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ON SINGULAR SETS OF FLAT HOLOMORPHIC MAPPINGS

WITH ISOLATED SINGULARITIES

HIDEO OMOTO

Introduction

In [4] B. Iversen studied critical points of algebraic mappings, using

algebraic-geometry methods. In particular when algebraic maps have

only isolated singularities, he shows the following relation; Let V and

S be compact connected non-singular algebraic varieties of dimc V = n,

and dimc S = 1, respectively. Suppose / is an algebraic map of V onto

S with isolated singularities. Then it follows that

(0.1) χ(Y) = ( _ i ) » Σ μλP) + χ(S)χ(F),
V

where χ denotes the Euler number, μf(p) is the Milnor number of / at

the singular point p, and F is the general fiber of / : V —> S.

The purpose of this paper is to generalize the above relation (0.1)

as follows; Let V and W be connected compact complex manifolds of

dimc = n, and k respectively. And let / be a flat holomorphic map of

V into W with isolated singularities ([Def. 1.2]). Moreover we assume

that rank / ;> k — 1. Then for generic points p on singular set Σ(f) of

/ ([Def. 1.1]), we can define obstruction numbers μf(p)eZ ([Def. 1.3])

associated with / and p which are Milnor numbers of / at p in the case

k = 1. However these numbers μf(p) are constant on irreducible com-

ponent containing p of Σ4(f). Therefore we put, with respect to, the

irreducible decomposition Σ(f) = U^

μf(ΣJ) = μf(p) for any generic p

Now our main theorem is to show the next relation; For the gen-

eral fiber F or / : V -* W,

(0.2) χ(Y) = (-1)* Σ C(β,)μf{Σ') + χ(W)χ(F)
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where C(β^) are the Chern numbers of line bundles ύij over ΣJ induced
from / (rank/ ;> k — 1).

In § 1 we state some properties of singular set Σ(f) ([3]) and give
the definition of μf(p). In §2 we review differential geometrical defini-
tions of connections, curvature and boundary forms ([2] and [6]). In §3
we show the duality formula of boundary forms which play an important
role in proving the main theorem. The proof of the main theorem is
done in §4.

§1. Singularities of holomorphic maps

1.1. Let V be a complex manifold of complex dimension n and T*V
be the holomorphic cotangent bundle of V. Let / be a holomorphic
mapping of V into a complex ^-dimensional complex manifold W in ̂  k).

DEFINITION 1.1. A point p of V is called a singular point of /, if
rankp f < k, where rankp / denotes the rank of the linear map / * : TJ{p)W
-* T*F. Moreover we denote by Σ(f) the set of all singular points of
/, called the singular set of /.

DEFINITION 1.2. p e Σ(f) is generic if the following conditions are
satisfied

i) rankp / = k — 1,
ii) there exists a neighborhood U of p in V such that U Π Σ(f) is

a (k — l)-dimensional complex submanifold of V.

Let p e Σ(f) be generic. In order to define a topological number
concerned with p, we take holomorphic coordinates {«*}?«! on an open
set Up3p in V with zi{p) = 0, i = 1, , n and also local coordinates
{wa}k

Λml of f(p) in W such that wa(f(p)) = 0, a = 1, . - , k. Set ga = waof

and g = (g\ - ,gk). Further let dg/dz be the Jacobian matrix of g,
that is,

dz

If we write V(n, k C) for the Stiefel manifold consisting of all k-frames
of Cn, then we have the holomorphic map

dg'w
dg1

dz-'"

' dz'

dg"
"' dzn
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OZ

As p is generic, we can take a complex submanifold Σ^ip) as follows;

(α) ΣHP) Π Σ{g) = {p}.
(β) .Γ-Hp) intersects transversally to JSXflO at p.
(γ) the boundary dΣL(p) of Jϊ-Kp) is a smooth manifold which is

diffeomorphic to the 2(n — k) + 1-dimensional unit sphere Sun~k)+ι

in cUn'k+1\
We call the above submanifold ΣL(p) a complemental submanifold to Σ(g)
at p. Finally we choose 2(n — k) + 1-form ωn>k on V(n, k C) whose
cohomology class ώΛtk is the generator of 2(n — k) + 1 dimensional
cohomology group of V(n, k C), HUn'k)+ι(V(n9 k O Z) ^ Z. Here put

(1.1) flg(p) = f
J

One notes that μg(p) is an integer and that βg(p) is independent of
choosing local coordinates {«*}<„!, {̂ α}«=i and complemental submanifolds

to Σ(g) at p. Therefore the following definition is well-defined.

DEFINITION 1.3. Let p β Σ{f) be generic. Then the obstruction num-
ber μf(p) at p of f is defined by

(LI)' μλv) - Λ(P)

1.2. Isolated singularities
We shall restrict our discussion to a holomorphic map / : V —» PF

such that
i) / has only isolated singularities, i.e., for any point qeW, f"Kθ)

Π Σ(f) is an isolated points set in V.
ii) / is flat.

For simplicity we call / satisfying the above conditions i) and ii) an
(IF)-holomorphic map. The following proposition is well-known.

PROPOSITION 1.4. Let f:V—>W be (IF)-holomorphίc. Then the

singular set Σ(f) of f is an analytic set of V such that

dimcΣ(f) = d i m c T F - 1 .

From now on we assume that V and W are connected compact com-
plex manifolds of dim^ V = n, and dimc W = k and that / : V —> W is
(ZF)-holomorphic such that rank/ :> k — 1.

https://doi.org/10.1017/S0027763000021784 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021784


50 HIDEO OMOTO

LEMMA 1.5. Let f: V -> W be as above and let Σ(f) = {Jl^Σ^ be
an irreducible decomposition of Σ(f). Then for each Σ(ί) the obstruc-
tion number μf(Pi) of f at any generic point pt e Σa) is defined and con-
stant.

Proof. It is clear from Proposition 1.4 and r a n k / ^ f c — 1 that
generic points of Σ(f) become regular points of the analytic set Σ(f) in
V, and conversely. Since the regular set of Σa) is connected, this lemma
is trivial from the definition of the obstruction number. Q.E.D.

By the above lemma we can put μ/(Σa)) = μs(pd for any generic
point Pi e Σa\

Next les us consider the following sequence concerning with / : V

(I) 0 • Ker T(f) > f\T*W) —J-i T*F ,

where f\T*W) is the induced bundle of T*W by / and T(f) is the linear

map defined by

T(f)(p, v) = f*v for any (p, v) e f*{T*W) .

As rank / ;> k — 1 (dimc W = k), we have

(Ker TOO), = {0} if peΣ(f)

and

dimc (Ker T(f))p = 1 for p e Σ(f) .

Thus the restricted bundle Ker T(f) | Σ(f) becomes a topological one-
dimensional complex vector bundle. Let us denote by Q(Σ(f)) the quo-
tient bundle f*(T*W)/KerT(f)\Σ(f)f and let ~ :f*(T*W)\Σ(f)->Q(Σ(f))
be the natural projection. Now let p e Σ(f) be generic. Suppose that
ω is a type (l,O)-differential form defined on an open set Usf(p) such
that

(1.2) zeros of /*(ω) Π f~\U) = p .

Here let f\ώ) be the cross-section of f*(T*W) defined by

fKω)(p) = ( p , ω f ( p ) ) f o r a n y p e ϋ .

Then fHω) is the continuous section of Q(Σ(f)) on f"\U) ΠΣ(f),
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and from (1.2) we get

zeros of f%ω) = {p} ,

that is, fKω)(p) e Ker T(/)p. Since p is generic, there exists a neighbor-

hood Up of p in Σ{f)9 which is a complex submanifold of V of

dim c (fc-l) , included in f~l(U). Therefore Q(Σ(f))\ϋp is a (A? - 1)-

dimensional holomorphic vector bundle. Here we can define canonically

the order of zeros Jp(/*(ω)) of /*(ω) at p.

DEFINITION 1.6. Let p e Σ(J) be generic and let ω be a (l,0)-type

differential form on an open set U s f(p) satisfying (1.2). Then the

restricted index Ip(ω) of ω at p is the order of zeros of /*(α>) at p, i.e.

(1.3) / » = Ip(fKω)) .

Before we state our theorem, we need

DEFINITION 1.7. Let / : V-+W be as before, we call a (l9θ)-type

differential form ω on W, an /-form, when the following conditions are

satisfied

i) The zeros of ω is a finite points set such that

f(Σ(J)) Π zeros ofω = φ

ii) 2Ό0 Π zeros of /*ω is also a finite points set whose points are

all generic.

Let ω be an /-form. Then from the above condition ii) we can define

the restricted index ϊp(ω) for each p e Σ(f) Π zeros of /*ω. The follow-

ing existence proposition is proved by using the transversality theorem

in [5].

PROPOSITION 1.8. Let V and W be compact complex manifolds and let

f:V->W be an (IF)-holonιorphic map with rank f ^>k—l, (dimc W = k).

Then there exists an f-form ω.

We shall prove this proposition in Appendix. Now we are in a

position to state the following

THEOREM 1.9. Let V and W be connected compact complex manifolds

of dimc V = n and dimc W = k. Suppose that f:V-*W is an (IF)-

holomorphic mapping such that rank / ^ k — 1. Then if F denotes a
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general fiber of f: V —> W, we have

(1.4) χ(V) = t (-irϊpjMμ iVj) + χ(W)χ(F) ,

where χ represents the Euler number and ω is an f-form such that

Σ(f) Π zeros of f*ω = {plf - ,p,}, (c/. Z?β/. 1.7).

Moreover we claim that (1.4) is independent of /-forms ω.

MAIN THEOREM. Under assumptions in Theorem 1.9, let Σ(f) = UΓ=i ̂ α )

&e ίfeβ irreducible decomposition of the singular set Σ(f) of f. Let

Q(f) = f(T*W)/K.erT(f)\Σ(f) as in 1.1. Here put at =

(i = 1, ,r). Tfee^ iί follows that

(1.5) χ(7) = (-1)» ± C(0ύμfW) + χ(W)χ(F) ,

where C(βϊ) denotes the topologίcal (k — ΐ)-th Chern number of the

complex (k — lydimensionάl vector bundle 36% over Σa\ in the sense of

Steenrod [7].

Proof. Without loss of generality we can assume that Σ(J) is ir-

reducible, because any point of Σ(i) Π Σφ (i Φ j) is not generic. Then

we have from Lemma 1.5 and (1.4)

(1.6) χ(V) = (-1)« t IPj(ω)μf(Σ(f)) + χ(W)χ(F) .

Since Σ(f) is a compact analytic set of V, Σ(f) becomes a compact CW-

complex. Thus one can define the (fc — l)-th chern number C(Q(f)) of

Q(f) in virtue of Steenrod. On the other hand, fHω) is a continuous

cross-section of Q(f) and we see zero (/*(ω)) = {plf . . . , pe), here ~ is the

natural projection of f*(T*W)\Σ(f) onto Q(f). The Steenrod's theorem

shows that

that is

C(Q(f)) = ±ϊPJ(ω).

Combining this fact with (1.6), we can prove (1.5). Q.E.D.
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In particular in case of k = 1, that is, W is a compact Riemann
surface, Σ(f) is a finite points set, say {p19 , pr} and μf(Pj) is the
Milnor number of / at the isolated singular point pj9 j = 1, , r. Here
from the main theorem we have

COROLLARY 1.10 [4]. Let W be a connected compact Riemann sur-
face and f a holomorphic map of a connected compact complex manifold
V into W with isolated singularities, say Σ(f) = {p19 , pt}. Then we
get

where F is a generic fibre of f: V -» W and n = dimc V.

Proof. We know that / is flat, because Σ(f) is a finite points set
and dimc W = 1. Here the proof is trivial. Q.E.D.

§ 2 . Connections and boundary forms ([2], [6])

In this section we review several geometrical definitions in [2] and
[6] to be used in the next section.

2.1. Let V be a complex manifold and Ak(V) the set of all fc-forms
on F, fc = 1, « ,2m (dimRV = 2m). Let E be a holomorphic vector
bundle of fibre dimension n over V and N be a hermitian norm on E.
Here we denote by <, > the inner product induced by N. Then we can
define a canonical connection D(N) on E as in [2], as follows; Let U be
an open set of V such that there exists a holomorphic frame s = (sl9 ,
sn), where s* is a holomorphic section of J571Z7. Put N(s) =
and

(2.1) θ = θ(s,N) = d/N(s)-N(s)~1 , i.e., θtj = Σ d/N(s)ik'(N(s)~1)kj ,

where df is the type (1,0)-derivation. For a section ξ = J]Li f̂ ŝ  of
£71 £7, we define the covariant differential Dξ = J]k=1 dξk-sk + J] ξkDsk,
where Dsk = J]j θkjSj. Then Dξ is an £7-valued 1-form and dζξ, rj)
= (Dξ, 7]} + <f, Z?37> for sections f, ^ of i7.

We call the above connection D = D(N) the ^-connection of E.
Moreover the curvature form K(s,D) = ||X^|| is given by

(2.2) K(8, D(N)) = dθ(s, N) - θ(β, N) A θ(s, N) .
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K(s,D(N)) is called the curvature matrix of D(N) relative to the frame

s. Take another frame s/= (si,s'n) of E\U, and put sί = Σj<^ < r s j

Then we get

(2.3) AK(s, D)A~ι = K(s\ D) .

Now we shall define the fc-th chern form Ck(E) of E associated with the

norm N. Let Mn be the n x n-complex matrices. Let bl: Mn x x Mn

—» C be a fc-linear map defined by

det (lw + ΛA + + **Afc)
fc! 9*i ••• 9 ; _

for A< e Mn, where ln denotes the unit matrix of degree n. For sim-

plicity we set &ϊ(A, , A) = &2((A)). Then it follows from (2.3) and the

definition of bl that &g(ί g(β,D)U is independent of the frame s.

DEFINITION 2.1. Let D = D(N) be an iV-connection on E. Then the

k-th Chern form Ck(E>D) induced by N is a type (fc, &)-real form on V

defined as follows; for any frame s of E\U (s may be smooth),

C4(#,Z>)|i7 = &2'

The next proposition is directly proved from the above definition

([1]).

PROPOSITION 2.2. Ck(E,D) is closed, i.e., dCk(E,D) = 0.

2.2. Duality formula and boundary form.

Suppose now that the following sequence (Σ) of holomophic vector

bundles over a complex manifold V is exact,

(Σ) 0 -> Eτ -> E -> Eu — 0 .

If £7 has a hermitian norm iV, then in virtue of the sequence (Σ) norms

Nι and Nιτ are induced from N, on £Ί and £7Π, respectively. Let Pi

E -*Eτ and Pni JE1 —»JSΉ be orthogonal projections and D = D(N) be the

ΛΓ-connection on E. It follows then that PiDPi = Dt becomes the Nr

connection on Ex for i = I, II. Moreover put Dt = D + (eί — lOPπZλP!

(teR). Dt is also a connection on £7, called i?-family of D. The fol-

lowing proposition is used to define the boundary form of E.
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Duality formula [2]. Let all notations be as above. Snppose that

dim E — n and dim Eτ = k. Then it follows that

Cn(E,D) == Ck(ElfD^Cn^(EUfD^

7 1 - 1

where dc = V~^l(d" - df)9 &;((A 6)) = bn

n{B, A ^ , A) + + 6(A,

A,B) and K[E9Dt] is the curvature element of Dt9 defined as follows;

for any frame s of E9

Now let E be a holomorphic vector bundle with a norm N over V

of fiber dimension % and let π be the projection of E onto V. Set

Eo = {veE v Φ 0} and TΓ|EO = πQ. And let πt{E) be the induced bundle

of E by τr0. Then one defines naturally the induced norm πJί(N) by TΓO

and N. Let L(ί7) = Uee^o {(e>Ce)) b e t h e l i n e bundle over Eo and Q(ί7)

the quotient bundle of π\(E) by L(E). Then clearly we get the following

exact sequence;

Σ(E) , 0 -> L(ί7) -> πί(JS) -> Q(ί/) -> 0 ,

At first we have

PROPOSITION 2.3. [6].

(2.5) CMiE), D{πtN)) = ττo*Cn(£

Let Δ: J?o —> L(E) be the global holomorphic section defined by Δ{e)

= (e, β) for e e Eo. Then we know

(2.6) C.iUE), D(Nτ)) = ^ d d c log (τrϊ2V)(J) ,

where Nτ is the norm on L(E) defined by the sequence Σ(E) and the

norm πJ(N) on 4(^) as before. Applying the duality formula (2.4) to

the sequence Σ(E), we obtain from (2.5) and (2.6)

πfCnίE,D(N)) = ^
4τr

lim dc Γ 6;((icX[π8E7, Dt(π$N)]
ί--oo Jί
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where K =VV XIKΪΛ. 1

Here

(2.7)

let us

V

2π

put

n(E, N, Δ)
4 τ r l

+ lim
ί- -oo

log π

It is trivial

(2.8) dVn(E, N, Δ) = 7ro*Cw(£

We resume the above discussions as the following

DEFINITION 2.4 [6]. Let E be a holomorphic ^-dimensional vector

bundle over a complex manifold V with a norm N. Then the (2w — In-

form ηJJE,N9Δ) on Eo defined by (2.7) is called the boundary form of

E with the norm 2V.

For simplicity we abbreviate ηn(E,N,Δ) to ηn{E) or ηn{E,N).

§3. Duality formula of boundary forms

Let V be a complex manifold and Ak(V) the &-forms on V. Assume

there exists an exact sequence (2") of holomorphic vector bundles over V

(Σ) 0 — Eτ -> E -> £7Π -> 0 .

Put (£Ί)0 = {v e J57i v ^ 0} and let Πi be the projection of CÊ o onto

V. Moreover let c:(E1)0-*E be the inclusion linear map in (2r). The

purpose of this section is to prove the following

MAIN LEMMA. All notations are as in § 2. Let dim Eτ = k and

dim E = n, and let N be a norm on E. Then it follows that, on (EJQ

(3.1) c*ηn(E) = ηk(JEOUΫ Cn-ΛEn) + Π? ξ +

where ξ e A 2 1 1 - 1 ^ and Φ e A^

3.1. In order to show (3.1) we need several lemmas. At first we

have the following

LEMMA 3.1. There exists an element ξ'eA2n~ι(V) satisfying the

following condition; Let us put
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(3.2) ψ = t*ηn(E) - ηk(Eτ) Πf C»-*(#n) + Πi* £'

Then ψ is closed, that is, dψ = 0.

Proof. Let γ\0:E0-+V be the natural projection as before (Eo c £7).
It is clear by (2.8) that

Here we get £" e A2n~\V) by the duality formula in § 2 such that

Cn(E) - Ck(Eτ)Cn.k(E^ = d r

Thus putting ξ' = -f7/, we can prove (3.2). Q.E.D.
Next let S(EJ be the sphere bundle of Eτ, that is, S(Eτ) = {v 6 JBΊ

Ni(v) = 1}, and let P : SC^) —> V be the projection. Clearly each fibre
of S(Eτ) has the canonical orientation. One can here define the fibre
integral P*:A'(S(jE1))-+A'-«k-HV) as follows; for any θeA'(S(EJ),

P*(θ)*=\ θ (xeV).
JP-Hx)

The following lemma is proved in Hirzebruch-Borel [1].

LEMMA 3.2 [4]. There is ωeA^-'iSiEj)) such that dω = 0 and
P^(ω) — 1. Moreover for any closed form θ e Ae(S(Eι)) we write θ the
cohomology class of θ. Then it follows that

θ = P*(P*(Θ)) Aω + P*(fx)

where ξ.eH'iV R).

PROPOSITION 3.3. Let es: S(Eτ) ~> (£Ί)0 be the inclusion map and let
ψ be the (2n — l)-form on (£Ί)0 as in Lemma 3.1. Then we obtain

(3.3) Pζζfψ) - 0 .

// (3.3) is proved, we get our main lemma as Corollary. Indeed it fol-
lows from Lemma 3.2 that

cf(ψ) = P*(P#(**ψ)) Λ ω + P*(&)

where ξ1 is a (2n — l)-closed form on V. Therefore we have from (3.3)
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= 0 .

Set here φ = ψ — Π*(fi) (Π* ί 5 *^ e projection of (Ej)0 onto V).

ing P = Πi°^> ** follows

ίφ^cΫf- P%) = 0 .

However since H2n~ι(SEdQ\ R) is isomorphic to IPn-ι(S(EJ;R) by cf, we

have ψ = 0 m H2n-\(E1\\ R). Thus it follows ψ = ψ - Πf(fi) = *£ /or

Φ e A2n~2((£7ϊ)0) α^d so (3.1) m mαm lemma is proved.

3.2. The proof of Proposition 3.3.

All notations in §2 are used in this paragraph.

Let N be the norm on E and let Nt be the norm on Et induced by

N (i = I, II) in terms of the sequence (Σ): 0 -* Eτ -> F -> En -> 0. The

inclusion map *: (E^Q-*EQ(<Z E) induces the canonical linear map of Π*

into Πo(#), which we denote by t without confusion. Note **(Π

= Π ! Φ ) a n d £(L(E)) = L(£Ί). Then we have the following diagram

(Σi): o — > L(Eι) — • Π! (&> — • <*QW — > 0 on (Eι\

( j 2 ) : o • L(E) • Π5 (E) • Q(E) • 0 on EQ .

Remark. (2Ί) is the restriction of (Σ2) to (£Ί)0 and It is exact for

i = 1,2.

First of all, using Proposition 3.5 in [6], it follows from the exact

sequence CΓ2) that

c*Vn(E,N) = -

+ lim d° K(
ί--oo Jί

where J : £?0 —> L(ί7) is the section defined by

Δ(e) — (e, e) for eeE0 .

Let us consider the form e*Cn^(Q(E)) in the left hand side of (3.4).

For this purpose take the following commutative diagram over (Eτ)0;
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0 0 0

i 1 I
0 > (Eτ) z=> L(Eτ) > 0 > 0

I I I
o — > Π! (#i) — > Πί (E) — * Π! (#π) — • o

Q(Eτ) > t*Q(E) • \\\ {Eιτ) • 0

0 0

where each sequence is exact.
It is well-known (cf. (3.23) in [6] that

Therefore using the exact sequence (Σ3) in the above diagram, we find
from duality formula

g
from duality formula

(3 5 )
- Z-d lim d< f blz\{{κK[c*Q{E), Df] κPf))dt

4 t— -oo Jί

where P?: c*Q(E) —> QCEΊ) is the orthogonal projection associated with
C£3) and the norm *̂(N«) on *̂Q(ί7) induced by N, and J9? is Λ-family of
J50W«) as in §2.

Furthermore, noting that J o ; : (£Ί)0 —• L(£Ί) is the canonical section
for the boundary form ηk(E^, we have from the first vertical exact se-
quence in the above diagram,

(3.6) 4 7 Γ

 r ,

where Pf1: Πiί^i) -* L(Eτ) is the orthogonal projection.
Here it follows from (3.4), (3.5) and (3.6) that
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ι*ηn(E) -

= const. de log Π ! N ι ( 4 ° ύ dlim dc f blzl(.(.K[*Q(E),Df] Pf))dt

(3.7) + const. Π? C,_t(£?π)

• Π,* Cn.k(En) lim d« Γ bl((K[UlEIf Dt(Uί A01 Pf*))dt

+ const, lim d" f &:((#[ Π! E, Dt(.ft\ N)] Pi))eii ,

(note Pi is the orthogonal projection of E onto Eτ in the sequence

Σ).
We shall show next that the first term of the right hand side of

(3.7) has zero fibre integral, that is, if P* denotes the fibre integral of
the sphere bundle S(Eτ) of El9 then

(3.7)' P*WC log Π ! NiU °<) d lim dc f° blz\{{K[t*Q(E\ Df] = 0 ,

where cs: (J&Jo —> S(Eτ) is the inclusion.
For this aim let 1 < i, j < n, 1 < a, β < k, and 1 < A, B < n — k. In

the sequence (Σ): 0 -»Eτ -> £7 —> £?π -> 0, n and Λ are dimensions of E
and El9 respectively, and N is the norm on E and Ni denotes the in-
duced norm on Et defined by (Σ) and N, ί = I, II.

Now let {Si}?.! be an orthonormal frame of E over an open set U <zV
such that

{ejti is the orthonormal frame of E \ U.

If D = D(N) is the iV-connection of E, one finds

DSt = IjSi^j9 SiseAιφ).

Let Πi : (^i)o-* ^ be the natural projection and put Πϊ" 1 ^) = ϋ. Since
{ea} is the frame of E^U, we find 17 s U x Cfe - {0} (diffeomorphic). Let
us denote the canonical coordinates of Ck by {£"}«=i

Clearly {eto Πi}?-i becomes the orthonormal frame of Πi(^)|^> with
respect to the induced norm ΠiCW Putting eio\\i = et (i = 1, ,n)
we get

(3.8) 2)(Πf Λ0e<4 - Σόθίόe3 , ί^ e A\U)

where 04i = Πf (*<i>
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O n t h e o t h e r h a n d f o r ΔoC, w e find

Δoc(χ, z1,.--,zk) = Σaz
aea(x) for (x,z\ •,z*) e U x Ck - {0} .

Let here uγ be the smooth-section of L(Eτ) defined by

n ι ( / γ /yi . . . ^^"^ ——

vVz1 + + zkzk

Set E7i = {(a?, z\ , ^fe) ^ Φ 0} c [7. Then we can choose another sec-

tions ιι2, - ,uk of Πi (^i)l Ui such that {^JLi is the orthonormal frame.

Thus we have

Then a = \\aaβ\\, and & = ||6β^||, are elements of the group of k x fc-unitary

matrices U(k) and a = 6"1. Here let us put

For simplicity we consider U(k) as the subspace of n X ti-matrices MTO

in the following way; aeJJik) corresponds to (—\—\eMn.

Now let D*=zD(Y[lN) be the f]ί^-connection of Π ί ^ Then it

follows directly from (3.8) and (3.9) that with respect to the orthonormal

f r a m e {u19 -"9uk9 ek+1, , en}9

[D*ua = Σ {o>aβ + (a>θ.b)aβ}uβ + Σ(a θ)atk+Aek+A

(3.10) I ^x Λ=1

\D*ek+A = Σ (Θ'b)k+A>ua + Σ Θk+Afic+Bek+B

where θ =

Next let P π : \[\(E)-*t*Q(E) be the orthogonal projection associated

with the exact sequence: 0 ->L(E1) -+ []ί (^) -* £Q{E) -*0. Remember

that if we denote by DQ the canonical connection of t*Q(E), then

and that {u2, - - >,uk,ek+1, > - >,en} is the orthonormal frame of c*Q(E)>

Here let 2 < #, ^ < k. Then it follows from (3.10) that
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(3.11)
\DQek+A = Σ iθ-b)k+A,sus + Σ Θk+Λ,k+Bek+B

For calculations of b*zK(K[PQ(&), Df] P?)) recall that Df = D<*

+ <y - 1)P&D«P?, where Pf: t*Q(E) ->Q(EJ and P&: c*Q(E) — f]ί (#π) are

the orthogonal projections induced from the exact sequence

0 Q(Eτ)

Let K(Df) be the curvature matrix of Df with respect to the above frame

{u2, - ,uk, ek+1, - -, en} of c*Q(E) and put

K(D?) = k-

n — k{

Then we get (cf. Lemma 4.8 [1])

(3.12)

where

and

Dn =

Remark. It is clear from the choice of the frame

,βn} that

= 0 and

= 0

+^ = ek+A

Using this remark and (3.11), we shall compute each term in (3.12).

At first we introduce the following notations. In general let P be a

differential fibre bundle over a differential manifold M, and Π be the

projection. Let ω be any differential form on P. We say that ω is at

most of k-fibre degree, denoted by F(ώ) < fc, when the following condi-

tion is satisfied; Let y be any point of P and Fy be the fibre space

passing through y. Then for any k + 1 vectors X19 , Xk+1 e Ty(Fy) the
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inner derivative Xλ Λ Λ Xk+λ J ω of ω with respect to Xu ,Xfc+1 is
zero, i.e., Xλ Λ Λ Xk+1 Jω = 0.

Under this notation each term in the right hand side of (3.12) is
calculated as below.

a) KiQiE^PfD^Pf] = ||α>βl Λ ωίβ\\^s^k + Φ19 where F{ΦX) < 1.

Proof. First of all find from (3.11)

Thus

where

• Σ Λ

- Σ (a θ b)δΐ Λ

- Σ (β»«r + (fl O Var) Λ (β θ b),,
r

However as = 0> w e

= \\ωsl A ωιt\\ + Φ, .

The fact that Φx is at most fibre degree one is shown from θ = Π*(

(note Πi .(tfi)o-*7) Q.E.D.
b)

, we have

This is trivial,

c)

Proof. As P?τD^ua = 2
4

= Σ

This fact shows that F(Πi) = 0.
d) Π I I = —\

Proof. Direct calculations show that
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—

—

β«r ' r> l|

βr r'

Σ Θk + A,β A Θβ>1c + B +

A,B

Σ
βr

"k + ArfQΊβ&lβVγ, k + B

= 0.

here we used ιa = α"1 = b in the third equality. Q.E.D.
e)

where

f) M Γ

where *|| -1| denotes the transpose of the matrix || || and F(Φ'O) = 0.
Since we can obtain e) and f) by the same computation before, we

omit these calculations.
Hence it follows from a) — f) that, with respect to the frame {u2, ,

uk,ek+1, ---,en} of ί*Q(E),

(3.13) K[PQ(E),Df]

k-l{

n— k<

k-l

|(ωδ l Λ (ϋι$\\s,β + Φ\

-tll©«ΛMr.*+-ill + φo

n-k
A

d» - 71 θ Aθ
C k + Λ ' k + k + ' k + B

-e<

+ e<

Σ θk+A,β Λ etM

A,B

where FOPJ < 1 and F(Φ0) = F{Φ'Q) = 0.

On the other hand for Pf we get

(3.14)
0

with respect to {̂ 2> •••>%> β/k+i> * , en}.

finally we need the following elementary

LEMMA 3.4. Let AeMn and let J
Then one has

be the (ί, j)-cofactor of A.

δSUA ly-
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Proof. From the definition of bl((A B)) in § 2 this lemma is triv-
ial. Q.E.D.

Now applying Lemma 3.4 to (3.13) and (3.14), we have

bill ((K[c*Q(E), Df] P?)) = ΣMKVQίE), Dfi) .
i = l

Thus from (3.13) it follows that any term in 4it(K[c*Q(E) Df]) (i = 1, ,
k — 1) is of type

ά a
V V

(3.15) Φ y ζ % Λ Λ % Λ ΰ ) 2 1 Λ Λ ωfcl) (α l f l .«. alffllh α1/8~f) + Φ2*-s

where Φ e A\ϋ), F{Φ2Ίύ_z) < 2k - 3 and 2 < f „ ^ ^ Jfc, 0' = 1, , t).
Let us here represent ala using the coordinates {z1, , zk} of C*.

From (3.9), ^ = Σ ϊ . x αlαβα. But as ux = Σ — _ ^ _ 6α it
αVSiSi + + zkzk

follows that

ala = -51 , (|«| = vV* +

Put β = ddclog|^|2 on Cfc — {0}. Then we have the following

LEMMA 3.5. Let ωaβ be as before (1 < a, β < k). Then it follows
that

a a
V V

k

Σ % Λ Λ % Λ % Λ Λ ωkl = const. βfc"2 ,
α = 2

fc-2 times

Λ~2 = Ω Λ ~ ^ 7 \ β.

Proof. Noting that ωaβ = 2] r daarb7βf we get

Σ Λ ωβ l = Σ ^αϋ3 Λ dalβ
3

But from the representations of alβ with respect to {z\ , 2fc}, we see
that
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Σ
a

= const. Ω .

From this fact lemma is proved. Q.E.D.

Moreover we have the next lemma concerned with the above one.

LEMMA 3.6. Let S(Ck) be the unit sphere of Ck and js:S(Ck)->Ck

— {0} be the inclusion. Furthermore let a = (a19 9at) and β = (βlf ,

βt) be t-multiple indices for any positive integer t such that 1 < aί9 βt < k

(i — 1, . . . , t). Then we find

(3.16) Λ = 0 ,

where za = zai- -zat and zβ = zβl -zβt.

Proof. It suffices to prove (3.16) in case of t = 1, that is 1 < a,

β < k. Clearly we get

= Σ tf.β - z«zβ)dza A
0 1

where δaβ is Kronecker index.

Here let us put

B =

I ~1«1 ~1~2

- ^ z 1 , 1 - 2V

- 2 * 2 ' ,
- zkzk

Then

α
V V

-1) = const. Σ Δa^B)dzι A • • A dzk A dz1 A A dzk ,

where Jaβ(B) denotes the (a, β)-cofactor of B. Now we find

\zf ~~\zj
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And so it follows that

= const. \zβ Σ \(—ϊ)a-ιΔaXB) — Σ (—iγ-ιzazδΔδL
V γ \ δ τ

r
v

X ^ Λ Λ ^ Λ ^ Λ Λ dzΛ .

Fixing γ in the right hand side of this equation, we obtain

(_D«-iΛjαr(j?) _ 2 (-Dδ+azazδJδΐ(B)\

(3.17) = (-1)*
= Γdet (B) = 1 - \zf , if a = γ

\θ , otherwise.

But as \z\ = 1 on S(Ck), the right hand side of (3.17) equals to zero
for any ;-, so that

Similarly we can prove

Thus from dc == i(d" - dθ, (3.16) follows. Q.E.D.
Now we are in a position to prove (3.7/ For simplicity, set

I = dc log (Π! Nύ(Δ o c) A lim dc f° b£\WVQ(E), Df] P?))ώ .
S^-oo Js

By the definition of the canonical section Δ (see the above of (3.9)),

log ( Π ! NύΔ o c(x, z1,..., zk) = log |^|2 ,

and so we find from (3.15) and Lemma 3.5 that

(3.18) I = Σ Ψ«β>tC

?=(?ί! !?ί)
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where the Φaβ>t are functions on the base space U ( c V), and F(Φ2k_2)
<2k — 2. Further using ά!Ω = d!Ώ = 0, it follows from (3.18) that

2 Λ β f c~2 Λ
• " i \

a,β

+ β f c~x A •

As before let es be the inclusion of S(EΪ) into (£Ί)0. Then by (3.16),

41 = Σ tf (-Ψ.M)&f ( # log l*l2 Λ β*'2 Λ
a,β

And noting that ψaβ>t is constant on each fibre of Πι: (£7i)0 —* V, we see

that the fibre integral P^(4I) of 41 is zero;

P*(4D = 0 .

Thus the fibre integral of the first term in the right hand side of (3.7)
is equal to zero and we can prove similarly that other terms are so.

The above facts show Proposition 3.3, and so our main lemma is
proved as stated after this Proposition.

§4. Proof of Theorem 1.9

As in the statement of Theorem 1.9 let V and W be compact con-
nected complex manifolds of dimc V = n and dimc W = k. Moreover let
/ be an (IF)-holomorphic map with rank / ;> k — 1, and let us denote
by Σ the singular set of / (cf. Definition 1.1).

Then in terms of Proposition 1.8 we take an /-form ω on W (Defi-
nition 1.7) such that

i) ω is a (1,0)-type differential form on W
ii) zeros of ω is isolated, say, {qlf , qm) and f(Σ) Π zeros (ω) = φ.

iii) Σ Γi (zeros of f*ω) = {Pi, , Pe}, where the Pό are generic points
of Σ.

Let N be a hermitian norm on the holomorphic cotangent bundle T*V
of V and let Cn(Γ*7) be the w-th Chern form defined by N as in §2.
First it is well-known that

(4.1) χ(V) = ( - D n f Cn(T*V),
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where χ(V) is the Euler number of V.
On the other hand, as rank / ^> k — 1, it is easy to see, from the

above conditions i), ii) and iii), that /*(ω) becomes the smooth-section of
(T*7)o = {vd*V v Φ 0}, over V - {P19 , P<} U U?=i f~k(Qj)' Moreover
since q5 is the regular values of / by ii), (J = 1, , m), we can choose the
ε-balls UXvj) with center qά in W such that for each j

f' f'KUXqj)) -> U£qj) is a fibre bundle,

and

UXqd Π E7.(g,) - φ for i ^ j .

Take also the ε-ball V£pj) for each py such that

vxvi) n y£(p,) = φ for ί ^ y

and

F.ίPj) Π F-KUAqJ) = φ for 1 < / < £, 1 < i < m .

Here put

7β = 7 - ύ 7.<p,) - U ΓKUAqj)) .

One remarks that / is onto, because / is flat and both of V and W
are connected compact manifold. Then if we write ηn(T*V) the boundary
form of Γ*7 with the norm N (Definition 2.4), we have from (2.8) and
Stokes' formula,

Cn(T*V)
Vε

(4.2) = - Σ lim ί (f*ω)ηn(T*V)
j = l e-0 Jdf-HUt(qj))

+ Σ lim ί σ*ω)*7»(Γ*T0 .

We shall actually compute in two parts (A) and (B) each term in the
last right hand side of (4.2).

(A) Calculation of lim ί (/*ω)V(Γ*I0 .
«-»0 J Bf-HUs(qj))

For simplicity set q = qjf and take a sufficiently small ε0 such that
/ : f~KUeo(q)) -* Uso(q) is a fibre bundle. Let ε0 be fixed. Here we put
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Vt = f'\ϋH{q)) and Wt = U.M) ,

and so f\n: Vo -> PF0 is the fibre bundle. Recall that Γ ( / ) : f\T*W) — Γ * 7
is the bundle map defined by

T(f)(p, v) = f*v for (p, v) e f*(T*W) .

Then we clearly obtain the following exact sequence of holomorphic
vector bundles over Vo;

0 • fKT*W0) ^ l T*F0 > T*V0/T(f)(f*(.T*W0)) • 0 .

Put

Q(Vt, Wd = T Vt/T(f)(f\T*WJ) .

Since T*V0 has naturally the norm N, we can apply the above exact
sequence to Main lemma in §3, so that on (fKT*W0)\>

(4.3) T(f)*ηn{T*Vύ = ηu(JKT*W,))πfCn.h{Q(y,, W,)) + πf(ξ) + dη ,

where πι is the natural projection of (f*(T*W0)\ onto Vo. Let /*(ω) be
the cross-section of f*(T*W) defined by

f*(ω)(p) = (p, «/(„,) f or p e V .

Hence noting that T(/)/*(ω) = f*ω, we find from (4.3),

(fω)ηΛ(TVJ (Jω
+ «f(f) + d(fKω))*η .

Now put

I = lim f (f*ω)*ηn(T*V) .
ε-0 Jdf-HUe(q))

First we remark that for any ε < e0.

(4.5) f (f*ωrηn(T*V) = f c(q))

because of (J*ω)(J~KUXq))) c Γ*70 Then it follows from (4.4) and (4.5)
that

(4.6) = lim f (/l(
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First of all we shall show

(4.7) lim f (f\ω))*πfξ = 0 .
•-0 J df-HUε(q))

In fact as f~KU6(q)) is diffeomorphic to Uε(q) X f~\q) and f~\q) is

compact, we see

df-KUAq)) S dUXq) X /-ι(ff) (diffeo.) .

Here noting that f~Kq) is the compact manifold of real dimension 2(n — k)

(k > 1) and that ξ is the (2n — l)-form on Vo, we can prove (4.7) by

virtue of (/*(<*>))*-TΓ? = identity.

Next for the purpose of computations of

lim f <J*ω)*ηu{f*(T*Wd) Λ Cn_k(Q(V0, Wo)) ,

let ΛV be a hermitian norm on T*W and let f\Nw) be the induced

norm on p(T*W) by / and N F . We denote by ηk(f\T*W), f\Nw)) the

boundary form of f*(T*W) associated with the norm f*(Nw). Then the

naturality of boundary forms [6] shows that

(4.8) 7)k{f\T*W), P(NW)) = f*(Vk(T*W, Nw)) ,

where / : f*(T*W) -> Γ*PF is the map defined by

f(p, v) = v for (p, v) e f*(T*W) .

Furthermore let 2V* be any hermitian norm on f\T*W). Then we have

the following homotopy lemma of boundary forms.

LEMMA 4.1. With the above notations,

T*W), N ) - yk(f*(T*W), β(Nw))

= πf(ξk) + dVk , on (f(T*W)\ .

Proof. It is easy to see from (2.8) and the homotopy lemma of

Chern forms [1] that for some ξk e A2k~KV)9

(4.10) dηk(f*(T*W), N*) = dVk(f*(T*W), f*(Nw)) = π*(ξk) .

But since the fibre integral of any boundary form of a holomorphic

vector bundle is equal to —1, we can prove (4.9), combining (4.10) with

Lemma 3.2. Q.E.D.
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Applying here ηk(J*(!F*W)) to (4.9), we obtain from (4.9) and f°p(ω)

ί
= f*ω*ηk(T*W,Nw)

Let us put

I, = lim f (fω)*ηk(f(T*Wύ) A Cn_k(Q(VQ, Wo)) .

Then using dCn_k(Q(V09 Wo)) = 0, we have from (4.9)'

I, = lim f / * oω*Vk(T*W0, Nw) A Cn_ f c(F0, Wo)) ,
«-o Jdf-HUΛΦ)

so that from f~\U.(q)) = Ό.(q) X /-^g),

(4.11) I1 = limf (f C,_»(Q(F,,^))

Here we have the following

LEMMA 4.2. For any q'edU6(q), we get

(4.12) f Cn_k(Q(Vϋ, Wo)) = (-l)»-

where F is a general fibre of f: V —> W.

Proof. Let iβ, be the inclusion of f~\qf) into V. Then as / is fibre

map on rι(Uεo(q)) (ε < ε0) and Q(F0, TF0) = T*V0/T(f)(f*(T*WJ), it is

clear that 4/Q(70» ^o) is isomorphic to T*(f-ι(q')). Therefore we find

Cn-M-Q<y*> WQ) = Cn_k(T*(f-\q')) ,

where Λ represents the cohomology class. And also by [2] it follows that

Cn-k(c*q,Q(VQ, Wd) = c*>Cn_k(Q(V0, Wo)) ,

so that we have

(4.13) f Cn_k(Q(V0, Wo)) = (-l) w - f c χ(/-W)) .

On the other hand recall that Σ is the singular set of / . Then

fVv-Σ) :(V -Σ)->(W - f(Σ)) is the fibre bundle and f(Σ) is the analytic

set of W with dim c/(2') ^ k - 1. Thus (W7 - f(Σ)) being connected, it
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follows that f~Kqτ) is diffeomorphic to f~\qd for any qt e W — f(Σ)>
i = 1,2. Hence (4.12) is trivial from (4.13). Q.E.D.

Moreover we know in virtue of [1] that

(4.14) lim ί ω*ηk(T*WQ, Nw) = -Iβ(ω) ,
•-0 JdUeiq)

where lq(ω) is the degree of zeros of ω at q. From (4.11), (4.12) and (4.14)
it follows

Thus

Σ lim ί σ*ω)*9n(r*τo
j = l e-0 Jdf-HUt(qj))

here we used χ(W) = (-1)* ί Ck(T*W) = C—D*i£

(B) Calculation of lim f (/*ω)*
e-*0 J dUc(pj)

Let us put v — Va and /(p) = q. Remember that p is a generic point
in the singular set Σ of /. As rankp / — k — 1, we are able to choose
a holomorphic chart ({^}J.i, Z7β) at g with z%) = 0, 0' = 1, , k) such
that (dzίof)p9 . . . , and (dzk~1of)p are linearly independent, and so take
a holomorphic chart ({wj}%l9 Up) at p such that w' = zjOf (1 < j < k — 1)
and wj(p) = 0 (1 < j < ^). Suppose that /(ί/p) c ί7Q and that ω never
vanishes on i7g because of ωq Φ 0. Now let

(4.16) ω = Σ a^&J' on C7Q .

Then from the choice of holomorphic coordinates {2*}{Bl and {w '}".! it is
clear that on Up

(4.17) f*ω = Σ
ii

where /fc = zk of.

Here let

I, = lim f (f*ω)*Vn(T*V) .
e—0 J dUe(p)

https://doi.org/10.1017/S0027763000021784 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021784


7 4 HIDEO OMOTO

Then we know already that

(4.18) I2 = -I , (/*ω) .

To compute Ip(/*ω) let us first examine local properties of the singular

set Σ about p. From wj = zjof (1 < j < k — 1) and rank / >̂ fc — 1,

we observe

(4.19) ffp n Σ = ( fζ- = o,.. . , | £ 1 = o}.
ldwk dwn )

Set Σp = UPΠ Σ. Since p is generic, we can assume that Σp is a com-

plex manifold of dimension n. Therefore there exists an (n •— fc)-dimen-

sional complex submanif old of V such that Σp Π Σ$ = {p} (transversal at

p) and 3 ^ = S2k~\ called a complemental submanifold of Σp at p.

At first we see that if Up is a sufficiently small neighborhood of p,

(4.20) (αfe o /)(pθ ^ 0 for any p' e [7P .

Indeed from f*ω = 0 and (4.17) it follows that

| ^ ( P ) = o , « = 1, ,fc - 1) ,

(α* o f){p)^fL{P) = 0 (« = fc, . , n) .

However as ωq Φ 0, it is easy to see that

This means (4.20).

( d fk dfk\

——9 > — — ) be the holomorphic map of
dWk dWnJ

into C n '*+ 1, related with (4.17). Then we have by (4.19) and (4.20).

(4.21) zeros of v = Σp ,

and so

(4.21)7 zeros of
LEMMA 4.3. Lei v 6e as above and let μf(p) be the obstruction

number of f at the generic point p (Def. 13). Then we have

(4.22) Ip(*Up
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Proof. First we shall recall the definition of μf(p). Let df/dw be

the Jacobian matrix of / with respect to the above coorinates {w*}"^ and

{«*}?.!• Then

dw
dp
dw1

1,-1

9 ' ' * 9

dp
dw*-1

0

dP dP
dw«' ' dwn

And here

μ/(p) = f V*
where ^n,fc is the generator of the (2n — k) + 1-th cohomology group

H2<n-k)+1(V(n,k;C);Z) of the Stiefel manifold as in §1.

Now let Φ be the holomorphic map on Up defined by

Φ =

Then ΦUJL{P} is the map of Σj> — {p} into V(w, fc; C). Moreover we find,

using akofφ0 on Up, that —
o

we get

(4.23) μp(f) = f , Φ*ηn,,

But in terms of Lemma 3.7 in [6] we have

is homotopic to Φ\Σ±{p}. Therefore

These facts show (4.22). Q.E.D.

Next let u = (a of + (ako f)lll, . . , ^ 0 / + (α f c o/)M!_^ be the

map of Up into Ck~ι similar with v. It follows from (zeros of f*ώ) Π Up

= {p} and (4.21) that

(4.24) zeros of u\Σp = {p} .

In order to compare Ip(u\Σp) with the restricted index ϊp(ώ) of ω at p

(Definition 1.6) let ~ be the projection of f*(T*W)\s onto Q(Σ) =

Ker Γ(/) as denoted in § 1. Then by (4.16) it is trivial that
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(4.25) f%ω)\Σp = Σ (<**» / ) / W ) U , .

LEMMA 4.4. Notations being as above, it follows that

(4.26) fi&)\Jt = g (α, c / + (flt c / ) J ^ - ) / W ) | , p

αwd ί/ioί {/•(dz-OUJJlί *s α 6αse o/ Qk)Σ)\Σp.

Proof. Clearly {/*(d«ί)}?=1 is the base of β(T*W)\Up. Here let

θ = Σ bJKdz*) be any section of f*(T*W) on Up. Then

= I (», + + ».(^* + +

But since - ^ = 0 o n 2 p ( α = fc,...,ίi), Γ(/)(*) = 0 means that bj = -bk

• ̂ - on ^ p for = 1, . . . , k - 1. Thus we see that Σ ^-fW) - f\dzk)

is the base of KvcT(f)\Σp. Here the second statement in Lemma 4.4

is proved. Moreover as

/ίζfe*) = Σ i / i / ^ ^ ) on ^ p ,
.7=1 Ste;^

we can prove directly (4.26). Q.E.D.

From the above lemma we obtain the following

COROLLARY 4.5.

(4.27) Ip(ω) = Jp(wU,) .

Finally let us put

φ = (^? ^) .

Then it is trivial from (4.17) and (4.18) that

(4.28) Ip(f*ώ) - IP(Φ) .

Under the above preparations we are able to prove the following

PROPOSITION 4.6.

(4.29) /p(/*α>) = μf(p)Ip(ώ) .
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Proof, From (4.22), (4.27) and (4.28) it is enough to prove

(4.30) IP(v9u) = Ip(v\Σp) Ip(u\Σ±).

However as we can assume Up = Σp x Σj, we observe from (4.2iy and

(4.24) that

(v,u) is homotopic to (y\Σp, u\Σ±) .

And from elementary facts of Topology we have (4.30). Q.E.D.

The above proposition shows in terms of (4.18)

(4.31) lim ί (f*ω)*Vn(T*V) = -μf(p)Ip(ω) .

Now we shall complete the proof of Theorem 1.9. First of all it

holds from (4.2), (4.15) and (4.29) that

Cn(T*V) = (-irχ(F)χ(W) + ± μf(Pj)ϊPj(o>) ,

and so from (4.1) we can prove (1.4) in Theorem 1.9.

§ 5. Appendix

In this section we shall prove Proposition 1.8 in § 1. Before prov-

ing this fact we review definition in [5]. Let N be a smooth manifold

and TRN be the real tangent bundle of N.

DEFINITION 5.1. Let S = {Si}ieI be a partition of N, that is,

N = (Jίei si (Si Π Sj = φ if iΦ j). Then the partition S is called a

stratification of N when the following conditions are satisfied;

a) / is countable,

b) each Si which is called a strata is a regular submanifold of N,

c) if for any non-negative integer p we put

7(p) = {ίe/; dim Si < p} ,

then union \JjeI{p) Sj is closed in N.

One notices that by conditions a) and c) S is locally finite.

Let S = {Si}ieI be a stratification and let J c /. Put Sj = {Ŝ  i e J}.

Then we set
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Now let S be a stratification of N. Then for any xeN, TX(S) is
defined by

TXS = the tangent space TXS€ of a strata S< containing a?. With
this notation we state the following

DEFINITION 5.2. Let E be a C°°-vector bundle over 2V, and let ΓJJ2)

be the set of all smooth sections of E. Suppose that a stratification

S — {iS<}ί6i of 2? is given. Then a section ω e ΓJJS) is called transversal

to S if and only if

(5.1) ω*(TxN) + Tωix)S=Tω(x)E .

We denote by JJ(S) the set of all transversal cross-section of E.

Now let us return to the proof of Proposition 1.8. Let V and W

be compact complex manifolds of dimc V = n and dimc W = fc, and let

/ be an (JF)-holomorphic mapping of V into W with rank / >̂ fc — 1 as

in §1. When / is the linear map of f*(T*W) onto T*W defined by

f(x9v) = v for any (x,v)ef*(T*W), we observe that / is proper, be-

cause V is compact. Here let Σ be the singular set of / . Since Σ is

the analytic set in V of dimc Σ = k — 1 and / is of rank k — 1 on Σ,

the closed subset KerΓ(/)|Γ of f*(T*W) becomes the Λ -dimensional ana-

lytic set, where T(J): f\T*W) -> Γ*7 is defined as follows; for any

(2?, v) e /*(Γ*PΓ), Γ(/)(p, v) = Λ*tf. For simplicity set

(5.2) L(JP) = /(KerΓ(/)U).

Then as / is proper, we find from the proper mapping theorem ([6])

that L(Σ) is the analytic set of T*W such that

(5.3) dimcL(Σ) < k .

The next proposition is due to Whitny [8].

PROPOSITION 5.3. Let M be a complex manifold and Σf be an ana-

lytic set of M. Then M has a stratification S = {St}ieI such that M — Σ1

is a strata of S and St — Si c Ujeκp> Sj (P ^ d i m Λ Si) for e a c h ί 6 1 -

We call stratification in this proposition Σ'-stratification of N.

At first we get the following

LEMMA 5.4. All notations are as before. Let Σs be the singular

set of Σ and let L(ΣS) = /(Ker T(f)\Σs). Further let S(L(ΣS)) be a L(2>
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stratification of T*W. Then for any ω e jβ(S(L(Σ s))) we obtain

(5.4) ω~\L{Σs)) = φ .

Proof. Assume q eω~KL(Σ8)). Then it follows from (5.1) that

(5.5) ω*(T*W) + T*q)St = T*q)(T*W) ,

where St(sω(q)) is a strata of S(L(ΣS)).

However St is contained in L(ΣS) with dim^ L(ΣS) < 2(k — 1), and so

dim T*(fl) Si < 2(k — 1). This is contrary to (5.5), because W is of real

2fc-dimension. Q. E. D.

Secondly it follows the following

LEMMA 5.5. Let S(L(Σ)) = {Si}ieI be an L(Σ)-stratification of T*W

and let us denote by Sj(L(Σ)) the set of stratum St such that dimΛ St > j .

Then we find that for any ω e jft(S(L(Σ))),

(5.6) ω-\\S2k(L(Σ))\) is a finite point set.

(As dimRL(Σ) <2k and S is L(Σ)-stratίficatίon, \S2k(L(Σ))\ coincides with

UΣ).)

Proof. Take an arbitrary strata S€ of real dimension 2k. Then
ω~\Si) is discrete and without accumulating points. Indeed discreteness

is trivial, since ω is transversal to St. On the other hand suppose

{qa} c ω~ι(Si) converges to a point qQ. Then ω(qp) e Si and so ω(q0) e Si

-Si. And from the definition of L(i;)-stratification, ω(q0) e\S2k-\L(Σ))\.

But we can prove similarly as Lemma 5.4 that

ω-K\S2k-KL(Σ))\) = φ .

This show ω~\Si) has not accumlating points. Next recall S is locally

finite. Noticing W is compact, we see that {i ω~\Si) Φ φ) is finite.

Therefore Lemma 5.5 is proved. Q.E.D.

Now, f(Σ) being the analytic set of W with dim^ f(Σ) < 2k - 2,

the zero-section of T*(W)\fi2) is also analytic set. We write for f(Σ)

this section without confusion. Then with respect to /(^-stratification

S(f(Σ)) we can also prove that

(5.7) <*>\/{Σ) is non-zero for all ω e jfi(S(f(Σ))) .

On the other hand we know transversality theorem in [5] that
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D(Σ) = jt(S(f(Σ))) n ώ(S(L(Σs))) Π

is empty.

Here let us take ωeD(Σ). Then from the above results it follows that

(5.8) ω is non-zero on f(Σ) ,

(5.9) ω(f(Σs)) £ L(ΣS) ,

and

(5.10) ω~\L(Σ)) is finite, say {glf -- ,(?m}, note (β,e/(2)) .

Now Proposition 1.8 is trivial. Indeed let qt e ω~\L(Σ)). This means
that T(f)(f\ω)(p)) = 0 for any p e J Π /-'(β*). Since from (5.9), qt e f(Σs)9

we observe that Σ ΓΊ f~\qd is in the regular points set of Σ and finite,
because / has only isolated singularities. Moreover it is clear from (5.8)
that ω(qi) Φ 0 (i = 1, ,m). Here ω satisfy condition i) and ii) of /-
forms (cf. Definition 1.7). This completes the proof of Proposition 1.8.
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