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Diffusive dynamics and stochastic models of
turbulent axisymmetric wakes
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A modelling methodology to reproduce the experimental measurements of a turbulent
flow in the presence of symmetry is presented. The flow is a three-dimensional wake
generated by an axisymmetric body. We show that the dynamics of the turbulent
wake flow can be assimilated by a nonlinear two-dimensional Langevin equation, the
deterministic part of which accounts for the broken symmetries that occur in the
laminar and transitional regimes at low Reynolds numbers and the stochastic part of
which accounts for the turbulent fluctuations. Comparison between theoretical and
experimental results allows the extraction of the model parameters.
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1. Introduction

Turbulent flows are ubiquitous in natural phenomena and engineering applications
(Pope 2000), and therefore a mathematically tractable description of them is desirable
for their prediction and control. At low Reynolds numbers, corresponding to laminar
regimes, bifurcation theory has aided understanding of the dynamic behaviour of fluid
flows in the presence of symmetry: under certain assumptions, the infinite-dimensional
nonlinear fluid system governed by the Navier–Stokes equations can be reduced to a
simple and finite-dimensional system close to the threshold of bifurcation (Crawford &
Knobloch 1991; Holmes et al. 2012). However, departure from the laminar regimes
and the critical bifurcating points renders the flow chaotic and finally turbulent,
increasing the order of the system and the complexity for a mathematical description
of it.

Here we analyse the turbulent wake generated by an axisymmetric bluff body at
high Reynolds numbers. This type of flow undergoes a steady bifurcation followed
by an unsteady one at low Reynolds numbers (Bohorquez et al. 2011; Bury &
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Jardin 2012), the dynamics of which can be accurately captured using simple,
weakly nonlinear models (Fabre, Auguste & Magnaudet 2008; Meliga, Chomaz
& Sipp 2009) prior to the emergence of chaos and turbulent behaviour. During the
transitional regime, continuous spatial and temporal symmetries are spontaneously
broken. Although bifurcations break the symmetries en route to turbulence, fully
developed turbulence is known to restore the possible symmetries in a statistical
sense at very high Reynolds numbers (Frisch 1996).

In this paper we show that the dynamics of the turbulent wake can be approximated
by a simple nonlinear Langevin equation, the deterministic part of which accounts
for the broken symmetries that occur in the laminar and transitional regimes and the
stochastic part of which accounts for the turbulent fluctuations.

The paper first presents an overview of axisymmetric wake flows and models in the
laminar (§ 1.1) and turbulent (§ 1.2) regimes, before presenting the stochastic model in
§ 2. The model is validated using experimental data (§ 3), and the results are presented
in § 4.

1.1. Laminar regime and modelling
The laminar and linearly stable axisymmetric wake loses spatial rotational symmetry,
Rπ, in the azimuthal direction (rotation of angle π around any radial axis passing
through the centre of the body) due to a supercritical pitchfork bifurcation (Fabre
et al. 2008; Meliga et al. 2009; Bohorquez et al. 2011; Bobinski, Goujon-Durand &
Wesfreid 2014), the normal form of which reads

ẋ= αx+ λx|x|2 (1.1)

(α, λ ∈ R, λ < 0). Above the threshold of instability (α > 0), (1.1) is associated
with symmetry breaking since the steady-state solutions are not invariant under the
x → −x symmetry. This model can be directly obtained from the Navier–Stokes
equations through a weakly nonlinear expansion around the critical bifurcating point
(Meliga et al. 2009) and has been used extensively for the description of laminar
flows undergoing supercritical bifurcations (Drazin & Reid 2004). In the context of
the weakly nonlinear analysis, x= x(t) describes the complex amplitude evolution of
the bifurcated state (global mode). Then, the model coefficient α denotes the linear
growth rate of the unstable bifurcated mode and λ the coefficient of the nonlinear
saturating term.

On increasing the Reynolds number, a subsequent Hopf bifurcation is responsible
for the loss of continuous temporal symmetry and the emergence of periodic shedding
of vortices before the turbulent axisymmetric wake reaches a chaotic regime (Mittal,
Wilson & Najjar 2002; Bury & Jardin 2012).

1.2. Turbulent regime
At high Reynolds numbers, a large number of studies have shown that the bifurcating
states observed in the laminar wakes persist and manifest as large-scale structures.
For the axisymmetric wake, it was recently shown that the steady bifurcated state
(responsible for the loss of rotational symmetry) and the unsteady bifurcated state
(responsible for the vortex shedding) persist at high Reynolds numbers and fully
turbulent regimes (Grandemange, Gohlke & Cadot 2014; Rigas et al. 2014). Similar
behaviour has been observed in wakes with other types of symmetries (see, for
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example, the rectilinear three-dimensional Ahmed body (Grandemange, Cadot &
Gohlke 2012; Grandemange, Gohlke & Cadot 2013)).

Here we extend the laminar, weakly nonlinear modelling approach to the fully
turbulent regime, and we show that the derived model captures the dynamic evolution
of the turbulent three-dimensional wake. This is achieved by modelling the effect
of the turbulent fluctuations acting on the deterministic dynamics of the system,
reminiscent of the transitional instabilities observed in the laminar regimes, as
stochastic forcing. The stochastic modelling approach of the turbulent dynamics
has been successfully applied to various turbulent flows exhibiting global and
large-scale dynamics including the turbulent Rayleigh–Bénard convection (Sreenivasan,
Bershadskii & Niemela 2002; Brown & Ahlers 2007) and the turbulent von Kármán
swirling flow (de la Torre & Burguete 2007). Hereafter we demonstrate our modelling
approach considering the dynamics associated with the first steady bifurcation given
by (1.1).

2. The stochastic model

We consider the deterministic system given by (1.1) and apply a stochastic
modelling approach for the turbulent background fluctuations. In Cartesian coordinates,
x= (x, y), the deterministic system with independent additive white noise becomes

ẋ = αx+ λx(x2 + y2)+ σξx(t),
ẏ = αy+ λy(x2 + y2)+ σξy(t),

}
(2.1)

where ξ accounts for the random forcing of turbulence and σ 2 the variance of it.
Here, σ ≡ σx = σy and the stochastic process in (2.1) is rotationally symmetric. The
coefficients α and λ have the same meaning as those in the laminar regime. We
transform the system from (x, y)→ (r, φ), where r is the radial distance from the
centre (amplitude) and φ the angle (phase), using the Ito interpretation (Gardiner
1985). In polar variables, the Langevin system given by (2.1) becomes

ṙ= αr+ λr3 + σ
2

2r
+ σξr, φ̇ = σ

r
ξφ, (2.2a,b)

where r = √x2 + y2 and φ = tan−1(y/x). Notice that in polar variables the radial
component is independent of the angular position.

The stationary probability density function (PDF) of the above system can be found
from the steady-state Fokker–Planck equation and is given by

Ps(r, φ)=C exp
[
−U(r, φ)

K

]
, (2.3)

where C is a normalisation constant, K = σ 2/2 is the noise intensity (diffusivity) and
U the potential. The potential U is

U(r, φ)=−
[
αr2

2
+ λr

4

4
+K ln r

]
. (2.4)

The stationary PDF for the angle is uniform,
∫∞

0 Ps(r, φ) dr = 1/(2π). In the case
of a rotationally symmetric experimental set-up and inflow conditions, the drifts and
diffusivities are independent of φ. The stationary PDF, figure 1, peaks around the
minimum of the Mexican-hat-shaped potential.
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FIGURE 1. Stationary probability density function (a) and potential (b) of the nonlinear
Langevin model.
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FIGURE 2. Schematic representation of the model. (a) Side view; (b) rear view. Pressure
measurements are taken on the base of the body from 64 static pressure tappings, based
on which the centre-of-pressure location is calculated.

3. Experimental set-up

The turbulent wake is generated by an axisymmetric bluff body with a blunt trailing
edge, a schematic of which is shown in figure 2. The body diameter D is 196.5 mm
and the length-to-diameter ratio L/D is 6.48. More details of the experimental
set-up and procedure can be found in Rigas et al. (2014) and Oxlade et al. (2015).
Experiments were performed at a constant free stream velocity, U∞ = 15 m s−1. The
Reynolds numbers based on diameter and boundary layer momentum thickness at
separation are ReD = 1.88 × 105 and Reθ = 2050 respectively. The boundary layer
separation and the ensuing wake are turbulent.

Pressure measurements are taken on the base of the body from 64 static taps
equally spaced on a uniform polar grid with δr = 0.056D and δφ = 45◦ in
the radial and azimuthal directions, respectively. The sampling frequency was
225 Hz. A total of 19 200 s of data was acquired over 16 independent experiments,
providing approximately 2000 independent measurements with 95 % uncertainties of
approximately 0.45 % and 1 % in time average and r.m.s. pressure respectively.

4. Results

Let x of (1.1) represent the centre-of-pressure (CoP) coordinates. The CoP is used
as a macroscopic variable quantifying the symmetry of the turbulent wake. Here it
is calculated from the space-averaged pressure, defined on the Cartesian coordinate
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FIGURE 3. A time series and probability density of the centre of pressure: angular (a) and
radial (b) position. Symbols in the probability density (right) correspond to experimental
data and solid lines to theoretical model predictions. Dashed line: mean radial value
indicating the broken Rπ symmetry.

system of the base, x′ = (x′, y′), and non-dimensionalised with the body diameter D
as

x(t)= 1

D
∫

p(t) dA

∫
A

p(t)x′ dA, (4.1)

where A is the area of the base of the body. A zero CoP value corresponds to an Rπ-
symmetric flow, whereas departure from this value indicates an increased asymmetry
of the flow (Rigas et al. 2014). In polar coordinates, the CoP components are (r, φ).
In the subsequent analysis, r is the radial distance of the CoP from the centre of the
body normalised with the body diameter and φ represents the orientation of the wake
expressed in radian units.

The temporal evolution and PDF of the radial and azimuthal location of the CoP for
the highly turbulent regime are shown in figure 3. Highly erratic motion with time is
observed in both components. Statistically, the wake spends most of the time in a non-
zero radial location, indicating broken Rπ symmetry. Due to the uniform PDF in the
azimuthal location, rotational symmetry is recovered in the long time average. For the
laminar regime and after the first bifurcation, which is described by (1.1), the stable
equilibrium corresponds to a non-zero CoP, the angle of which is determined from
the initial conditions and is unique. During the turbulent regime, the laminar stable
equilibrium point explores a continuum of states around its mean radial value that
is uniformly distributed in the angular direction: hence, the wake explores an infinite
number of metastable states, restoring the lost Rπ symmetry.

Insight into the random dynamics of the turbulent wake is provided from the
calculation of the time-averaged mean-square displacement (MSD), defined as
〈[1x(τ )]2〉 = 〈(x(t + τ)− x(t))2〉. The MSD of the angular and radial components is
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FIGURE 4. Mean-square displacement as a function of the time interval τ . (a) Angular
and (b) radial components of the CoP location. Symbols: experimental data. Solid line:
model. Thick dashed lines: power-law fits. Insets show power spectral density of the
experimental CoP components. An exponent of −2, consistent with free diffusive motion,
is obtained for the azimuthal and radial components. At low frequencies, the PSD of the
radial components is constant due to the spatial confinement imposed by the potential well,
in accordance with the MSD results.

plotted in figure 4 for different sampling times. In the azimuthal direction, the MSD
increases linearly with time, 〈[1φ(τ)]2〉 ∝ τ , consistent with free diffusive motion
(Einstein 1905). In the radial direction, the linear relation holds only for short time
scales below a threshold ts, 〈[1r(τ )]2〉 ∝ τ , τ < ts, and reaches a saturation plateau at
larger time scales, limτ→∞〈[1r(τ )]2〉 =H2.

The above results for the CoP are consistent with the predictions of the model given
by (2.2). The coefficients of the Langevin equation, α, λ and K, are obtained from
the experimental MSD and PDF and are given in table 1. The slope of the radial
MSD relation is directly correlated with the diffusion coefficient K, which is obtained
through linear fitting, 〈[1r(τ )]2〉 = 2Kτ , τ < ts. Knowing the diffusion coefficient K,
the model coefficients α and λ are uniquely defined from (2.3) and here are obtained
through least-squares fitting.

In figure 3, we compare the measured probability density function with the
one predicted by the model from (2.3). In figure 4 we compare the MSD of the
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α λ K = σ 2/2

Value 3.81 −5604 0.0028
Error 0.13 35 0.0001

TABLE 1. Coefficient values and associated errors for the Langevin model obtained
experimentally at ReD = 1.88 × 105. The units of the coefficients are s−1 since lengths
are non-dimensionalised with the body diameter.

experimental results with the numerically calculated MSD from the model. Direct
numerical integration of (2.2) was performed using an Euler–Maruyama scheme. We
notice that the dynamics of the CoP can be described over all the time scales from
the Langevin model.

A qualitative explanation of the above results is provided by the potential well
shown in figure 1. The turbulent wake, the state of which is quantified by the
CoP, meanders in the Mexican-hat-shaped potential and explores an infinite number
of states through a random walk (diffusive motion). Specifically, in the azimuthal
direction, which determines the orientation of the wake, it can explore freely any
azimuthal location, resulting in unbounded reorientations. In the radial direction, the
motion is restricted due to spatial constraints (confinement imposed by the potential
well), resulting in a constant MSD at large time scales.

The diffusive dynamics of the turbulent wake are also depicted in the power spectral
density of the CoP, plotted as inset in figure 4. The spectral density is closely related
to the MSD: in general, for a power-law behaviour of the MSD, 〈[1x(τ )]2〉 ∝ τ κ , the
asymptotic form of the power spectral density is Φ(f ) ∝ f−(1+κ). In accordance with
the linear increase of the MSD with time (κ = 1), an exponent of −2 is observed in
the spectrum of the angular component consistent with Brownian motion. A similar
decay is observed for the radial component when f >1/ts. However, at low frequencies
corresponding to f → 0, or equivalently large time scales, it reaches a plateau and
levels off, in accordance with the MSD measurements for τ→∞.

The dynamics associated with the radial and angular motion of the CoP have been
analysed independently so far. Now, we analyse the coupled dynamics predicted by the
model. Specifically the coupling arises as an inverse relationship between φ̇=1φ/1t
and r for the angular component, as described by (2.2). The model suggests that the
conditional PDF of φ̇ for a given r follows a Gaussian distribution with variance
inversely proportional to r2, that is

P(φ̇ | r)=N

(
0,
σ 2

r2

)
= r

σ
√

2π
exp

(
−1

2

(
rφ̇
σ

)2
)
. (4.2)

Indications of the inverse relationship can be found in the time series of the CoP
in figure 3. One observes that for small values of the radial component, abrupt
changes of the azimuthal orientation occur. The inverse relation is further validated
from the joint PDF of the angular variation and radial location, p(r, 1φ), shown in
figure 5, where large reorientations are more probable at small radii. The conditional
PDFs of the reorientations 1φ, p(1φ | r) = p(r, 1φ)/P(r), collapse to a zero-mean
Gaussian distribution with variance σ 2 when scaled by 1/r and plotted against rφ̇.
The latter becomes evident in the inset of figure 5, where we compare the scaled
Gaussian PDF with identified variance σ 2, obtained from the model given in table 1,
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FIGURE 5. Reorientation characteristics: joint PDF of angular variation and radial position
of the CoP as measured from the experiment. The inset shows normalised conditional
probabilities: experimental data (symbols) collapse on a Gaussian distribution (line) with
identified variance σ 2/r2, as described by the model.

and the normalised conditional distributions of the experimental data. In the limit
of small radii values, r → 0, angular rotations with an almost uniform PDF are
observed in the joint PDF. This situation of small r corresponds to large variance
and therefore a very broad Gaussian that, over the finite measurable window of
−π to π, will appear uniform. This is analogous to the cessation events observed
by Brown, Nikolaenko & Ahlers (2005) during the reorientation of the large scales
of Rayleigh–Bénard convection and can be understood without specifying arbitrary
thresholds for a small r.

5. Conclusions

The physical picture that can be drawn for the turbulent axisymmetric wake based
on the above is as follows. The laminar large-scale structures, associated with spatially
broken symmetries, persist at high Reynolds numbers. In the turbulent regime, these
structures undergo diffusive motion (random walk) in a two-dimensional Mexican-hat-
shaped potential well (see figure 1), restoring statistically the broken symmetries. In
this paper we have shown that this behaviour can be captured by a simple nonlinear
model consisting of two coupled stochastic differential equations. The deterministic
part of the model accounts for the broken symmetries observed in the laminar regime,
and the stochastic part models in a phenomenological sense the turbulent fluctuations
acting on the large-scale structures.

The unsteady bifurcation, responsible for the vortex shedding (limit cycle), has not
been considered in the present analysis. This can be done by adding an extra equation
accounting for the temporal broken symmetries due to a Hopf bifurcation (Fabre et al.
2008; Meliga et al. 2009). Although the stochastic model was demonstrated for a case
with high Reynolds number (ReD = 188 000), we expect it to be valid over a wide
range. An investigation of the Reynolds dependence of the model coefficients will
contribute towards a deeper understanding of the dynamic evolution of the large-scale
structures observed in chaotic/turbulent wakes and their modelling.

The diffusive dynamics of the large-scale structures presented here and in Rigas
et al. (2014) show close similarities with the diffusive dynamics of the large-scale
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circulation observed in the turbulent Rayleigh–Bénard convection (Brown et al. 2005;
Brown & Ahlers 2006) and the turbulent von Kármán swirling flow (de la Torre &
Burguete 2007; Berhanu et al. 2009; Pétrélis et al. 2009). However, this similarity is
not surprising if the symmetries of the problem are accounted for: spatial rotational
symmetry that breaks en route to turbulence.

In summary, we have shown that turbulent dynamics can be described by
deterministic equations derived from symmetry arguments with stochastic forcing
terms that give rise to turbulent dynamics. The modelling process we have presented
here should be applicable to other turbulent flows, provided that their specific
symmetries are taken into account.
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