A SIMPLE COUPLING OF RENEWAL PROCESSES

T. LINDVALL,* University of Göteborg

Abstract

We use a simple coupling to prove the classical result that the renewal function U of a zero-delayed renewal process satisfies $U(t) - \lambda \cdot t \rightarrow \lambda^2 \mu_2/2$ as $t \rightarrow \infty$ if the life-length distribution is of non-lattice type and has finite first and second moments μ and μ_2 respectively; λ is the renewal intensity, and is equal to $1/\mu$.

COUPLING; RENEWAL FUNCTION

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60K05

Let Y_1, Y_2, \cdots be i.i.d. non-negative random variables with non-lattice distribution F, having finite first and second moments μ and μ_2 respectively. To the zero-delayed renewal process $S = (S_n)_0^{\infty}$, where $S_n = \sum_{i=1}^{n} Y_i$, $S_0 = 0$, we associate the point process N: N(B) = $\#\{n; S_n \in B\}$ for $B \in \mathcal{R}_+$, and the counting process $(N_t)_0^{\infty}: N_t = N[0, t]$ for $t \ge 0$. Let U(B) =E[N(B)] and $U(t) = E[N_t]$. Notice that $U(0) \ge 1$ always, and U(0) = 1 if F(0) = 0. It is rather well known how to use a coupling to prove Blackwell's renewal theorem, which states that

(1)
$$U(t, t+A) \rightarrow \lambda \cdot A \text{ as } t \rightarrow \infty$$

for all A > 0, cf. Lindvall (1992), p. 73ff.; here $\lambda = 1/\mu$. The classical result

(2)
$$U(t) - \lambda \cdot t \rightarrow \lambda^2 \mu_2/2 \text{ as } t \rightarrow \infty$$

has, however, not yet been given a coupling proof; the established route is to apply the so-called key renewal theorem to a renewal equation which is solved by $U(t) - \lambda t$, cf. Feller (1966), p. 357. The purpose of this letter is to show how a simple coupling works to prove (2).

Let Y'_0 be independent of S and have density $\lambda \, (1 - F(y))$, $y \ge 0$. We know that if a renewal process with lifelength distribution F has Y'_0 as delay, it is stationary. Let $S' = (S'_n)_0^\infty$ be defined by

 $S'_n = Y'_0 + S_n, \qquad n \ge 0,$

and let N', U' have obvious meanings. We have

(3)
$$U(t) - \lambda \cdot t = U(t) - U'(t) = E[N_t] - E[N_t] = E[N(t - Y_0', t)].$$

But

(4)
$$E[N(t - Y'_0, t]] = E[E[N(t - Y'_0, t] | Y'_0]] = E[U(t - Y'_0, t]].$$

(5)
$$U(t - Y'_0, t] \rightarrow \lambda \cdot Y'_0 \text{ as } t \rightarrow \infty$$

due to (1). We are allowed to transpose expectation and limit in (4) because of dominated convergence. Indeed,

 $U(t-Y_0',t] \leq U(Y_0')$

Received 8 July 1992; revision received 24 August 1992.

^{*} Postal address: Department of Mathematics, University of Göteborg, S-41296 Göteborg, Sweden.

for all $t \ge 0$, and $E[U(Y'_0)] < \infty$ since $U(s) \le C \cdot (1+s)$ for some C > 0 and $E[Y'_0] < \infty$. From (3)-(5) we may now deduce (2) since $E[Y'_0] = \lambda \mu_2/2$.

The idea of constructing a stationary parallel process by introducing a suitable delay phase as above is of value for the study of regenerative processes in general. The consequences of such coupling will be presented at a later opportunity.

References

FELLER, W. (1966) An Introduction to Probability Theory and its Applications, Vol. II. Wiley, New York.

LINDVALL, T. (1992) Lectures on the Coupling Method. Wiley, New York.