak at x = 0. The height of the marker, its vertical
velocity and acceleration are shown in figure 17. During the collapsing phase, from
about t = 2π = 6.28 until t = 2.7π = 8.48, the particle acceleration is very close to
g=−1, which means the peak is falling almost freely under gravity. Once the peak is
absorbed in the background wave profile, the Lagrangian particle at the crest location
suffers a rapid deceleration, driven presumably by a pressure gradient that overcomes
the downward falling motion. The upward acceleration is much greater than gravity.

Prior to examining the role that curvature singularities in the complex plane may
have, it is instructive to observe the curvature profiles in time. In figure 18 the
curvature profiles are shown for the time period covering one oscillation of the
standing wave, from an early time t = 0.75π = 2.36 until t = 2π = 6.28, a time just
before the start of the collapse of the peak. Already by t = 0.75π= 2.36, the curvature
shows two spikes, placed evenly about x = 0(p = 0). These spikes move towards
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FIGURE 16. Detailed of the collapsing peak from t = 2.175π to t = 2.75π in increments of
0.025π (from top down).
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FIGURE 17. Vertical components of the location, velocity and acceleration of the Lagrangian
marker at the centre of the peak (x= 0).

x = π(p = π) where they appear to collide. This pattern is also clearly discernible in
the wave profiles shown at the same times in figure 15.

While there are advantages to viewing the curvature as a function of the Lagrangian
variable p, for example to observe the propagation of the curvature spikes with that
of the wave profile, it is the curvature as a function of arclength that is important
for assessing the nature of the singularity. The curvature profiles suggest the presence
of two pole singularities in the complex arclength plane. If this is so, then the form
fit (A 3) is not valid. Because of the symmetry in the profiles, if there are two
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FIGURE 18. Successive curvature profiles starting from t = 0.75π until t = 2π in increments
of 0.25π.

singularities they must be identical and lie at s0 = γ + iδ and s0 = (2π − γ ) + iδ. By
adding their contributions to the Fourier coefficients, the tail of the spectrum has the
form

κk ∼ C exp(−kδ) cos(γ k + ψ), (4.2)

where the assumption has been made that they are pole singularities. A similar
approach was adopted by Baker et al. (1993), where the authors considered a pair
of singularities placed symmetrically about the falling spike during Rayleigh–Taylor
instability of two fluids. Formula (4.2) is then used to fit the curvature spectrum of
κ(s). When the singularities are close together, in other words γ is small, then the
slow variation in the cosine term in (4.2) makes it challenging to use a sliding fit
that uses just a few points. Instead, a nonlinear least-square fitting procedure based
on a robust version of the Levenberg–Marquardt algorithm (see Galassi et al. 2009) is
applied to find the parameters C, δ, γ and ψ . At each time, a local least-squares fit
based on data at k, k+ 1, . . . , k+ L is performed. By studying the results of the fit as k
increases it is possible to confirm consistency in the assumptions of the fit and to pick
the best values for the parameters in the fit. This procedure is performed only when
there is evidence that there are two singularities, and that occurs from about t ≈ 2 until
t ≈ 6.

The trajectories of the singularities are shown in figure 19. The singularities collide
on the imaginary axis, a phenomenon already observed by Cowley et al. (1999) in
singularity behaviour of vortex sheets. The most likely consequence of the collision is
that the two pole singularities move along the imaginary axis, but at different locations.
The standard sliding fit (A 3) to the Fourier spectra captures the singularity that is
closest and the result is included in figure 19 as the vertical line down from the point
of collision. The peak is collapsing during the close approach of the pole singularity
along the imaginary axis towards the real axis.
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FIGURE 19. Trajectory of the pole singularities of the curvature in the complex arclength
plane.

As a quick aside, the positions of the pole singularities coincide with the horizontal
location of the curvature spikes. Otherwise, it is the close approach of the pole
singularity to the real axis for late times that is relevant in assessing whether a
curvature singularity forms on the wave profile in finite time. In figure 20, the distance
δ of the pole singularity is shown as a function of time. For ε = 0.5, the case
considered so far for standing waves, δ approaches very closely to the real axis but
very slowly, until the moment is reached when the falling peak in the wave profile
suddenly smooths out and is absorbed into the wave. The moment, just past t = 8.5,
when the pole singularity races away from the real axis coincides with the time shown
in figure 17 when the collapsing peak suddenly decelerates and this is the time at
which the wave profile flattens out.

Also shown in figure 20 are the distances δ corresponding to other choices for ε.
When ε is small, the pole singularities move up and down the imaginary axis (or
the line of symmetry corresponding to x = π) as the wave cycles through troughs
and peaks. At large enough amplitudes, another pole singularity, presumably on the
imaginary axis (or the line of symmetry corresponding to x = π) and above the
one closest to the real axis, moves down fast enough to collide with the nearest
singularity, and they separate symmetrically about the imaginary axis (or line of
symmetry corresponding to x= π). These singularities can subsequently move together
again, collide and move along the imaginary axis (or line of symmetry corresponding
to x = π). In essence, these pole singularities move up and down, collide and move
between lines of symmetry if the amplitudes are large enough.

5. Conclusions
Numerical simulation of water waves confirms the prediction from the work of

Tanveer (1991) and Tanveer (1993) that there are pole singularities in the complex
arclength plane of the curvature. These singularities move about the plane while
retaining their form. Under the right conditions, typically large-amplitude waves, these
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FIGURE 20. The distance δ of the pole singularities of the curvature from the real axis of the
complex arclength plane for various ε: from the top down, ε = 0.35, 0.40, 0.45, 0.5.

singularities approach the real axis very closely, resulting in the formation of very
sharply peaked crests or tips of breaking waves. While the search has not been
exhaustive, there is no evidence of the formation of curvature singularities on the
wave profile in finite time. The study has used initial conditions that are analytic
in a Lagrangian variable p, although this does not exclude the possibility of pole
singularities in the curvature resulting from zeros in sp from being present initially.

Another singularity of importance is that associated with the profile y(x). There
are square-root singularities in the complex x plane that move about while retaining
their form. These singularities can and do reach the real axis in finite time, a time at
which the profile has a vertical slope and is a signal that the wave is breaking. Even
when waves do not break, the presence of these singularities affects the tail of the
spectrum of y(x) strongly. Indeed, this effect has been used to identify their presence
numerically. Said differently, these singularities capture the full effects of nonlinearity.
They impart accurately the exponentially small effects of nonlinear interactions.

We are greatly indebted to Professor S. Tanveer for many insightful discussions and
help with the understanding of pole singularities in the complex arclength plane of the
curvature. This work was support in part by the National Science Foundation through
grant number OCE-0620885. Some of the computing was performed at the Ohio
Supercomputer Centre, and we gratefully acknowledge the resources we received.

Appendix A. Singularity detection
Sulem et al. (1983) introduced a method to detect the presence of isolated

singularities of a real-valued function in the complex plane by a form fit of its Fourier
spectrum. Consider a function u(z) which is analytic except at isolated singularities
zs = γ + iδ, in the neighbourhood of which it may be represented as

u(z)∼ (z− zs)
µ, (A 1)
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where µ need not be real. Using the definition in Carrier, Krook & Pearson (1966), the
Fourier coefficients are

uk = 1
2π

∫
u(z)eikz dz. (A 2)

For real functions, u−k = u∗k . The asymptotic behaviour of the Fourier spectrum for
k→+∞ is determined by the singularity in the upper half-plane which is closest to
the real axis. Assume zs is the closest one to the real axis. Then as k→+∞, the
Fourier coefficients have the asymptotic expansion

uk ∼ C |k|−µ−1 exp(−kδ + ikγ )+ D |k|−µ−2 exp(−kδ + ikγ )+ · · · . (A 3)

A derivation is available in Carrier et al. (1966).
If the singularity lies below the real axis, then a similar asymptotic representation

applies to k → −∞. Fortunately, if u(z) is real along the real axis, then the
singularities must appear as complex conjugates, in which case only the singularity
in the upper half-plane needs to be located.

The idea of tracking the singularity is to estimate the power of the singularity µ

and its location zs by matching the numerically generated Fourier spectrum with the
form (A 3). Provided the match is reliable, the coefficients µ and zs may be used to
track the singularity in time.

The asymptotic expression (A 3) leads to two forms depending on whether the
correction term involving D is included:

ln |uk| ≈ ln C − (µ+ 1) ln |k| − δ|k|, (A 4)

ln |uk| ≈ ln C − (µ+ 1) ln |k| − δ|k| + D

k
. (A 5)

There are two ways to match the form (A 4) or (A 5) to the Fourier coefficients uk: a
least-square method and a sliding fit method described next. For (A 4) use the equation
at k−1, k and k+1 to obtain a linear system which leads to exact solutions for ln C, µ
and δ. Consider the results as valid for the choice of k. This process is then repeated
consecutively over a range of k. For (A 5) use the equations at k− 1, k, k+ 1 and k+ 2
to solve for the coefficients. In either case, the expectation is that as k is increased, the
solutions obtained from the linear systems converge to the true value of the parameters
in the asymptotic expression (A 3).

Sometimes it is difficult to obtain satisfactory results, perhaps because of an
oscillatory spectrum due to multiple singularities of comparable distances to the real
axis or simply because of a lack of enough digits of accuracy in the Fourier spectrum.
This difficulty may be offset by considering q equations (q > 3 by using (A 4) and
q > 4 by using (A 5)) as a set of equations and obtaining the least-square solutions for
the unknowns. For example, Sulem et al. (1983) used least squares in their original
paper.

The horizontal location γ of the singularity is found in a similar yet simpler
way. The singularities appear periodically, since the function u is 2π-periodic, so γ

may be understood as the value within [0, 2π]. The quantity Wk = uk |k|µ+1 exp(kδ)
is calculated and it follows that Wk ∼ C exp(ikγ ), a purely oscillatory quantity, from
which γ may be determined.

A final note of caution. For the form fit to be reliable, enough of the tail of the
spectrum must be available and accurate. If the singularity is far from the real axis, the
spectrum decays very rapidly and not enough of the tail is available. If the singularity
is very close to the real axis, it can be very difficult to ensure sufficient accuracy in a
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slowly decaying spectrum. These two factors limit the range in which singularities can
be tracked. Furthermore, the form fit captures only the nearest singularity to the real
axis. If another is of comparable distance, the asymptotic form (A 3) is not valid and
the form fit based on (A 4) and (A 5) will fail.

Appendix B. Approximate solution for a plunging tip
A family of solutions that take the form of hyperbolae in free fall has been proposed

as candidates for the tip of a plunging breaker by Longuet-Higgins (1972, 1980). The
solutions are exact, but should be viewed as the leading-order contribution to a local
expansion near the tip.

The results can be expressed in terms of Lagrangian motion which is more
convenient for the study reported here. Specifically, the location of the free surface,
expressed as a complex function, is written in parametric form,

z(p, t)= a+ ib
2

ep+f+iδ − a− ib
2

e−p−f+iδ − gt2

2

= [a sinh(p+ f )+ ib cosh(p+ f )]eiδ − gt2

2
, (B 1)

where a, b, f and δ are real-valued functions of time. The form (B 1) represents
a hyperbola rotated by δ from the vertical position, with upward arms in a frame
accelerating downwards with acceleration g.

The complex velocity potential is written as

Φ(z, t)= α
2

eiσ z2 − gty, (B 2)

where α and σ are real-valued functions of time. By evaluating this potential on the
free surface (B 1) and substituting into the equation of motion (2.3), an exact solution
is achieved with the balance of exponential terms,

dρ
dt
+ ρ df

dt
= αρ cos[σ + 2(δ + ψ)], (B 3)

dρ
dt
− ρ df

dt
= αρ cos[σ + 2(δ − ψ)], (B 4)

dδ
dt
+ dψ

dt
=−α sin[σ + 2(δ + ψ)], (B 5)

dδ
dt
− dψ

dt
=−α sin[σ + 2(δ − ψ)]. (B 6)

Here the change of variables a + ib = 2ρ exp(iψ) has been used. Note that
tan(ψ) = b/a gives the slope of the asymptotes for the hyperbola in the rotated
frame.

A solution to Bernoulli’s equation can be obtained by substituting (B 1) and (B 2)
and balancing exponentials. There are also terms independent of p that effectively
determine the time-dependent constant in Bernoulli’s equation. An exact solution
occurs when

d
dt
[αρ2e2f cos(σ + 2(δ + ψ))] = α2ρ2e2f , (B 7)

d
dt
[αρ2e−2f cos(σ + 2(δ − ψ))] = α2ρ2e−2f . (B 8)
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With the definition 2θ = σ + 2δ, (B 3)–(B 8) can be written as a first-order system,

dα
dt

cos(2ψ)=−α2 cos(2θ), (B 9)

dθ
dt

cos(2ψ)=−α sin(2θ) cos(4ψ), (B 10)

dψ
dt
=−α cos(2θ) sin(2ψ), (B 11)

dρ
dt
= αρ cos(2θ) cos(2ψ), (B 12)

dδ
dt
=−α sin(2θ) cos(2ψ), (B 13)

df

dt
=−α sin(2θ) sin(2ψ). (B 14)

Note that the first three equations form a closed system for α, θ and ψ , and the last
three equation determine ρ, δ and f .

Unfortunately, there is no closed-form solution to these equations, but the long time
behaviour of a falling tip can be determined under the assumptions that the slope of
the asymptote for the hyperbola is large (the tip is sharp), 2ψ = π− 2ε. The half-angle
between the asymptotes that include the hyperbola is ε. The first two equations in the
system, (B 9) and (B 10), simplify,

dα
dt
= α2 cos(2θ), (B 15)

dθ
dt
= α

2
sin(2θ). (B 16)

The curves α = C sin(2θ) form the family of trajectories in the phase plane for α, θ .
The solutions of interest are those approaching the critical point at the origin of the
phase plane with α, θ < 0. With |θ | � 1, (B 15) has the approximate solution

α =− C1

1+ C1t
, (B 17)

where the origin in time is chosen when the plunging tip of the wave is already
formed and thin, and α(0) = −C1. The rest of the equations in the system are easily
solved. In particular,

ρ = C2(C1t + 1), ε = C3

(C1t + 1)2
, (B 18)

which leads to

a= C3

C1t + 1
, b= 2C2(C1t + 1). (B 19)

These results are consistent with the results obtained before (Longuet-Higgins 1980),
where it is shown that the appropriate choice for the hyperbolae can match plunging
tips very well.
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