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Abstract

In this paper we study a generalized Pólya urn with balls of two colors and a random
triangular replacement matrix. We extend some results of Janson (2004), (2005) to the
case where the largest eigenvalue of the mean of the replacement matrix is not in the
dominant class. Using some useful martingales and the embedding method introduced
in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after
the nth draw, for large n.
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1. Introduction

We consider a generalized Pólya urn with balls of two colors, say white (W) and black (B).
The urn is initially nonempty. At each time n, a ball is drawn from the urn uniformly at random
and its color is observed (i.e. a ball is drawn, looked at, and then placed back into the urn). If
a white ball is drawn then it is replaced in the urn with Xn white balls; if a black ball is drawn
then it is replaced in the urn with Yn white balls and Zn black balls. The random variables Xn,
Yn, and Zn are independent copies of some nonnegative, integer-valued random variables X,
Y , and Z, respectively.

The evolution rule at time n is then summarized by the 2 × 2 random matrix

( W B
W Xn 0
B Yn Zn

)
,

where the rows indicate the number of balls added to the urn and the columns indicate the
number of balls drawn. Thus, the composition of the urn after n draws is represented by the
vector (Wn, Bn), where Wn and Bn are the numbers of white and black balls, respectively, in
the urn. The urn starts with a given vector (W0, B0), which we assume is nonrandom.

The assumption that X, Y , and Z are nonnegative, integer-valued random variables guaran-
tees the nonextinction of the urn. Furthermore, in order to avoid any explosion of the urn, we
suppose that X, Y , and Z have finite variances. We define

µX = E(X), µY = E(Y ), µZ = E(Z),

σ 2
X = var(X), σ 2

Y = var(Y ), σ 2
Z = var(Z),
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828 R. AGUECH

and, for every integer n, the ball addition matrix or the replacement matrix is

R(n) =
(
Xn 0
Yn Zn

)
.

Eggenberger and Pólya [6] were among the first to study urn models, dealing with the fixed
schemata (

s 0
0 s

)
.

This urn is known as the Pólya–Eggenberger urn. In 1931 this model was discussed by
Pólya [15]. Bernstein [5] and Savkevitch [16] then generalized this model to the case where s
balls of the same color and a balls of the antithetical color are added:(

s a

a s

)
.

These two models have been studied and generalized in later papers (see [1], [4], [7], [8],
and [9]).

Several Pólya urn models with various settings for the ball addition matrix have been studied
by many authors. In particular, in the case when the mean of the replacement matrix is
irreducible, Janson [11] carried out a study in which he characterized the number of balls
of each color. In the case when the replacement matrix is triangular, not irreducible, and
nonrandom, Janson [12] characterized the limit law and the almost-sure limits of the number
of balls of each color. The aim of this paper is to extend these results to the case when the
replacement matrix is assumed to be random.

To attempt our goal, we will use the embedding method of Athreya and Karlin [2], [3]. We
study the urn process by embedding it into a multitype continuous-time Markov branching
process X(t) = (W(t), B(t)) with initial condition X(0) = (W(0), B(0)) = (W0, B0). In the
continuous process we assume that every ball of type i (where white balls are of type 1 and
black balls are of type 2) has an exponentially distributed lifetime with mean 1, i.e. it dies with
intensity 1, and when it dies, it is replaced by a set of balls with distribution (δi,j )j=1,2, where,
if we note by L the distribution,

δ1,1 = L(X + 1), δ1,2 = L(0), δ2,1 = L(Y ), δ2,2 = L(Z + 1).

We shall assume that all lifetimes and offspring compositions are independent.
Let 0 = τ0 < τ1 < τ2 < · · · < τn < · · · be the splitting times of the process X. Athreya

and Karlin [2] proved that the process (X(τn))n≥0 has the same law as ((Wn, Bn))n≥0; hence,
since τn

a.s.→ ∞ as n → ∞, limit theorems for (Wn, Bn) can be derived from limit theorems
for X(t). By ‘

a.s.→’ we denote almost-sure convergence.
In order to study the process X(t) = (W(t), B(t)), we define a suitable martingale Y(t).

The martingale that we use is a standard one in branching process theory. Let

A := E(R�(n)) =
(
µX µY
0 µZ

)
,

and define Y(t) = e−tAX(t)�, where M� denotes the transpose of the matrix M . Let Ft be
the σ -algebra generated by the family {(W(s), B(s)), s ≤ t}.

Using the Markov property, in the following theorem we extend a fundamental, well-known
result described in [11, Lemma 9.8], and [3, Theorem V.7.2]. The proof of this result will be
relegated to Section 3.
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Theorem 1. IfµX ≥ µZ , the martingale {Y(t),Ft , t ≥ 0} is anL2-bounded martingale, and,
hence, converges almost surely and in L2. Moreover, Y(t) = E(Ỹ/Ft ), where

Ỹ :=
(
W

B

)
is the almost sure and L2-limit of Y(t). Here W and B are two random variables.

Remarks. 1. We still get an almost sure and L1-convergence of the martingale Y(t) if we
replace the assumption that X, Y , and Z have finite variances by

E(X lnX)+ E(Y ln Y )+ E(Z lnZ) < ∞.

However, for our main results, we need the L2-assumption.

2. Using Theorem 1, we can prove the following statements.

• If µX > µZ , we have

exp(−tµX)W(t)+ µY

µX − µZ
(exp(−tµX)− exp(−tµZ))B(t)

→ W almost surely and in L2, (1)

exp(−tµZ)B(t) → B almost surely and in L2. (2)

As proved in Theorem 3.1 of [11], we have the functional limit theorem. In D[0,∞),
the space of all right-continuous functions [0,∞) → C with left-hand limits,

exp(−txµX)W(tx)+ µY

µX − µZ
(exp(−txµX)− exp(−txµZ))B(tx) L−→ W,

exp(−txµZ)B(xt) L−→ B.

• If µX = µZ , we have

exp(−tµX)W(t)− µY t exp(−tµX)B(t) → W almost surely and in L2, (3)

exp(−tµX)B(t) → B almost surely and in L2, (4)

and, in D[0,∞),

exp(−xtµX)W(xt)− µYxt exp(−xtµX)B(xt) L−→ W,

exp(−xtµX)B(xt) L−→ B.

By ‘
L−→’ we denote convergence in law.

3. By Theorem 1,B is a nonnegative random variable with E(B) = B0. Using Theorems III.4.1
and III.7.2 of [3], we deduce that

P(B = 0) = 0.

4. Let gZ(s) = sE(sZ) be the probability generating function of Z + 1, and let ϕB(u) =
E(e−uB). Then (see [10] and [13])

ϕ−1
B (v) = (1 − v) exp

(∫ 1

v

[
1

s − 1
− µZ

gZ(s)− s

]
ds

)
, 0 < v ≤ 1.

5. The author has been unable to characterize the distribution of W in all cases.
Theorem 1 is the basis of all our results for the branching process and generalized Pólya

urns.

https://doi.org/10.1239/jap/1253279854 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279854


830 R. AGUECH

The paper is organized as follows. In Section 2 we give our main results after having
specified the notation. Section 3 deals with the proof of Theorem 1. Finally, the proofs of the
main results are given in Section 4.

2. Main results

In the following, P (λ) denotes a Poisson random variable with parameter λ and N (µ, σ 2)

denotes the normal law with mean µ and variance σ 2. Let Bn and Wn denote the numbers of
black and white balls, respectively, in the urn after n draws, and letB andW denote the limiting
random variables defined in Theorem 1. For n ≥ 1, we denote by Sn the total number of balls
in the urn after the nth draw. We have Sn = Wn + Bn and S0 = W0 + B0. Let NW

n and NB
n

denote the numbers of white and, respectively, black balls drawn in the first n draws. We have
NB
n +NW

n = n. Let τW
1 < · · · < τW

NW
n

and τB
1 < · · · < τB

NB
n

be the splitting times, before τn, of

the NW
n white balls and the NB

n black balls, respectively. The basic hypotheses of this section
are as follows (collectively referred to as (H)).

(H1) X, Y , andZ are nonnegative, independent, integer-valued random variables satisfying

(i) σX + σY + σZ < ∞,

(ii) µX ≥ µZ ,

(iii) µX(µY + µZ) > 0.

(H2) The initial composition of the urn is (W0, B0), with B0 > 0.

The main results of this paper are Theorems 2–5 and Proposition 1, below.

Theorem 2. Consider a generalized Pólya urn with two colors and a triangular random
replacement matrix (

X 0
Y Z

)
.

Let

ρ = µZ

µX
and K = (µX)

ρB

(
W + µY

µX − µZ
B

)−ρ
.

Under hypotheses (H) and the fact that µY > 0, we obtain the following results.

1. For µX > µZ > 0,

(i) we have, almost surely,

Wn = µXn+ o(n), Bn = Knρ + o(nρ),

NW
n = n− K

µZ
nρ + o(nρ), NB

n = K

µZ
nρ + o(nρ),

(ii) if ρ ≤ 1
2 then

Wn − nµX√
n

− K

µZ
(µY − µX)1{ρ=1/2}

L−→ N (0, σ 2
X),
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(iii) if 1
2 < ρ < 1 then

Wn − nµX

nρ
p−→ K

µZ
(µY − µX),

where ‘
p−→’ denotes convergence in probability.

2. For µX = µZ > 0, we have, almost surely,

Wn = µXn+ o(n), Bn = µ2
X

µY

n

ln n
+ o

(
n

ln n

)
.

Remark. Kotz et al. [14] gave exact formulae and some asymptotics for 2-type urns. They
remarked that the (

1 0
1 1

)
case gives asymptotics ‘of an essentially different character’. They proved, ‘heuristically’, that
E(Bn) is of order n/ln n. This is expressed by part 2 of Theorem 2.

An interesting exceptional case is when Z
a.s.= 0, where ‘

a.s.= ’ denotes almost-sure equality. In
this case the number of black balls remains unchanged, i.e. B(t) = B0. The number, W(t), of
white balls in the branching process is a generalized Yule-type process with immigration. We
obtain the following limit results.

Theorem 3. Consider a generalized Pólya urn with two colors and a triangular random
replacement matrix (

X 0
Y 0

)
.

Under hypotheses (H), we have

1. Wn = µXn+ o(n) almost surely,

2. if σX �= 0 then we have the central limit theorem

Wn − µXn√
n

L−→ N (0, σ 2
X),

3. if X = α �= 0 is nonrandom then

1√
ln n

(
Wn − nα − µY − α

α
B0 ln n

)
L−→ N

(
0, (σ 2

Y + (µY − α)2)
B0

α

)
.

Remarks. 1. The µX < µZ case has been studied by Janson [11].

2. In (3), if Y = γ = constant almost surely, we recover the result of Janson [12, Remark IV.4].

The next result deals with the diagonal case: Y
a.s.= 0.

Theorem 4. Consider a generalized Pólya urn with diagonal replacement matrix(
X 0
0 Z

)
.

Let ρ = µZ/µX, and let D = µ
ρ
XBW

−ρ .
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1. When µX > µZ > 0,

(i) almost surely as n → +∞,

Wn = µXn+ o(n), Bn = Dnρ + o(nρ),

(ii) if 0 < ρ ≤ 1
2 , we have, as n → +∞,

Wn − nµX√
n

+ √
µX

µX

µZ
BW−1/21{ρ=1/2}

L−→ N (0, σ 2
X),

(iii) if 1
2 < ρ < 1, we have, as n → +∞,

Wn − nµX

nρ
P−→ −µρX

µX

µZ
BW−ρ.

2. When µX = µZ almost surely as n → +∞,

Wn = µX
W

W + B
n+ o(n), Bn = µX

B

W + B
n+ o(n).

Remarks. 1. The branching process (W(t), B(t)) consists of two independent generalized
Yule processes; thus, the limits W and B are independent and P(B > 0)P(W > 0) > 0 (recall
that µXµZ > 0).

2. Let fX(s) = sE(sX) and gZ(s) = sE(sZ) be the probability generating functions of X + 1
andZ+1, respectively, and let ϕW(u) = E[e−uW ] and ϕB(u) = E[e−uB ]. Since the conditions
E[X lnX] < ∞ and E[Z lnZ] < ∞ are fulfilled, we deduce from the results of [10] and [13]
that

ϕ−1
W (v) = (1 − v) exp

(∫ v

1

[
µX

fX(s)− s
− 1

s − 1

]
ds

)
, 0 < v ≤ 1,

ϕ−1
B (v) = (1 − v) exp

(∫ v

1

[
µZ

gZ(s)− s
− 1

s − 1

]
ds

)
, 0 < v ≤ 1.

These two expressions give the characterization ofW ’s andB’s distributions. As a consequence,
in case 2 of Theorem 4, W and B have the same law.

In the deterministic case, where X and Z are constants, we find that W and B are beta
distributed.

We also present some results about the splitting times (τn)n≥1. It is known (see [3, Sec-
tion III.9]) that τn tends almost surely to ∞ as n → ∞. We define, for all positive integers n,
the process {(Tn,Gn)}n≥1 by

Tn = τn −
n−1∑
j=0

(W(τj )+ B(τj ))
−1,

where Gn is the σ -algebra generated by τ1, . . . , τn,W(τ1), B(τ1), . . . ,W(τn−1), and B(τn−1).
We have the following result.

Theorem 5. Under hypotheses (H), the process (Tn,Gn)n≥1 is an L2-bounded martingale;
consequently, it converges almost surely and in L2 to some random variable (T∞,G∞) ∈ L2.
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Using Theorem 5, we obtain an asymptotic expansion of τn.

Proposition 1. Under hypotheses (H), we have

τn

ln n
= 1

µX
+ o(1) almost surely.

This extends the results ofAthreya and Ney [3, TheoremV.7.3] and Janson [11, Lemma 11.1].

3. Proof of Theorem 1

Let

f (t) = E(W(t)), g(t) = E(B(t)), and H(t) =
(
f (t)

g(t)

)
= E(X(t)).

The Markov property and the Chapman–Kolmogorov equation imply, this is a classical result,
that

H ′(t) = d

dt
H(t) = AH(t) (5)

and that Y(t) is an Ft -martingale. By integration, (5) implies that

H(t) = etAH(0) = etA(W0, B0)
�.

3.1. µX > µZ case

Consider the processes {B(s), s ≥ 0} and {W(s), s ≥ 0} at time t + δt , where δt is
an infinitesimal increment of time. Given B(t) and W(t), the numbers of black and white
balls at time t + δt are equal to the numbers at time t plus the numbers of black and white
balls, respectively, added during the infinitesimal period (t, t + δt). For each ball among the
S(t) := B(t) +W(t) black and white balls, the number of splittings that happen in the time
interval (t, t + δt) follows a P (δt)-distribution; some of the resulting children may themselves
produce children, but their number has an O(δt)2 average and square mean. Furthermore, any
two different balls have independent birth processes. Therefore, givenB(t) andW(t),B(t+δt)
and W(t + δt) satisfy

B(t + δt) = B(t)+
B(t)∑
j=1

Pj (δt)∑
k=1

Zk,j +O(δt)2 (6)

and

W(t + δt) = W(t)+
W(t)∑
j=1

Pj (δt)∑
k=1

Xk,j +
B(t)∑
j=1

Pj (δt)∑
k=1

Yk,j +O(δt)2, (7)

where the Pj (δt) are independent and identically distributed (i.i.d.) random variables that have
a P (δt)-distribution, and Zk,j ,Xk,j , and Yk,j are i.i.d. random variables that respectively have
Z’s, X’s, and Y ’s distribution and are independent of B(t) and W(t). Upon squaring (6) and
(7) we obtain equations of the conditional second moments:

E(B2(t + δt) | B(t)) = B2(t)+ 2B2(t)δtµZ + µZ2B(t)δt

+ µ2
ZδtB(t)(δtB(t)− 1)+O((δt)2)
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and

E(W 2(t + δt) | B(t),W(t)) = W 2(t)+ 2(W 2(t)µX +W(t)B(t)µY )δt

+ (W(t)µX2 + B(t)µY 2)δt +O((δt)2).

Take expectations, and letting δt → 0, we obtain

d

dt
ϕ(t) = 2µZϕ(t)+ g(t)σ 2

Z (8)

and
d

dt
χ(t) = 2µXχ(t)+ 2µYψ(t)+ µX2f (t)+ µY 2g(t),

where ϕ(t) = E(B2(t)), χ(t) = E(W 2(t)), and ψ(t) = E(B(t)W(t)). The solution of (8) is
easily seen to be

ϕ(t) = B0

(
1 + σ 2

Z

µZ

)
exp(2µZt)− B0

σ 2
Z

µZ
exp(µZt). (9)

We prove similarly that ψ(t) satisfies the differential equation

d

dt
ψ(t) = (µZ + µX)ψ(t)+ µYϕ(t).

After computation of ψ(t) and χ(t), we easily conclude that (Y(t), t ≥ 0) is L2-bounded.

3.2. µX = µZ case

By (9), also available in this case, the process (exp(−tµX)B(t), t ≥ 0) is L2-bounded. As
in the first case, we prove that the process

M(t) := exp(−tµX)W(t)− µY t exp(−tµX)B(t)
is L2-bounded.

4. Proofs of the main results

4.1. Proof of Theorem 5

For all integers n ≥ 1, let vn = τn − τn−1 be the holding time between the (n − 1)th and
the nth splits and let v0 = 0. Given Gn−1, vn is an exponential random variable with mean
(Sn−1)

−1, where, for all j ≥ 0, Sj = Wj +Bj . The martingale property follows from the fact
that, for all n ≥ 1, τn = ∑n

j=0 vj .
In the following we will prove that the process (Tn,Gn) is L2-bounded. Using Equation (4)

of [3, p. 121], we have

E(T 2
n ) =

n−1∑
j=0

E(S−2
j ).

Define, for each i ∈ N, Ri = min{Xi, Yi+Zi}. The random variables {Ri}{i≥1} are independent
with the same law as R = min{X, Y + Z}.

By hypothesis (H1) we obtain

P(R > 0) = P(X > 0)P(Y + Z > 0) > 0.
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Then
µR = E(R) > 0 (P(R = 0) < 1).

From Theorem III.9.4 of [3] and the strong law of large numbers, we obtain

lim
n

E

(
n2

(S0 + ∑n
i=1 Ri)

2

)
= 1

µ2
R

.

Since the initial total number of balls equals S0, we obtain Sn ≥ S0 + ∑n
i=1 Ri , so that

E

(
n2

S2
n

)
≤ E

(
n2

(S0 + ∑n
i=1 Ri)

2

)
.

Consequently, the sequence E(T 2
n ) converges.

4.2. Proof of Proposition 1

We prove this proposition in two steps.
Step 1. Consider µX > µZ . For a continuous-time process S and a positive real t0, we

define
�S(t0) = lim

ε→0+[S(t0 + ε)− S(t0 − ε)].
We interpret �S(t0) as the jump at time t0 of the process (S(t))t≥0.

Let Sn = Wn + Bn. We can write, for n ≥ 1,

Sn

n
= S0

n
+ 1

n

NW
n∑

i=1

�W(τW
i )+ 1

n

NB
n∑

i=1

(�B(τB
i )+�W(τB

i ))

= S0

n
+ 1

n

n∑
i=1

Xi + 1

n

NB
n∑

i=1

(Zi + Yi −Xi).

From Theorem 1 and the almost-sure limit

lim
n

Bn

NB
n

= µZ,

we can deduce the following lemma.

Lemma 1. If µX > µZ > 0,

NB
n = K

µZ
nρ + o(nρ) almost surely,

where ρ = µZ/µX ∈ (0, 1) and K is the random variable defined by

K = (µX)
ρB

(
W + µY

µX − µZ
B

)−ρ
.

Using this result and the strong law of large numbers, we deduce that

1

n

n∑
i=1

Xi = µX + o(1) and
1

n

NB
n∑

i=1

(Zi + Yi −Xi) = O(nρ−1) almost surely.
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For large n, we can write

n

Sn
= 1

µX
(1 + +o(1)) almost surely.

Using Theorem III.9.4 of [3], we conclude that

∑
n≥1

1

n

(
n

Sn
− 1

µX

)
a.s.= C′,

where C′ is a finite random variable. This equality implies that, as n → +∞,

n−1∑
j=1

(
1

Wj + Bj

)
− 1

µX
ln n

a.s.= O(1).

Using the fact that Tn is an almost surely convergent martingale, and putting T∞ as the
corresponding limit, it follows that

τn =
n−1∑
j=1

1

Sj
+ T∞ + o(1) = ln n

µX
+ o(ln n) almost surely.

Step 2. Consider µX = µZ . From (3) and (4), we prove that

lim
t→∞

exp(−µXt)W(t)
t

a.s.= µYB. (10)

Replacing t by τn in (4) and (10), we derive

lim
n→∞

Wn

τnBn

a.s.= µY .

We will prove at the end of Section 4.3 that

lim
n→∞

Wn

n
= µX almost surely, (11)

which implies that

lim
n→∞

n

τnBn

a.s.= µY

µX
. (12)

Again, using (4), we conclude that

lim
n→∞

n exp(−µXτn)
τn

a.s.= µY

µX
B.

This means that

lim
n→∞

τn

ln n
a.s.= 1

µX
. (13)
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4.3. Proof of Theorem 2

Part 1(i). By (1) and (2), we can write

W(t)

(B(t))µX/µZ
+ µY

µX − µZ
(exp(−t (µX−µZ))−1)(exp(−tµZ)B(t))1−µX/µZ a.s.−→ W

(B)µX/µZ
.

(14)
Replace t by τn in (14); since (Wn, Bn) = (W(τn), B(τn)) almost surely and since τn tends
almost surely to ∞ as n tends to ∞ (see [3, Section III.9]) we obtain

Wn

(Bn)µX/µZ
+ µY

µX − µZ
(exp(−τn(µX − µZ))− 1)(exp(−τnµZ)Bn)1−µX/µZ

a.s.−→ W

(B)µX/µZ
.

Using (11), we conclude that

nµX

(Bn)µX/µZ

a.s.−→ µY

µX − µZ
B(µZ−µX)/µZ +WB−µX/µZ .

This proves the second equation of 1(i). Then we deduce the fourth equation of 1(i) from the
fact that Bn/NB

n

a.s.−→ µZ . The third equation of 1(i) follows from the fact thatNW
n +NB

n = n.
Finally, we conclude the first equation of 1(i) using the fact that Wn/N

W
n

a.s.−→ µX

Part 1(ii). We have Wn = W0 + ∑NW
n

i=1 XτW
i

+ ∑NB
n

j=1 YτB
i

. Then

Wn − nµX√
n

= 1√
n

NW
n∑

i=1

(XτW
i

− µX)+ 1√
n

NB
n∑

j=1

(YτB
i

− µX)+ W0√
n
.

With the help of the identity NW
n = n+ o(n) and the central limit theorem, we deduce that

1√
n

NW
n∑

i=1

(XτW
i

− µX)
L−→ N (0, σ 2

X).

Using 1(i), we deduce that, if ρ < 1
2 , almost surely,

lim
n

1√
n

NB
n∑

j=1

(YτB
i

− µX) = lim
n

NB
n√
n

1

NB
n

NB
n∑

j=1

(YτB
i

− µX) = 0 × (µY − µX) = 0

and, if ρ = 1
2 ,

1√
n

NB
n∑

j=1

(YτB
i

− µX)− K

mZ
(µY − µX)

= 1√
n

NB
n∑

j=1

(YτB
i

− µY )+NB
n (µY − µX)

= NB
n√
n

1

NB
n

NB
n∑

j=1

(YτB
i

− µY )+
(
NB
n√
n

− K

mZ

)
(µY − µX).
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The desired result can be established using the facts that

(
NB
n√
n

− K

mZ

)
a.s.−→ 0 and

1

NB
n

NB
n∑

j=1

(YτB
i

− µY )
a.s.−→ 0.

Part 1(iii). In this case we have 1
2 < ρ < 1. Splitting Wn as in 1(ii),

Wn − nµX

nρ
= 1

nρ

NW
n∑

i=1

(XτW
i

− µX)+ 1

nρ

NB
n∑

j=1

(YτB
i

− µY )+ NB
n

nρ
(µY − µX)+ W0

nρ
.

The first term on the right-hand side tends in L2 to 0:

E

(
1

nρ

NW
n∑

i=1

(XτW
i

− µX)

)2

= σ 2
XE

(
NW
n

n2ρ

)
≤ σ 2

Xn
1−2ρ → 0. (15)

By the strong law of large numbers and 1(i), we conclude that

1

nρ

NB
n∑

j=1

(YτB
i

− µY ) = NB
n

nρ

1

NB
n

NB
n∑

j=1

(YτB
i

− µY )
a.s.−→ 0 and

NB
n

nρ
(µY − µX)

a.s.−→ K

µZ
.

Part 2. It follows from (3) and (4) that

µX
Wn

Bn
− µY ln(Bn)

a.s.−→ µX
W

B
− µY ln(B). (16)

This leads to the following result.

Lemma 2. Under the conditions of part 2 of Theorem 2,we have, almost surely,

lim
n→∞

Wn

Bn
= ∞, NW

n = n+ o(n), and NB
n = o(n).

Proof. Because of (2), B(t) ∼ B exp(tµZ) when t tends to ∞, so that Bn tends to ∞ when
n tends to ∞. Thus, (16) implies that Wn/Bn tends almost surely to ∞ as n tends to ∞. But,
for n ≥ 1,

Wn = W0 +
NW
n∑

i=1

XτW
i

+
NB
n∑

j=1

YτB
j

and Bn = B0 +
NB
n∑

j=1

ZτB
j
,

so Bn/NB
n

a.s.−→ µZ and the first assertion of this lemma yields Wn/N
B
n

a.s.−→ ∞. This implies
that

NW
n

NB
n

a.s.−→ ∞.

The result of Lemma 2 follows using the identity NW
n +NB

n = n.

By the strong law of large numbers and Lemma 2, we conclude that

lim
n→∞

Wn

n
= µX almost surely.

The asymptotic of Bn can be easily obtained using (12) and (13).
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4.4. Proof of Theorem 3

To prove Theorem 3, we first establish a corollary, which follows from Theorem 3, and a
lemma, which follows from (19) and (21), below.

Corollary 1. The process (exp(−µXt)(W(t)+ µY /µX))(t≥0) is a positive martingale. Let

lim
t→∞ exp(−µXt)

(
W(t)+ µY

µX

)
= W + µY

µX
. (17)

In particular,

E(W(t)) = µY + µX

µX
exp(tµX)− µY

µX
.

Lemma 3. Almost surely, as n → +∞,

N(τn)

ln n
= B0

µX
+ o(1) and τn = ln n

µX
+O(1).

Proof of Theorem 3. Part 1. For t ≥ 0, denote by N(t) := #{k : τB
k ≤ t} the number of

splits of black balls up to time t , and denote by τn the time of the nth draw. Then

W(τn) = Wn = W0 +
n−N(τn)∑
j=1

XτW
j

+
N(τn)∑
i=1

YτB
i
. (18)

Since (N(t))(t≥0) is a Poisson process with intensity B0,

N(t)

t

a.s.−→ B0 as t → ∞. (19)

In particular, exp(−µXt)N(t) a.s.−→ 0 as t → ∞.
Then, from (17) and (18) and the fact that τn

a.s.−→ ∞, we deduce that

lim
n

exp(−µXτn)Wn = W + µY

µX
, (20)

lim
n
µX exp(−µXτn)n = W + µY

µX
. (21)

Equation (20) can be written as

exp(−µXτn)Wn = nµX exp(−µXτn) Wn

nµX

a.s.−→ W + µY

µX
.

Consequently, by (21), we conclude that

Wn

nµX

a.s.−→ 1.

Part 2. We have the following representation of Wn:

Wn = W0 +
n∑
k=1

Xk +
N(τn)∑
j=1

(YτB
j

−XτB
j
),
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where the (Xi)1≤i≤n and the (Yj )j≥1 are mutually i.i.d. as X and Y , respectively, and τB
1 , . . . ,

τB
N(τn)

are the orders of the black ball splits up to time τn.
Using Lemma 3 and the strong law of large numbers, the process

�(t) := 1

N(t)

N(t)∑
j=1

(YτB
j

−XτB
j
)

converges almost surely to µY − µX. The remainder of the proof of part 2 follows from the
identity

Wn − nµX −W0 =
n∑
k=1

(Xk − µX)+N(τn)�(τn),

the central limit theorem, Lemma 3, and Slutsky’s theorem.
Part 3. Since (N(t))(t≥0) is a Poisson process with intensityB0 and τn → ∞ when n → ∞,

we have
N(τn)− B0τn√

τn

L−→ N (0, B0). (22)

Consider

Kn = 1√
ln n

(
Wn − nα − µY − α

α
B0 ln n

)

= 1√
ln n

(
N(τn)(µY − α)− µY − α

α
B0 ln n+

N(τn)∑
j=1

(YτB
j

− µY )

)

= (µY − α)
N(τn)− (B0/α) ln n√

ln n
+ 1√

ln n

N(τn)∑
j=1

(YτB
j

− µY ).

Let, for t ∈ (−1, 1), φn(t) = E(exp(−tKn)) denote the Laplace transform of Kn and φ(t) =
E(exp(−t (Y − µY ))) denote the Laplace transform of Y − µY . We have

φn(t) = E

(
exp

(
−t (µY − α)

N(τn)− (B0/α) ln n√
ln n

)
exp

(
− t√

ln n

N(τn)∑
j=1

(YτB
j

− µY )

))

= E

(
exp

(
−t (µY − α)

N(τn)− (B0/α) ln n√
ln n

)(
φ

(
t√
ln n

))N(τn))

= E

(
exp

(
−t (µY − α)

N(τn)− (B0/α) ln n√
ln n

)
exp

(
N(τn) ln

(
φ

(
t√
ln n

))))

= E

(
exp

(
N(τn)− (B0/α) ln n√

ln n

(√
ln n ln

(
φ

(
t√
ln n

))
− t (µY − α)

)))

× exp

(
B0

α
ln n ln

(
φ

(
t√
ln n

)))
.

For large n, we have

φ

(
t√
ln n

)
= E

(
1 − t√

ln n
(Y − µY )+ t2

2 ln n
(Y − µY )

2 + o

(
1

ln n

))

= 1 + t2

2 ln n
σ 2
Y + o

(
1

ln n

)
.
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It then follows that
B0

α
ln n ln

(
φ

(
t√
ln n

))
= B0

2α
t2σ 2

Y + o(1).

Consequently,

exp

(
B0

α
ln n ln

(
φ

(
t√
ln n

))
−→ exp

(
B0

2α
σ 2
Y t

2
))

as n → ∞.

From Lemma 3 and (22), we derive

N(τn)− (B0/α) ln n√
ln n

= N(τn)− B0τn√
ln n

+ B0(τn − ln n/α)√
ln n

= N(τn)− B0τn√
τn

√
τn

ln n
+ B0(τn − ln n/α)√

ln n

L−→ N

(
0,
B0

α

)
.

Then, when n → ∞, it follows that

√
ln n ln

(
φ

(
t√
ln n

))
= √

ln n

(
t2

2 ln n
σ 2
Y + o

(
1

ln n

))
→ 0.

Finally, we conclude that

φn(t) → exp

(
B0

2α
(µY − α)2t2 + B0

2α
σ 2
Y t

2
)
.

4.5. Proof of Theorem 4

We study the asymptotic behavior of the numbers of black balls, B(t), and white balls,
W(t). We see that (B(t))(t≥0) and (W(t))(t≥0) are independent Yule-type branching processes.
Let F W

t and F B
t be the sigma fields generated by the processes (W(u), 0 ≤ u ≤ t) and

(B(u), 0 ≤ u ≤ t), respectively. We deduce from Theorem 1 that

E(B(t)) = B0 exp(µZt), E(W(t)) = W0 exp(µXt),

and
E(W(t + s) | F W

t ) = exp(µXs)W(t),

E(B(t + s) | F B
t ) = exp(µZs)B(t),

exp(−µXt)W(t) a.s.−→ W, exp(−µZt)B(t) a.s.−→ B. (23)

By (23) we conclude that
W
ρ
n

Bn

a.s.−→ Wρ

B
. (24)

Part 1(i) of Theorem 4 can be derived from (24) and the following lemma.

Lemma 4. If µX × µZ > 0 then

Wn

µX
+ Bn

µZ

a.s.= n+ o(n) (n → ∞).
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Proof. We have Wn = W0 + ∑NW
n

k=1XτW
k

and Bn = B0 + ∑NB
n

k=1 ZτB
k

.

By the strong law of large numbers, and the fact that

lim
n→∞N

W
n = ∞, lim

n→∞N
B
n = ∞, almost surely,

we deduce that
Wn

NW
n

a.s.−→ µX,
Bn

NB
n

a.s.−→ µZ.

This implies, almost surely, that

Wn

µX
� NW

n + o(n),
Bn

µZ
� NB

n + o(n). (25)

Using the fact that NB
n +NW

n = n, and (25), we obtain the desired expansion. To prove
part 1(ii), observe from (25) and part 1(i) that

Nn = n+ o(n), NB
n = D

µZ
nρ + o(nρ). (26)

For n ≥ 1, Wn can be decomposed as

Wn − nµX√
n

= W0√
n

+ 1√
n

n∑
k=1

(Xk − µX)− 1√
n

NB
n∑

j=1

XτB
j
.

By the central limit theorem we have

1√
n

n∑
k=1

(Xk − µX)
L−→ N(0, σ 2

X).

Using (26) and the strong law of large numbers, if ρ < 1
2 ,

1√
n

NB
n∑

j=1

XτB
j

= NB
n√
n

1

NB
n

NB
n∑

j=1

XτB
j

a.s.−→ 0 × µX = 0

and, if ρ = 1
2 ,

D

µX
µZ − 1√

n

NB
n∑

j=1

XτB
j

= D

µX
µZ − NB

n√
n

1

NB
n

NB
n∑

j=1

XτB
j

a.s.−→ 0.

Part 1(ii) now follows using Slutsky’s theorem.
To prove part 1(iii), observe that

Wn − nµX

nρ
= W0

nρ
+ 1

nρ

n∑
k=1

(Xk − µX)− 1

nρ

NB
n∑

j=1

XτB
j
.

From (15),
1

nρ

n∑
k=1

(Xk − µX)
L2−→ 0,
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where ‘
L2−→’ denotes L2-convergence, and, by (26),

1

nρ

NB
n∑

j=1

XτB
j

a.s.−→ −DµX
µZ

.

We now prove part 2. Since τn → +∞, we deduce from (23) that

Wn

Bn

a.s.−→ W

B
if n → ∞. (27)

Using the relationNW
n +NB

n = n, and the facts thatNB
n → ∞ andNW

n → ∞, we deduce from
(27) that, almost surely,

NB
n = B

B +W
n+ o(n) and NW

n = W

B +W
n+ o(n),

which concludes the proof of part 2.
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