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Modons, or dipolar vortices, are common and long-lived features of the upper ocean,
consisting of a pair of counter-rotating monopolar vortices moving through self-advection.
Such structures remain stable over long times and may be important for fluid transport
over large distances. Here, we present a semi-analytical method for finding fully nonlinear
modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our
approach is to reduce the problem to a multi-parameter linear eigenvalue problem which
can be solved using numerical techniques from linear algebra. The method is shown to
replicate previous results for one- and two-layer models and is applied to a three-layer
model to find a solution describing a mid-depth propagating, topographic vortex.
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1. Introduction

Modons, or dipolar vortices, are common coherent structures in the ocean and atmosphere.
In the ocean, they are remarkably stable, existing over long time scales and transporting
fluid over large distances (Nycander & Isichenko 1990). Modons are typically observed
at the ocean surface, although they can extend over several kilometres into the deep
ocean (Ni et al. 2020). In the study of atmospheric dynamics, modons have been used to
model various atmospheric processes such as atmospheric blocking (McWilliams 1980)
and Madden–Julian oscillation events (Rostami & Zeitlin 2021).

Early studies of modon solutions to the two-dimensional Euler equation were carried
out independently by Lamb and Chaplygin (Lamb 1932; Meleshko & van Heijst 1994)
and similar analytical solutions to the equivalent barotropic quasi-geostrophic problem
were identified by Larichev & Reznik (1976). The long-term behaviour of these structures
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remains an active area of study, with much recent work devoted to understanding modon
breakdown processes such as instabilities (Brion, Sipp & Jacquin 2014; Davies et al. 2023;
Protas 2024), energy loss through wave generation (Flierl & Haines 1994; Johnson &
Crowe 2021) and viscous decay (Flór, van Heijst & Delfos 1995; Nielsen & Rasmussen
1997).

Layered quasi-geostrophic (QG) models are commonly used in modelling the ocean and
atmosphere. These models consist of two-dimensional layers coupled through a vertical
pressure gradient and are generally valid on scales where the Earth’s rotation is dominant.
Determining modon solutions in such models allows for the study of coherent structures in
a more realistic setting than simple two-dimensional dynamics. Additionally, QG solutions
can be used to provide a balanced initial condition for the more realistic primitive equation
models. Kizner et al. (2003) thoroughly explore modon solutions in a two-layer model,
however, calculating solutions in models with arbitrarily many layers would be difficult
using the same analytical methods.

Here, we extend a method we developed for finding surface QG dipoles (Crowe &
Johnson 2023; Johnson & Crowe 2023) to the layered QG system by analytically reducing
the problem to a linear eigenvalue problem which can be solved numerically. This
approach, and the techniques used, have wide-ranging applications across fluid mechanics
and applied mathematics. We begin by presenting the model and solution method in §§ 2
and 3, before applying it to some examples in § 4. Our method is found to be consistent
with previous one-layer and two-layer studies and effective at finding new solutions in a
three-layer model. Finally, we discuss our method and results in § 5.

2. Problem set-up

Consider a dipolar vortex (or modon) of radius a moving in the zonal (x) direction with
speed U. In the frame of the moving vortex, the N-layer QG equations are

(∂t − U∂x)qi + J(ψi, qi)+ βi∂xψi = 0, i ∈ {1, 2, . . . ,N}, (2.1)

for streamfunction ψi and potential vorticity anomaly qi in each layer. Here

J( f , g) = ∂xf ∂yg − ∂yf ∂xg

denotes the Jacobian operator, βi denotes the background vorticity gradient in the
meridional (y) direction which may vary by layer to incorporate the effects of bottom
topography. The potential vorticities in each layer are given by

q1 = ∇2ψ1 + R−2
1 (ψ2 − ψ1), (2.2)

qi = ∇2ψi + R−2
i (ψi−1 − 2ψi + ψi+1), i ∈ {2, . . .N − 1}, (2.3)

qN = ∇2ψN + R−2
N (ψN−1 − ψN), (2.4)

where Ri = √
g′Hi/f is the Rossby radius of deformation in each layer. Here, g′ denotes

the buoyancy difference between consecutive layers and is taken to be the same for all
layers for simplicity. Layer depth is denoted by Hi and f denotes the Coriolis parameter.
The effects of a background flow can be easily incorporated into this model but will not
be considered here.
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N-layer QG modons

Equation (2.1) can be written as

∂tqi + J(ψi + Uy, qi + βiy) = 0, i ∈ {1, 2, . . . ,N}, (2.5)

and we now seek steady, nonlinear modon solutions by letting ∂t = 0. Equation (2.5) may
be written as

qi + βiy = Fi(ψi + Uy), i ∈ {1, 2, . . . ,N} (2.6)

where Fi is an arbitrary, piece-wise differentiable function of a single variable. To proceed,
we take Fi to be a piece-wise linear function

Fi(z) =
{
(Ki/a2)z, x2 + y2 < a2,

(βi/U)z, x2 + y2 > a2,
(2.7)

where a denotes the radius of the vortex. The form of the Fi outside the vortex is set by the
requirement that vorticity and streamfunction perturbations decay towards infinity. Inside
the vortex, we may either choose Ki to match the exterior solution, i.e. Ki = βia2/U, or
take Ki = −K2

i , where Ki is an eigenvalue which will be determined by continuity of
ψi across the vortex boundary. These cases will be respectively referred to as ‘passive’
and ‘active’ vortex regions. An active region consists of an isolated region of vorticity
whereas the vorticity in a passive region is determined only by the advection of the
background vorticity, βiy, by the vortex flow field. Considering a single thin active upper
layer above an arbitrary number of passive layers gives the β-plane extension of the surface
quasi-geostrophic model of Johnson & Crowe (2023) with the f -plane model recovered by
setting β = 0.

3. Solution method

Using the form of Fi from (2.7), equation (2.6) can be written as

(∇2 − R−2
1 )ψ1 + R−2

1 ψ2 + β1y = (K1/a2)(ψ1 + Uy), (3.1)

(∇2 − 2R−2
i )ψi + R−2

i (ψi−1 + ψi+1)+ βiy = (Ki/a2)(ψi + Uy), (3.2)

(∇2 − R−2
N )ψN + R−2

N ψN−1 + βNy = (KN/a2)(ψN + Uy), (3.3)

inside the vortex (x2 + y2 < a2) and

(∇2 − R−2
1 )ψ1 + R−2

1 ψ2 = (β1/U)ψ1, (3.4)

(∇2 − 2R−2
i )ψi + R−2

i (ψi−1 + ψi+1) = (βi/U)ψi, (3.5)

(∇2 − R−2
N )ψN + R−2

N ψN−1 = (βN/U)ψN, (3.6)

outside the vortex (x2 + y2 > a2) for i ∈ {2, . . .N − 1}.

3.1. Solution using Hankel transforms
To proceed, we move to plane polar coordinates, (x, y) = (r cos θ, r sin θ), and represent
ψi using the Hankel transform

ψi = Ua sin θ
∫ ∞

0
ψ̂i(ξ) J1(sξ)ξ dξ, (3.7)

where s = r/a and J1 denotes the Bessel function of the first kind of order 1. The angular
dependence in (3.7) is chosen to match that of a typical dipolar vortex. Substituting (3.7)
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into (3.1) to (3.6) gives∫ ∞

0
[(ξ2 + λ2

1 + K1)ψ̂1 − λ2
1ψ̂2] J1(sξ)ξ dξ = (μ1 − K1)s, (3.8)

∫ ∞

0
[(ξ2 + 2λ2

i + Ki)ψ̂i − λ2
i (ψ̂i+1 + ψ̂i−1)] J1(sξ)ξ dξ = (μi − Ki)s, (3.9)

∫ ∞

0
[(ξ2 + λ2

N + KN)ψ̂N − λ2
Nψ̂N−1] J1(sξ)ξ dξ = (μN − KN)s, (3.10)

inside the vortex (s < 1) and∫ ∞

0
[(ξ2 + λ2

1 + μ1)ψ̂1 − λ2
1ψ̂2] J1(sξ)ξ dξ = 0, (3.11)

∫ ∞

0
[(ξ2 + 2λ2

i + μi)ψ̂i − λ2
i (ψ̂i+1 + ψ̂i−1)] J1(sξ)ξ dξ = 0, (3.12)

∫ ∞

0
[(ξ2 + λ2

N + μN)ψ̂N − λ2
Nψ̂N−1] J1(sξ)ξ dξ = 0, (3.13)

outside the vortex (s > 1) for i ∈ {2, . . .N − 1}. Here, μi = βia2/U and λi = a/Ri,
respectively, denote the non-dimensional background vorticity gradient and the ratio of
the vortex radius to the Rossby radius in each layer.

We now define the matrix function

K(ξ) =

⎛
⎜⎜⎜⎝
ξ2 + λ2

1 −λ2
1 0 · · · 0 0

−λ2
2 ξ2 + 2λ2

2 −λ2
2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λ2
N ξ2 + λ2

N

⎞
⎟⎟⎟⎠ , (3.14)

and diagonal matrix

D(c) =

⎛
⎜⎜⎝

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...

0 0 · · · cN

⎞
⎟⎟⎠ , (3.15)

for some vector c = (c1, c2, . . . cN)
T. We also introduce the vectorsμ = (μ1, μ2, . . . , μN)

T,
K = (K1,K2, . . . ,KN)

T and ψ̂ = (ψ̂1, ψ̂2, . . . , ψ̂N)
T so (3.8) to (3.13) can be written

concisely as∫ ∞

0
[K(ξ)+ D(K)]ψ̂(ξ) J1(sξ)ξ dξ = (μ− K)s, s < 1, (3.16)

∫ ∞

0
[K(ξ)+ D(μ)]ψ̂(ξ) J1(sξ)ξ dξ = 0, s > 1. (3.17)

To proceed, we follow the approach of Johnson & Crowe (2023) and let

A(ξ) = [K(ξ)+ D(μ)]ψ̂(ξ)ξ, (3.18)

where A is expanded in terms of Bessel functions as

A(ξ) =
∞∑

j=0

aj J2j+2(ξ), (3.19)
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N-layer QG modons

where the aj are vectors of expansion coefficients. This expansion allows us to exploit the
integral relation ∫ ∞

0
J2j+2(ξ) J1(sξ) dξ =

{
Rj(s) for s < 1,
0 for s > 1,

(3.20)

and its inverse result

J2k+2(ξ)/ξ =
∫ 1

0
s Rk(s) J1(sξ) ds, (3.21)

where
Rn(s) = (−1)ns P(0,1)n (2s2 − 1), (3.22)

denotes the Zernike radial function, a set of polynomials of degree 2n + 1 (Born & Wolf
2019) which are orthogonal over s ∈ [0, 1] with weight s, and P(α,β)n denotes the Jacobi
polynomial. From (3.20) for s > 1, we observe that (3.17) is automatically satisfied by our
expansion of A(ξ) in (3.19) for all choices of aj.

Equation (3.16) may now be written as
∞∑

j=0

[∫ ∞

0
[K(ξ)+ D(K)][K(ξ)+ D(μ)]−1 J2j+2(ξ) J1(sξ) dξ

]
aj = (μ− K)s, (3.23)

for s < 1. We now multiply (3.23) by s Rk(s) and integrate over s ∈ [0, 1] to get
∞∑

j=0

[∫ ∞

0
[K(ξ)+ D(K)][K(ξ)+ D(μ)]−1ξ−1 J2j+2(ξ) J2k+2(ξ) dξ

]
aj = δk0

4
(μ− K),

(3.24)
where k ∈ {0, 1, 2, . . .}. Defining

Akj =
∫ ∞

0
K(ξ)[K(ξ)+ D(μ)]−1ξ−1 J2j+2(ξ) J2k+2(ξ) dξ, (3.25)

Bkj =
∫ ∞

0
[K(ξ)+ D(μ)]−1ξ−1 J2j+2(ξ) J2k+2(ξ) dξ, (3.26)

ck = δk0

4
, (3.27)

allows us to write (3.24) as
∞∑

j=0

[Akj + D(K)Bkj]aj = (μ− K)ck. (3.28)

We may now truncate this sum after a finite number of terms, say M, so j, k ∈
{0, 1, 2, . . . ,M − 1}. The resulting problem is an NM × NM inhomogeneous, eigenvalue
problem with up to N eigenvalues. Up to N additional equations are needed to solve this
system and may be obtained by the requirement that the vortex boundary is a streamline
in the vortex frame, ψi + Uy = 0 on s = 1. This condition gives N equations in the form
of a single equation for the coefficient vectors aj∫ ∞

0
A(ξ) J1(ξ) ξ dξ =

∞∑
j=0

aj

∫ ∞

0
J2j+2(ξ) J1(ξ) dξ = 0 =⇒

∞∑
j=0

(−1) jaj = 0,

(3.29)
which may similarly be truncated after M terms.
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We note that modon solutions do not exist if there is a singularity of [K(ξ)+
D(μ)]−1 for ξ ∈ (0,∞) as the integrals Akj and Bjk do not converge. These singularities
corresponds to the excitation of linear waves. In the two-layer case, the condition for the
existence of singularities is equivalent to the conditions discussed in Kizner et al. (2003).

3.2. The truncated eigenvalue problem
Our truncated eigenvalue problem from (3.28) and (3.29) may be written as[

A +
N∑

i=1

KiBi

]
a =

N∑
i=1

(μi − Ki)ci, s.t. dT
i a = 0 for i ∈ {1, . . . ,N}, (3.30)

for

A =
⎛
⎝ A0,0 · · · A0,M−1

...
. . .

...

AM−1,0 · · · · · · AM−1,M−1

⎞
⎠ , B =

⎛
⎝ B0,0 · · · B0,M−1

...
. . .

...

BM−1,0 · · · · · · BM−1,M−1

⎞
⎠ ,

(3.31a,b)

where a = (aT
0 , aT

1 , . . . , aT
M−1)

T, c = (1, 0, . . . , 0)T and d = (1,−1, . . . , (−1)M−11)T

where 1 and 0 denote length N row vectors of ones and zeros, respectively. The indexed
quantities Bi and ci are given by B and c, respectively, where all rows with a row index,
n /= i (mod N), are set to zero.

Equation (3.30) is a multi-parameter eigenvalue problem (Atkinson 1972) and may be
solved using a range of methods (see Appendix A). For active layers, we must solve for
the eigenvalue Ki = −K2

i while for passive layers we let Ki = μi so the term KiBi may be
merged into A and the right-hand side term (μi − Ki)ci vanishes. Additional conditions of
the form dT

i a = 0 are required for active layers but not for passive layers where continuity
is automatically enforced by the fact that the components of a corresponding to a passive
layer are zero. Mathematically, this is equivalent to the requirement to include an additional
equation each time a new (unknown) eigenvalue is introduced. There will be a discrete
spectrum of eigenvalues for each layer, corresponding to different modes in the radial
direction. However, modon studies typically focus on the first-order radial mode which has
the smallest value of Ki and is generally the most stable. For multi-layer models, modon
solutions may have different radial mode numbers in each layer.

The error in K arising from the finite truncation decreases exponentially with increasing
M. The supplementary material ‘Scaling_and_accuracy.pdf’ available at https://doi.org/
10.1017/jfm.2024.619 discusses the accuracy and computational complexity of our Matlab
implementation.

3.3. Determining streamfunctions and potential vortices
Once the Ki and aj are calculated, we may determine the streamfunctions, ψi, by inverting
(3.18) for ψ̂ i(ξ)ξ and evaluating the Hankel transform in (3.7) directly. Alternatively, using
(3.18), (3.19) and (3.20) we can show that

ΔN(β)ψ = −U
a

sin θ
M−1∑
j=0

aj Rj(r/a), (3.32)
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N-layer QG modons

where ψ = (ψ1, ψ2, . . . , ψN)
T and

ΔN(β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2 − 1
R2

1
− β1

U
1

R2
1

0 · · · 0 0

1
R2

2
∇2 − 2

R2
2

− β2

U
1

R2
2

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
R2

N
∇2 − 1

R2
N

− βN

U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.33)

where β = (β1, β2, . . . , βN)
T. Equation (3.32) may be easily inverted using discrete

Fourier transforms so this method is often easier numerically than inverting the Hankel
transforms. From (2.2) to (2.4), potential vorticity anomalies may be similarly calculated
using q = ΔN(0)ψ where q = (q1, q2, . . . , qN)

T.

4. Examples

We now present three examples to demonstrate that this method gives consistent results
with previous studies and can be used to find new modon solutions in layered QG models.
A Matlab script to solve for the general N-layer problem is included as supplementary
material and scales well for models with up to N ∼ O(100) layers.

4.1. The Larichev and Reznik dipole
Consider a one-layer model and choose parameters (U, a,R1, β1) = 1 and K1 = −K2

1 .
Modon solutions may be found using the method of Larichev & Reznik (1976), which
combines a Bessel function solution with root finding to determine K1. Using our
approach, we construct a linear problem of the form

[A − K2
1B]a = (μ1 + K2

1)c, s.t. dTa = 0, (4.1)

using (3.28) and (3.29). This system may be solved using the method outlined in
Appendix A. We determine a value of K = 4.10787 · · · which matches the value
calculated via root finding to seven significant figures using only M = 7 terms. Plots of the
streamfunction ψ1 and potential vorticity anomaly q1 are given in figure 1. Higher-order
radial modes and solutions for different parameters, including the case of R1 = ∞, may
be easily calculated using the same method.

4.2. Beta-plane baroclinic topographic modons
Kizner et al. (2003) provide an extensive discussion of baroclinic beta-plane topographic
modons using a two-layer QG model. Here, we present a two-layer solution with
(U, a,R1,R2, β1, β2) = (1, 1, 1, 1, 0, 1) and (K1,K2) = −(K2

1 ,K2
2) corresponding to

two active layers. Using our approach, this problem is straightforwardly reduced to solving
the two-parameter eigenvalue problem

[A − K2
1B1 − K2

2B2]a = (μ1 + K2
1)c1 + (μ2 + K2

2)c2, s.t. dT
1 a = dT

2 a = 0, (4.2)

which may be solved using the methods outlined in Appendix A. Our two-layer modon
solutions are plotted in figure 2 and show qualitative agreement with the plots of
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Figure 1. A one-layer modon solution with (U, a,R1, β1) = (1, 1, 1, 1). We show (a) ψ1 and (b) q1. This
solution corresponds to an eigenvalue of K1 ≈ 4.108.
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Figure 2. A two-layer modon solution with (U, a,R1,R2, β1, β2) = (1, 1, 1, 1, 0, 1). We show (a) ψ1, (b) q1,
(c) ψ2 and (d) q2. This solution has eigenvalues (K1,K2) ≈ (3.800, 3.950).

Kizner et al. (2003). Solutions with one passive layer – referred to as ‘modons with
one interior domain’ by Kizner et al. (2003) – may be obtained by solving the same
problem using K2

2 = −μ2 and neglecting the condition dT
2 a = 0. This demonstrates a

major advantage of our approach; different vortex regimes can be considered using
the same problem set-up. By contrast, when using the Bessel function approach of
Kizner et al. (2003), care is needed to ensure that the correct Bessel function is used
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Figure 3. A three-layer mid-depth vortex solution with (U, a,R1,R2,R3, β1, β2, β3) = (1, 1, 1, 1, 1, 0, 0, 1).
We show (a) ψ1, (b) ψ2, (c) q2 and (d) ψ3. In this case, q1 = 0 and q3 = ψ3. Layers 1 and 3 are passive and
layer 2 has eigenvalue K2 ≈ 4.1835.

depending on the sign of Ki. As such, switching between active and passive layers is
less straightforward as it requires both a solution with a different functional form, and new
matching conditions across the vortex boundary.

4.3. A mid-depth topographic modon
To demonstrate the flexibility of our approach, we consider a mid-depth vortex in a
three-layer model. We assume that the top and bottom layers are passive and consider
an active middle layer. A topographic slope with gradient in the y direction is modelled by
taking β1 = 0, β2 = 0 in the top two layers and β3 = 1 in the bottom layer. For simplicity
we take Ri = 1 for i ∈ {1, 2, 3}, a = 1 and U = 1. This problem reduces to the eigenvalue
problem

[A + μ1B1 − K2
2B2 + μ3B3]a = (μ2 + K2

2)c2, s.t. dT
2 a = 0, (4.3)

which can be straightforwardly solved using standard methods (see Appendix A). The
solution consists of an isolated region of strong vorticity in the middle layer, with velocity
fields in all three layers. Weak vorticity is generated in the bottom layer due to the
advection of fluid in the up-slope (y) direction while no vorticity anomaly exists in the
surface layer. Figure 3 shows ψi for i ∈ {1, 2, 3} and q2 for this solution, the fields q1 = 0
and q3 = ψ3 are not shown.
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M.N. Crowe and E.R. Johnson

5. Discussion and conclusions

We have presented a semi-analytical method for finding modon, or dipolar vortex,
solutions in a layered QG model. These solutions enable the study of layered modons
in idealised QG models while also providing a balanced initial condition for the study
of three-dimensional mesoscale dipoles in a primitive equation model. While modons
are steady solutions to the QG system, they are unlikely to be steady over long times
in a more realistic model. As such, the effects of dissipation, wave generation and model
parametrisations on layered modons is an area for future research.

The layered QG system is, in principle, solvable using combinations of Bessel
functions inside and outside the vortex region. However, the matching conditions required
to determine the coefficients become complicated for multiple layers. Further, these
matching conditions must be solved numerically with solutions depending on the vortex
parameters in a complicated, nonlinear way. As such, any additional insight obtained
from having a closed form solution is limited. By contrast, our procedural method
can be straightforwardly used to convert a model with arbitrarily many layers into a
multi-parameter eigenvalue problem which can be solved numerically.

Additional advantages of our method include the ability to solve for any combination of
active and passive layers without having to recalculate any terms in the linear system or
change the form of the solution. Although we have not examined this in detail, we expect
conditions for the existence of steady modon solutions – corresponding to a lack of linear
wave excitation – to follow from examining the singularities of the quantity [K + D(μ)]−1.
Finally, cases which would have to be treated separately using the standard analytical
approach, such as an infinite Rossby radius, require no special treatment here.

We suggest that methods combining Hankel transforms and Zernike radial functions
may be relevant to a range of physical problems where important dynamics occurs in
an isolated circular region. These methods are not restricted to variants of the Laplace
and Helmholtz equations, as shown for the Dirichlet-to-Neumann operators of Crowe &
Johnson (2023) and Johnson & Crowe (2023). Additional effects – such as variations in
density difference between layers – could be easily included into our model. It may also be
possible to include the effects of layer-dependent background flow or extend the method
to a three-dimensional QG model.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.619.

Declaration of interests. The authors report no conflict of interest.

Code availability. Matlab scripts implementing this method for the N-layer case and demonstrating the three
examples considered are included as supplementary material.

Author ORCIDs.
Matthew N. Crowe https://orcid.org/0000-0002-9916-2653;
Edward R. Johnson https://orcid.org/0000-0001-7129-8471.

Appendix A. Notes on inhomogeneous eigenvalue problems

Consider the problem

(A − λB)a = c0 + λc1, s.t. dTa = 0. (A1)

Assuming that A is non-singular, we can left multiply (A1) by dTA−1 and multiply the
resulting scalar by c0 + λc1 to relate a and c0 + λc1. This relation allows us to eliminate
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N-layer QG modons

the inhomogeneity from (A1) giving the quadratic homogeneous problem

[(dTA−1c0)A + λ((dTA−1c1)A − (dTA−1c0)B − (c0dT)A−1B)

− λ2((dTA−1c1)B + (c1dT)A−1B)]a = 0. (A2)

Equation (A2) may be put into canonical form and solved as a linear eigenvalue problem
for λ. The corresponding eigenvector, a, should be directly calculated from (A1).

Consider now the general problem[
A −

N∑
i=1

λiBi

]
a = c0 +

N∑
i=1

λici, s.t. dT
j a = 0 for j ∈ {1, . . . ,N}, (A3)

where A and the Bi are M × M matrices and M > N. We can begin by extending the dj to
a basis of IRM by introducing M − N orthonormal vectors ek for k ∈ {1, . . . ,M − N} such
that each ek is orthogonal to the dj. Therefore, the vector a lies in the M − N-dimensional
space spanned by the ek and can be expanded in terms of the ek with coefficients a′

k. We
now define the vector valued function

f (x) =
[

A −
N∑

i=1

λiBi

][M−N∑
k=1

a′
kek

]
− c0 −

N∑
i=1

λici, (A4)

for x = [λ1, . . . , λN, a′
1, . . . , a′

M−N]T so solving for our eigenvalues and eigenvectors is
equivalent to finding roots of f (x) = 0. Gradients of f with respect to x can easily
be determined enabling standard gradient-based root finding techniques. Alternatively,
numerical techniques developed specifically for multi-parameter problems (Atkinson
1972; Muhic̆ & Plestenjak 2010) may prove effective, however, these rely on converting the
problem to a large single-parameter problem which scales poorly with N and M. Scalable,
linear algebra approaches to this problem remain an area of active research.
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