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Abstract

We construct two bases for each cluster algebra coming from a triangulated surface
without punctures. We work in the context of a coefficient system coming from a full-
rank exchange matrix, such as principal coefficients.
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1. Introduction

Fomin and Zelevinsky introduced cluster algebras in [FZ02], in an attempt to create an
algebraic framework for Lusztig’s dual canonical bases and total positivity in semisimple
groups [Lus90, Lus93, Lus94]. In particular, writing down explicitly the elements of the dual
canonical basis is a very difficult problem; but Fomin and Zelevinsky conjectured that a large
subset of these elements can be understood via the machinery of cluster algebras. More precisely,
they conjectured that all monomials in the variables of any given cluster (the cluster monomials)
belong to (the classical limit as q→ 1 of) the dual canonical basis [FZ02]. For recent progress in
this direction, see [GLS11b, HL11, Lam11a, Lam11b].

Because of the conjectural connection between cluster algebras and dual canonical bases,
it is natural to ask whether one can construct a ‘good’ (vector space) basis B for each cluster
algebra A. In keeping with Fomin and Zelevinsky’s conjecture, such a basis should include the
cluster monomials. Additionally, since the dual canonical basis has striking positivity properties,
a good basis of a cluster algebra should also have analogous positivity properties. In particular,
if we define A+ to be the set of elements of A which expand positively with respect to every
cluster, then one should require that every element b ∈ B also belong to A+. In the case where
b is a cluster variable, this requirement is equivalent to the well-known positivity conjecture, one
of the main open questions about cluster algebras.

The construction of bases for cluster algebras is a problem that has attracted a lot of
attention recently. Caldero and Keller showed that for cluster algebras of finite type, the cluster
monomials form a basis [CK08]. For cluster algebras which are not of finite type, the
cluster monomials do not span the cluster algebra, but it follows from [CKLP12] (see also
[DWZ10, Pla11b]) that they are linearly independent. Sherman and Zelevinsky constructed bases
containing the cluster monomials for the cluster algebra of rank 2 affine types [SZ04, Zel07], and
Cerulli-Irelli did so for rank 3 affine types [Cer09]. Dupont has used cluster categories to construct
the so-called generic basis for the affine types [Dup08, Dup11]; see also [DXX09]. Geiss, Leclerc
and Schröer constructed the generic basis in a much more general setting [GLS11a, GLS12],
which includes, in particular, all acyclic cluster algebras. Plamondon [Pla11a, ch. 5] gives a
convenient reparameterization of the Geiss–Leclerc–Schröer basis.

There is an important class of cluster algebras associated to surfaces with marked
points [FG06, FG09, FST08, FT08, GSV05]. Such cluster algebras are of interest for several
reasons. First, they have a topological interpretation: they may be viewed as coordinate rings
of the corresponding decorated Teichmüller space [Pen87, Pen06]. Second, such cluster algebras
constitute most of the mutation-finite cluster algebras [FST12], that is, the cluster algebras
which have finitely many different exchange matrices. The (generalized) cluster category of
a cluster algebra from a surface has been defined whenever the surface has a non-empty
boundary [Ami09, ABCP10, BMRRT06, CL12, Lab09]. It has been described in geometric terms
in [CCS06] for the disk, in [Sch08] for the disk with one puncture, and in [BZ10] for arbitrary
surfaces without punctures.

Note that the aforementioned constructions do not yield bases in the case of cluster algebras
from surfaces, in general.
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The present paper was inspired by work of Fock and Goncharov [FG06] and Fomin, Shapiro
and Thurston [Thu08]. In [FG06], Fock and Goncharov introduced a canonical basis for the
cluster varieties related to SL2. In particular, their construction gives a basis for the algebra
of universally Laurent polynomials in the dual space, which coincides with the (coefficient-free)
upper cluster algebra associated to the surface. (Note that, in general, the upper cluster algebra
contains but is not equal to the cluster algebra.) Moreover, the elements of their bases have
positive Laurent expansions in all of the clusters that they consider [FG06]. In a lecture series in
2008 [Thu08], Thurston announced a construction of two bases associated to a cluster algebra
from a surface, based on joint work with Fomin and Shapiro, and inspired by [FG06]; note,
however, that this work was not completed.

Both of these constructions are parameterized by the same collections C◦ and C of curves
in a surface. Recall that an arc in a surface with marked points is (the isotopy class of)
a curve connecting two marked points which has no self-crossings. A closed loop is a non-
contractible closed curve which is disjoint from the boundary. A closed loop without self-
crossings is said to be essential. A multiset of k copies of the same essential loop is called a
k-bangle, and a closed loop obtained by following an essential loop k times, thus creating k − 1
self-crossings, is called a k-bracelet. Let C◦ be the collection of multisets of arcs and essential
loops which have no crossings, and let C be obtained from C◦ by replacing the maximal k-bangles
by the corresponding k-bracelets. In [FG06], the authors associated a Laurent polynomial to each
collection of curves by using (the upper right entry or trace of) an appropriate product of elements
of SL2. In [Thu08], the authors associated a cluster algebra element to a collection of curves by
using the (normalized) lambda length of that collection. These two notions coincide.

In our previous work [MSW11], we gave combinatorial formulas for the cluster variables in
the cluster algebra associated to any surface with marked points, building on earlier work
in [MS10, Sch08, ST09, Sch10]. The formula for the cluster variable associated to an arc is
a weighted sum over perfect matchings of a planar snake graph associated to the arc. (There
are similar formulas for other cluster variables.) Since these formulas are manifestly positive, the
positivity conjecture follows as a corollary.

In the present paper, we generalize our formulas from [MSW11] to associate a Laurent
polynomial to each collection of curves in C◦ and C in an unpunctured surface (S, M) (i.e.
all marked points lie on the boundary). Instead of using perfect matchings of a planar graph, the
Laurent polynomial associated to a closed curve is a weighted sum over good matchings in a band
graph on a Möbius strip or annulus. We work in the context of a cluster algebra A associated to
(S, M) whose coefficient system comes from a full-rank exchange matrix: for example, principal
coefficients. In this way we construct bases B◦ and B for A which are parameterized by the
collections C◦ and C. Our bases are manifestly positive, in the sense that both B◦ and B are
contained in A+. For surfaces with punctures, we still have a construction of sets B◦ and B, but
not all of the proofs can be adapted to that case.

While not obvious, it is possible to show via the results of [MW11] that the bases we consider
in this paper coincide with those considered in [Thu08], as well as (in the coefficient-free case)
with those in [FG06].

Our main result is the following theorem.

Theorem 1.1. Let A be a cluster algebra with principal coefficients from an unpunctured
surface which has at least two marked points. Then B◦ and B are both bases of A. Moreover,
each element of B◦ and B has a positive Laurent expansion with respect to any cluster of A.
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Corollary 1.2. Let A∗ be a cluster algebra from an unpunctured surface with at least two
marked points, whose coefficient system comes from a full-rank exchange matrix. Then there are
bases B◦ and B for A∗ whose elements have positive Laurent expansions with respect to every
cluster of A∗.

We are grateful to Goncharov (personal communication, October 2011) for pointing out that
by using the results in [FG06] together with Theorem 1.1, one may deduce Corollary 1.3(a).

Corollary 1.3. Let A be a coefficient-free cluster algebra from an unpunctured surface with
at least two marked points.

(a) The upper cluster algebra coincides with the cluster algebra.

(b) B◦ and B are both bases of A.

Besides the property that B◦ and B lie in A+, one might ask whether the structure constants
for these bases are positive. In other words, is it the case that every product of basis elements,
when expanded as a linear combination of basis elements, has all coefficients positive?

Conjecture 1.4 ([FG06, § 12] and [Thu08]). Both bases B◦ and B have positive structure
constants.

As a partial result in this direction, Cerulli-Irelli and Labardini [CL12] showed that for a
surface with non-empty boundary, the elements of A+ that lie in the span of the set of cluster
monomials have positive structure constants.

Finally, one might ask whether either of these bases is atomic. We say that B is an atomic
basis for A if a ∈ A+ if and only if when we write a=

∑
b∈B λbb, every coefficient λb is non-

negative. Sherman and Zelevinsky showed that the bases they constructed are atomic. They also
showed that if an atomic basis exists, it is necessarily unique [SZ04].

In the case of finite-type cluster algebras, Cerulli-Irelli [Cer11] showed that the basis of
cluster monomials is in fact atomic. Recently, Dupont and Thomas proved in [DT11] that the
basis constructed by Dupont in [Dup10] for the affine Ã types is an atomic basis. That basis
coincides with our basis B in the case where the surface is an annulus and all coefficients are set
to 1. Their proof uses the surface model, and we expect that it can be generalized to arbitrary
unpunctured surfaces.

Conjecture 1.5. The basis B is an atomic basis.

To prove Theorem 1.1 we need to show that B◦ and B are contained in A, that they
form a spanning set, and that they are linearly independent. The positivity property follows
by construction (elements are defined as sums over perfect matchings of certain graphs) together
with [FZ07, Theorem 3.7]. We show that both B◦ and B are spanning sets by using skein
relations with principal coefficients [MW11]. In order to show linear independence, we need
to extend the notion of g-vector, defined in [FZ07], to B◦ and B. Along the way, we prove that
the set of monomials in the Laurent expansions of elements of B◦ and B have the structure of a
distributive lattice. The following result, which may be interesting in its own right, then implies
linear independence of both B◦ and B.

Theorem 1.6. Let A be a cluster algebra with principal coefficients from an unpunctured
surface which has at least two marked points. Then the g-vector induces bijections B◦→ Zn
and B → Zn.
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The paper is organized as follows. After recalling some background on cluster algebras in § 2,
we define the bases B◦ and B in § 3. Sections 4–6 are devoted to the proof of our main result, in
the context of principal coefficients. Corollary 1.3 is proven at the end of § 4.2. In § 7, we explain
how to construct bases for cluster algebras from surfaces in which the coefficient system comes
from a full-rank exchange matrix. Finally, in Appendix A, we briefly sketch how to extend our
result to surfaces with punctures, and explain which part of the proof does not generalize easily.

2. Preliminaries and notation

In this section, we review some notions from the theory of cluster algebras.

2.1 Cluster algebras

We begin by reviewing the definition of a cluster algebra, first introduced by Fomin and
Zelevinsky in [FZ02]. Our definition follows the exposition in [FZ07]. Another good reference
for cluster algebras is [GSV10].

To define a cluster algebra A, we must first fix its ground ring. Let (P,⊕, ·) be a semifield,
i.e. an abelian multiplicative group endowed with a binary operation of (auxiliary) addition, ⊕,
which is commutative, associative and distributive with respect to the multiplication in P. The
group ring ZP will be used as a ground ring for A. One important choice for P is the tropical
semifield; in this case, we say that the corresponding cluster algebra is of geometric type. Let
Trop(u1, . . . , um) be an abelian group (written multiplicatively) freely generated by the uj . We
define ⊕ in Trop(u1, . . . , um) by∏

j

u
aj

j ⊕
∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j (2.1)

and call (Trop(u1, . . . , um),⊕, ·) a tropical semifield. Note that the group ring of
Trop(u1, . . . , um) is the ring of Laurent polynomials in the variables uj .

As an ambient field for A, we take a field F isomorphic to the field of rational functions in n
independent variables (here n is the rank of A) with coefficients in QP. Note that the definition
of F does not involve the auxiliary addition in P.

Definition 2.1. A labeled seed in F is a triple (x, y, B) where:

– x = (x1, . . . , xn) is an n-tuple from F forming a free generating set over QP;

– y = (y1, . . . , yn) is an n-tuple from P;

– B = (bij) is an n×n integer matrix which is skew-symmetrizable.

That is, x1, . . . , xn are algebraically independent over QP, and F = QP(x1, . . . , xn). We refer
to x as the (labeled) cluster of a labeled seed (x, y, B), to the tuple y as the coefficient tuple,
and to the matrix B as the exchange matrix.

We obtain (unlabeled) seeds from labeled seeds by identifying labeled seeds that differ from
each other via simultaneous permutations of the components in x and y and of the rows and
columns of B.

221

https://doi.org/10.1112/S0010437X12000450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000450


G. Musiker, R. Schiffler and L. Williams

We use the notation [x]+ = max(x, 0), [1, n] = {1, . . . , n}, and

sgn(x) =


−1 if x < 0,
0 if x= 0,
1 if x > 0.

Definition 2.2. Let (x, y, B) be a labeled seed in F , and let k ∈ [1, n]. The seed mutation µk in
direction k transforms (x, y, B) into the labeled seed µk(x, y, B) = (x′, y′, B′) defined as follows.

– The entries of B′ = (b′ij) are given by

b′ij =

{
−bij if i= k or j = k,
bij + sgn(bik)[bikbkj ]+ otherwise.

(2.2)

– The coefficient tuple y′ = (y′1, . . . , y
′
n) is given by

y′j =

{
y−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

(2.3)

– The cluster x′ = (x′1, . . . , x
′
n) is given by x′j = xj for j 6= k, whereas x′k ∈ F is determined

by the exchange relation

x′k =
yk
∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk
. (2.4)

We say that two exchange matrices B and B′ are mutation-equivalent if one can get from B
to B′ by a sequence of mutations.

Definition 2.3. Consider the n-regular tree Tn whose edges are labeled by the numbers
1, . . . , n, so that the n edges emanating from each vertex receive different labels. A cluster
pattern is an assignment of a labeled seed Σt = (xt, yt, Bt) to every vertex t ∈ Tn such that the

seeds assigned to the endpoints of any edge t k−−− t′ are obtained from each other by the seed

mutation in direction k. The components of Σt are written as

xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (btij). (2.5)

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.4. Given a cluster pattern, we let

X =
⋃
t∈Tn

xt = {xi,t | t ∈ Tn, 1 6 i6 n}, (2.6)

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called cluster
variables. The cluster algebra A associated with a given pattern is the ZP-subalgebra of the
ambient field F generated by all cluster variables: A= ZP[X ]. We write A=A(x, y, B), where
(x, y, B) is any seed in the underlying cluster pattern.

The remarkable Laurent phenomenon asserts the following.

Theorem 2.5 [FZ02, Theorem 3.1]. The cluster algebra A associated with a seed (x, y, B) is
contained in the Laurent polynomial ring ZP[x±1]; that is, every element of A is a Laurent
polynomial over ZP in the cluster variables from x = (x1, . . . , xn).
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Remark 2.6. In cluster algebras with ground ring Trop(u1, . . . , um) (the tropical semifield), it is
convenient to replace the matrix B by an (n+m)× n matrix B̃ = (bij) whose upper part is the
n× n matrix B and whose lower part is an m× n matrix that encodes the coefficient tuple via

yk =
m∏
i=1

u
b(n+i)k

i . (2.7)

Then the mutation of the coefficient tuple in (2.3) is determined by the mutation of the matrix
B̃ in (2.2) and the formula (2.7), and the exchange relation (2.4) becomes

x′k = x−1
k

(
n∏
i=1

x
[bik]+
i

m∏
i=1

u
[b(n+i)k]+
i +

n∏
i=1

x
[−bik]+
i

m∏
i=1

u
[−b(n+i)k]+
i

)
. (2.8)

2.2 Cluster algebras with principal coefficients
Fomin and Zelevinsky introduced in [FZ07] a special type of coefficients, called principal
coefficients.

Definition 2.7. We say that a cluster pattern t 7→ (xt, yt, Bt) on Tn (or the corresponding
cluster algebra A) has principal coefficients at a vertex t0 if P = Trop(y1, . . . , yn) and yt0 =
(y1, . . . , yn). In this case, we write A=A•(Bt0).

Remark 2.8. Definition 2.7 can be rephrased as follows: a cluster algebra A has principal
coefficients at a vertex t0 if A is of geometric type and is associated with the matrix B̃t0 of
order 2n× n whose upper part is Bt0 and whose complementary (i.e. bottom) part is the n× n
identity matrix (cf. [FZ02, Corollary 5.9]).

Definition 2.9. Let A be the cluster algebra with principal coefficients at t0, defined by the
initial seed Σt0 = (xt0 , yt0 , Bt0) with

xt0 = (x1, . . . , xn), yt0 = (y1, . . . , yn), Bt0 =B0 = (b0ij). (2.9)

By the Laurent phenomenon, we can express every cluster variable x`;t as a (unique) Laurent
polynomial in x1, . . . , xn, y1, . . . , yn; we denote this by

X`;t =XB0;t0
`;t . (2.10)

Let F`;t = FB
0;t0

`;t denote the Laurent polynomial obtained from X`;t by

F`;t(y1, . . . , yn) =X`;t(1, . . . , 1; y1, . . . , yn); (2.11)

then F`;t(y1, . . . , yn) turns out to be a polynomial [FZ07] and is called an F-polynomial.

Proposition 2.10 [FZ07, Corollary 6.2]. Consider any rank n cluster algebra defined by an
n× n exchange matrix B, and consider the g-vector grading given by deg(xi) = ei and deg(yj) =
−bj , where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn with 1 at position i and bj =

∑
i bijei is the jth

column of B. Then the Laurent expansion of any cluster variable with respect to the seed
(x, y, B) is homogeneous with respect to this grading.

Definition 2.11. The g-vector g(xγ) of a cluster variable xγ , with respect to the seed (x, y, B),
is the multidegree of the Laurent expansion of xγ with respect to (x, y, B), using the g-vector
grading of Proposition 2.10.

Remark 2.12. It follows from Proposition 2.10 that the monomial in the xi’s and yj ’s whose
exponent vector is the column b̃j of the extended 2n× n matrix B̃ has degree 0.
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Proposition 2.13. Let B̃ be an m× n extended exchange matrix with linearly independent
columns, and let A=A(B̃) be the associated cluster algebra, with initial seed ({x1, . . . , xn}, B̃)
and coefficient variables xn+1, . . . , xm. Let U be a set of elements in A(B̃) whose Laurent
expansions with respect to the initial seed all have the form

xg +
∑
h

λhxg+h,

where xa denotes xa1
1 . . . xam

m , λh is a scalar, and each h is a non-negative linear combination of

columns of B̃. Suppose, moreover, that the vectors g and g′ associated to two different elements of
U differ in at least one of the first n coordinates. Then the elements of U are linearly independent
over the ground ring of A.

The proof below comes from the arguments of [FZ07, Remark 7.11].

Proof. Because the columns of B̃ are linearly independent, we can define a partial order on Zm
by u6 v if and only if v can be obtained from u by adding a non-negative linear combination
of columns of B̃. Applying this partial order to Laurent monomials in {x1, . . . , xm}, it follows
that each element xg +

∑
h λhx

g+h of U has leading term xg. Moreover, all leading terms have
pairwise distinct exponent vectors, and even if we multiply each element of U by an arbitrary
monomial in the coefficient variables xn+1, . . . , xm, the leading terms will still have pairwise
distinct exponent vectors. Therefore any linear combination of elements of U which sums to 0
must necessarily have all coefficients equal to 0. 2

2.3 Cluster algebras arising from surfaces
We follow the work of Fock and Goncharov [FG06, FG09], Gekhtman, Shapiro and Vainshtein
[GSV05] and Fomin, Shapiro and Thurston [FST08], who associated a cluster algebra to any
bordered surface with marked points. In this subsection we will recall that construction in the
special case of surfaces without punctures.

Definition 2.14. Let S be a connected oriented 2-dimensional Riemann surface with non-empty
boundary, and let M be a non-empty finite subset of the boundary of S such that each boundary
component of S contains at least one point of M . The elements of M are called marked points.
The pair (S, M) is called a bordered surface with marked points.

For technical reasons, we require that (S, M) not be a disk with one, two or three marked
points.

Definition 2.15. An arc γ in (S, M) is a curve in S, considered up to isotopy, such that:

(a) the endpoints of γ are in M ;
(b) γ does not cross itself, except that its endpoints may coincide;
(c) except for the endpoints, γ is disjoint from the boundary of S; and
(d) γ does not cut out a monogon or a bigon.

Curves that connect two marked points and lie entirely on the boundary of S without passing
through a third marked point are boundary segments. Note that boundary segments are not arcs.

Definition 2.16 (Crossing numbers and compatibility of ordinary arcs). For any two arcs γ
and γ′ in S, let e(γ, γ′) be the minimal number of crossings of arcs α and α′, where α and
α′ range over all arcs isotopic to γ and γ′, respectively. We say that the arcs γ and γ′ are
compatible if e(γ, γ′) = 0.
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Figure 1. Exchange relation and shear coordinates.

Definition 2.17. A triangulation is a maximal collection of pairwise compatible arcs (together
with all boundary segments).

Definition 2.18. Triangulations are connected to each other by sequences of flips. Each flip
replaces a single arc γ in a triangulation T by a (unique) arc γ′ 6= γ that, together with the
remaining arcs in T , forms a new triangulation.

Definition 2.19. Choose any triangulation T of (S, M), and let τ1, τ2, . . . , τn be the n arcs
of T . For any triangle ∆ in T , we define a matrix B∆ = (b∆ij)16i6n,16j6n as follows:

– b∆ij = 1 and b∆ji =−1 if τi and τj are sides of ∆ with τj following τi in the clockwise order;

– b∆ij = 0 otherwise.

Then define the matrix BT = (bij)16i6n,16j6n by bij =
∑

∆ b∆ij , where the sum is taken over
all triangles in T .

Note that BT is skew-symmetric and each entry bij is either 0,±1 or ±2, since every arc τ is
in at most two triangles.

Theorem 2.20 ([FST08, Theorem 7.11] and [FT08, Theorem 5.1]). Fix a bordered surface
(S, M) and let A be the cluster algebra associated to the signed adjacency matrix of a
triangulation. Then the (unlabeled) seeds ΣT of A are in bijection with the triangulations T
of (S, M), and the cluster variables are in bijection with the arcs of (S, M) (so we can denote
each by xγ where γ is an arc). Moreover, each seed in A is uniquely determined by its cluster.
Furthermore, if a triangulation T ′ is obtained from another triangulation T by flipping an arc
γ ∈ T and obtaining γ′, then ΣT ′ is obtained from ΣT by the seed mutation replacing xγ by xγ′ .

The exchange relation corresponding to a flip in a triangulation is called a generalized Ptolemy
relation. It can be described as follows.

Proposition 2.21 [FT08]. Let α, β, γ and δ be arcs or boundary segments of (S, M) which
cut out a quadrilateral; we assume that the sides of the quadrilateral, listed in cyclic order, are
α, β, γ, δ. Let η and θ be the two diagonals of this quadrilateral; see the leftmost diagram in
Figure 1. Then

xηxθ = Y xαxγ + Y ′xβxδ (2.12)

for some coefficients Y and Y ′.

Proof. This follows from the interpretation of cluster variables as lambda lengths and the Ptolemy
relations for lambda lengths [FT08, Theorem 7.5 and Proposition 6.5]. 2
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Figure 2. Elementary lamination Lγ corresponding to γ.

2.3.1 Keeping track of coefficients using laminations. So far we have not addressed the topic
of coefficients for cluster algebras arising from bordered surfaces. It turns out that Thurston’s
theory of measured laminations [Thu88] gives a concrete way to think about coefficients, as
described in [FT08, §§ 11–12] (see also [FG07]).

Definition 2.22. A lamination on a bordered surface (S, M) is a finite collection of non-self-
intersecting and pairwise non-intersecting curves in S, modulo isotopy relative to M , subject to
the following restrictions. Each curve must be one of the following:

– a closed curve;
– a curve connecting two unmarked points on the boundary of S.

Also, we forbid curves with two endpoints on the boundary of S which are isotopic to a piece of
boundary containing zero or one marked point.

Definition 2.23. Let L be a lamination, and let T be a triangulation. For each arc γ ∈ T , the
corresponding shear coordinate of L with respect to T , denoted by bγ(T, L), is defined as a sum
of contributions from all intersections of curves in L with γ. Specifically, such an intersection
contributes +1 (respectively, −1) to bγ(T, L) if the corresponding segment of a curve in L cuts
through the quadrilateral surrounding γ as shown in the middle (respectively, rightmost) diagram
of Figure 1.

Definition 2.24. A multi-lamination is a finite family of laminations. For any multi-lamination
L = (Ln+1, . . . , Ln+m) and any triangulation T of (S, M), define the matrix B̃ = B̃T,L = (bij)
as follows. The top n× n part of B̃ is the signed adjacency matrix BT , with rows and columns
indexed by arcs γ ∈ T . The bottom m rows are formed by the shear coordinates of the laminations
Li with respect to T :

bn+i,γ = bγ(T, Ln+i) if 1 6 i6m.

By [FT08, Theorem 11.6], the matrices B̃T,L transform compatibly with mutation.

Definition 2.25. Let γ be an arc in (S, M). Denote by Lγ a lamination consisting of a single
curve defined as follows. The curve Lγ runs along γ within a small neighborhood of it. If γ has an
endpoint a on a (circular) component C of the boundary of S, then Lγ begins at a point a′ ∈ C
located near a in the counterclockwise direction, and proceeds along γ as shown in Figure 2.
If T is a triangulation, we let LT = (Lγ)γ∈T be the multi-lamination consisting of elementary
laminations associated with the arcs in T , and we call it the multi-lamination associated with T .

The following result comes from [FT08, Proposition 16.3].

Proposition 2.26. Let T be a triangulation with signed adjacency matrix BT . Let LT =
(Lγ)γ∈T be the multi-lamination associated with T . Then A(B̃T,LT

) is isomorphic to the cluster
algebra with principal coefficients with respect to the matrix BT ; that is, A•(BT )∼=A(B̃T,LT

).
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2.4 Skein relations

In this subsection we review some results from [MW11].

Definition 2.27. A generalized arc in (S, M) is a curve γ in S such that:

(a) the endpoints of γ are in M ;

(b) except for the endpoints, γ is disjoint from the boundary of S; and

(c) γ does not cut out a monogon or a bigon.

Note that we allow a generalized arc to cross itself a finite number of times. We consider
generalized arcs up to isotopy (of immersed arcs). In particular, an isotopy cannot remove a
contractible kink from a generalized arc.

Definition 2.28. A closed loop in (S, M) is a closed curve γ in S which is disjoint from
the boundary of S. We allow a closed loop to have a finite number of self-crossings. As in
Definition 2.27, we consider closed loops up to isotopy.

Definition 2.29. A closed loop in (S, M) is said to be essential if it is not contractible and
does not have self-crossings.

Definition 2.30 (Multicurve). We define a multicurve to be a finite multiset of generalized
arcs and closed loops such that there are only a finite number of pairwise crossings among
the collection. We say that a multicurve is simple if there are no pairwise crossings among the
collection and no self-crossings.

If a multicurve is not simple, then there are two ways to resolve a crossing to obtain a
multicurve that no longer contains this crossing and has no additional crossings. This process is
known as smoothing.

Definition 2.31 (Smoothing). Let γ, γ1 and γ2 be generalized arcs or closed loops such that
we have one of the following two cases:

(i) γ1 crosses γ2 at a point x;

(ii) γ has a self-crossing at a point x.

Then we let C be the multicurve {γ1, γ2} or {γ}, depending on which of the two cases we are
in. We define the smoothing of C at the point x to be the pair of multicurves C+ = {α1, α2}
(respectively, {α}) and C− = {β1, β2} (respectively, {β}).

Here, the multicurve C+ (respectively, C−) is the same as C except for the local change that
replaces the crossing × with the pair of segments ∪∩ (respectively, ⊃⊂).

See Figures 3 and 4 for the first case, and Figure 5 for the second case.
Since a multicurve may contain only a finite number of crossings, by repeatedly applying

smoothings we can associate to any multicurve a collection of simple multicurves. We call this
resulting multiset of multicurves the smooth resolution of the multicurve C.

Theorem 2.32 [MW11, Propositions 6.4, 6.5, 6.6]. Let C, C+ and C− be as in Definition 2.31.
Then we have the following identity in A•(BT ):

xC =±Y1xC+ ± Y2xC− ,
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Figure 3. Smoothing of two generalized arcs.

Figure 4. Smoothing of two curves where at least one is a loop.

Figure 5. Smoothing of a self-intersection.

where Y1 and Y2 are monomials in the variables yτi . The monomials Y1 and Y2 can be expressed
using the intersection numbers of the elementary laminations (associated to the triangulation T )
with the curves in C, C+ and C−.

2.5 Chebyshev polynomials

Chebyshev polynomials will play an important role in the proof of our main result. In this
subsection, we recall some basic facts.

Definition 2.33. Let Tk denote the kth normalized Chebyshev polynomial with coefficients
defined by

Tk

(
t+

Y

t

)
= tk +

Y k

tk
.

Proposition 2.34. The normalized Chebyshev polynomials Tk(x) defined above can also be
uniquely determined by the initial conditions T0(x) = 2, T1(x) = x and the recurrence relation

Tk(x) = xTk−1(x)− Y Tk−2(x).

If Y is set to be 1, then the Tk(x)’s can also be written as 2 Chebk(x/2), where Chebk(x) denotes
the usual Chebyshev polynomial of the first kind, which satisfies Chebk(cos x) = cos(kx).

Proof. It is easy to check that the unique one-parameter family of polynomials Tk(x) defined
by the property Tk(t+ Y/t) = tk + Y k/tk satisfies the initial conditions T0(x) = 2 and T1(x) = x.
To see that this family also satisfies the desired recurrence relation, we note that(

t+
Y

t

)(
tk−1 +

Y k−1

tk−1

)
= tk + Y tk−2 +

Y k−1

tk−2
+
Y k

tk
,
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Table 1. The normalized Chebyshev polynomials (with coefficients) Tk(x) for small k.

T0(x) = 2
T1(x) = x
T2(x) = x2 − 2Y
T3(x) = x3 − 3xY
T4(x) = x4 − 4x2Y + 2Y 2

T5(x) = x5 − 5x3Y + 5xY 2

T6(x) = x6 − 6x4Y + 9x2Y 2 − 2Y 3

and thus, letting x= t+ Y/t, we obtain

xTk−1(x) = Tk(x) + Y Tk−2(x).

Since the usual Chebyshev polynomials satisfy the initial conditions Cheb0(x) = 1, Cheb1(x) = x
and the recurrence relation

Chebk(x) = 2x Chebk−1(x)− Chebk−2(x),

the last remark follows as well. 2

We record here one more property of the normalized Chebyshev polynomials that we will
need later.

Proposition 2.35. For all k > 1, the monomial xk can be written as a positive linear
combination of the normalized Chebyshev polynomials Tk = Tk(x). In particular,

xk = Tk +
(
k

1

)
Y Tk−2 + · · ·+

(
k

(k − 1)/2

)
Y (k−2)/2T1 if k is odd (2.13)

and

xk = Tk +
(
k

1

)
Y Tk−2 + · · ·+

(
k

(k − 2)/2

)
Y (k−2)/2T2 +

(
k

k/2

)
Y k/2 if k is even. (2.14)

Proof. We prove both of these identities together by induction on k. The base cases for k = 1 or
2 are easy to verify. If k > 3 is odd, then by induction and equation (2.14) we obtain

xk = x(xk−1)

= x

[
Tk−1 +

(
k − 1

1

)
Y Tk−3 + · · ·+

(
k − 1

(k − 3)/2

)
Y (k−3)/2T2 +

(
k − 1

(k − 1)/2

)
Y (k−1)/2

]
.

The Chebyshev recurrence can be rewritten as xTk−1 = Tk + Y Tk−2. Thus xk equals[
Tk +

(
k − 1

1

)
Y Tk−2 +

(
k − 1

2

)
Y 2Tk−4 + · · ·+

(
k − 1

(k − 3)/2

)
Y (k−3)/2T3

]
+
(

k − 1
(k − 1)/2

)
Y (k−1)/2x

+ Y

[
Tk−2 +

(
k − 1

1

)
Y Tk−4 +

(
k − 1

2

)
Y 2Tk−6 + · · ·+

(
k − 1

(k − 3)/2

)
Y (k−3)/2T1

]
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= Tk +
(
k

1

)
Y Tk−2 +

(
k

2

)
Y 2Tk−4 + · · ·+

(
k

(k − 3)/2

)
Y (k−3)/2T3

+
(

k

(k − 1)/2

)
Y (k−1)/2T1,

where the last equality uses the fact that x= T1.

A similar technique proves the identity for the case of even k, where we need to use the facts
that T0 = 2 and 2

(
k−1

(k−2)/2

)
=
(
k
k/2

)
. Using these and (2.13), the monomial xk = x(xk−1) equals[

Tk +
(
k − 1

1

)
Y Tk−2 +

(
k − 1

2

)
Y 2Tk−4 + · · ·+

(
k − 1

(k − 4)/2

)
Y (k−4)/2T4

+
(

k − 1
(k − 2)/2

)
Y (k−2)/2T2

]
+ Y

[
Tk−2 +

(
k − 1

1

)
Y Tk−4

+
(
k − 1

2

)
Y 2Tk−6 + · · ·+

(
k − 1

(k − 4)/2

)
Y (k−4)/2T2 +

(
k − 1

(k − 2)/2

)
Y (k−2)/2T0

]
= Tk +

(
k

1

)
Y Tk−2 +

(
k

2

)
Y 2Tk−4 + · · ·+

(
k

(k − 2)/2

)
Y (k−2)/2T2 +

(
k

k/2

)
Y k/2. 2

3. Definition of the two bases B◦ and B

Throughout §§ 3–7 of this paper, we fix an unpunctured marked surface (S, M) and a
triangulation T , and consider the corresponding cluster algebra A=A•(BT ), with principal
coefficients with respect to T . Recall that the cluster variables of A are in bijection with the
arcs in (S, M). In this paper we will associate elements of A to any generalized arc (where self-
intersections are allowed) and to any closed loop. In particular, we will define two sets C◦(S, M)
and C(S, M) of collections of loops and arcs in (S, M), and will associate a cluster algebra element
to each element of C◦(S, M) and C(S, M).

3.1 Snake graphs and band graphs

Recall from [MSW11] that we have a positive combinatorial formula for the Laurent expansion
of any cluster variable in a cluster algebra arising from a surface. Each such cluster variable
corresponds to an arc in the surface, so our formula associates a cluster algebra element to every
arc. We will generalize this construction and associate cluster algebra elements to generalized
arcs as well as to closed loops (with or without self-crossings).

Let γ be an arc in (S, M) which is not in T . Choose an orientation on γ, let s ∈M be its
starting point, and let t ∈M be its endpoint. We denote by s= p0, p1, p2, . . . , pd+1 = t the points
of intersection of γ and T in order. Let τij be the arc of T containing pj , and let ∆j−1 and ∆j

be the two triangles in T on either side of τij . Note that each of these triangles has three distinct
sides but not necessarily three distinct vertices; see Figure 6.

Let Gj be the graph with four vertices and five edges, having the shape of a square with
a diagonal, such that there is a bijection between the edges of Gj and the five arcs in the two
triangles ∆j−1 and ∆j which preserves the signed adjacency of the arcs up to sign and is such
that the diagonal in Gj corresponds to the arc τij containing the crossing point pj . We call the
graph Gj a tile. Thus the tile Gj is given by the quadrilateral in the triangulation T whose
diagonal is τij .
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2
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4
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3
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1

5

Figure 6. On the left: a triangle with two vertices. On the right: the tile Gj where ij = 2.

Figure 7. Gluing tiles G̃j and G̃j+1 along the edge labeled τ[γj ].

Definition 3.1. Given a planar embedding G̃j of a tile Gj , we define the relative orientation
rel(G̃j , T ) of G̃j with respect to T to be ±1, based on whether its triangles agree or disagree in
orientation with those of T .

For example, in Figure 6, the tile Gj has relative orientation +1.
Using the notation above, the arcs τij and τij+1 form two edges of a triangle ∆j in T . Define

τ[γj ] to be the third arc in this triangle.
We now recursively glue together the tiles G1, . . . , Gd in order from 1 to d, so that for two

adjacent tiles we glue Gj+1 to G̃j along the edge labeled τ[γj ], choosing a planar embedding G̃j+1

for Gj+1 such that rel(G̃j+1, T ) 6= rel(G̃j , T ). See Figure 7.
After gluing together the d tiles, we obtain a graph (embedded in the plane), which we denote

by Gγ .

Definition 3.2. The snake graph Gγ associated to γ is obtained from Gγ by removing the
diagonal in each tile.

In Figure 8, we give an example of an arc γ and the corresponding snake graph Gγ . Since γ
intersects T five times, Gγ has five tiles.

Remark 3.3. Even if γ is a generalized arc, thus allowing self-crossings, we can still define Gγ in
the same way.

Now we associate a similar graph to closed loops. Let ζ be a closed loop in (S, M), which
may or may not have self-intersections, that is not contractible and has no contractible kinks.
Choose an orientation for ζ, and choose a triangle ∆ which is crossed by γ. Let p be a point in
the interior of ∆ which lies on γ, and let b and c be the two sides of the triangle crossed by γ
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Figure 8. On the left: an arc γ in a triangulated annulus. On the right: the corresponding snake
graph Gγ ; the tiles labeled 1 or 3 have positive relative orientation, while the tiles labeled 2 or
4 have negative relative orientation.
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Figure 9. On the left: triangle containing p along the closed loop ζ. On the right: the
corresponding band graph (with x∼ x′ and y ∼ y′), depending on whether γ crosses an odd
or even number of arcs; the + and − symbols indicate the relative orientation of each tile.

immediately before and following its travel through the point p. Let a be the third side of ∆. We
let γ̃ denote the arc from p back to itself that exactly follows the closed loop γ. See the leftmost
diagram of Figure 9.

We start by building the snake graph Gγ̃ as defined above. In the first tile of Gγ̃ , let x denote
the vertex at the corner of the edge labeled a and the edge labeled b, and let y denote the vertex at
the other end of the edge labeled a. Similarly, in the last tile of Gγ̃ , let x′ denote the vertex
at the corner of the edge labeled a and the edge labeled c, and let y′ denote the vertex at the
other end of the edge labeled a. See the right part of Figure 9.

Definition 3.4. The band graph G̃ζ associated to the loop ζ is the graph obtained from Gζ̃ by
identifying the edges labeled a in the first and last tiles so that the vertices x and x′ and the
vertices y and y′ are glued together. We refer to the two vertices obtained by identification as x
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and y, and to the edge obtained by identification as the cut edge. The resulting graph lies on an
annulus or a Möbius strip.

3.2 Laurent polynomials associated to generalized arcs and closed loops

Recall that if τ is a boundary segment, then xτ = 1,

Definition 3.5. If γ is a generalized arc or closed loop and τi1 , τi2 , . . . , τid is the sequence of
arcs in T which γ crosses, we define the crossing monomial of γ with respect to T to be

cross(T, γ) =
d∏
j=1

xτij .

Definition 3.6. A perfect matching of a graph G is a subset P of the edges of G such that each
vertex of G is incident to exactly one edge of P . If G is a snake graph or band graph, and if the
edges of a perfect matching P of G are labeled τj1 , . . . , τjr , then we define the weight x(P ) of P
to be xτj1 , . . . , xτjr

.

Definition 3.7. Let γ be a generalized arc. It is easy to see that the snake graph Gγ has
precisely two perfect matchings, which we call the minimal matching P− = P−(Gγ) and the
maximal matching P+ = P+(Gγ), that contain only boundary edges. To distinguish them, if
rel(G̃1, T ) = 1 (respectively, rel(G̃1, T ) =−1), we define e1 and e2 to be the two edges of Gγ
which lie in the counterclockwise (respectively, clockwise) direction from the diagonal of G̃1.
Then P− is defined as the unique matching which contains only boundary edges and does not
contain edges e1 or e2, while P+ is the other matching with only boundary edges.

In the example of Figure 8, the minimal matching P− contains the bottom edge of the first
tile labeled 4.

Definition 3.8. Let ζ be a closed loop. A perfect matching P of the band graph G̃ζ is called a
good matching if either x and y are matched to each other (i.e. P (x) = y and P (y) = x) or both
edges (x, P (x)) and (y, P (y)) lie on one side of the cut edge.

Remark 3.9. Let G̃ζ be a band graph obtained by identifying two edges of the snake graph Gζ̃ .

The good matchings of G̃ζ can be identified with a subset of the perfect matchings of Gζ̃ . Let P̃

be a good matching of G̃ζ . Thinking of P̃ as a subset of edges of Gζ̃ , by the definition of ‘good’
we can add to it either the edge (x, y) or the edge (x′, y′) to get a perfect matching P of Gζ̃ . In

this case, we say that the perfect matching P of Gζ̃ descends to a good matching P̃ of G̃ζ .

In particular, the minimal matching P− of Gζ̃ descends to a good matching of G̃ζ , which we will
also refer to as minimal. (To see this, just consider the cases of Gζ̃ having an odd or even number
of tiles, and observe that the minimal matching of Gζ̃ always uses one of the edges (x, y) and
(x′, y′).)

For an arbitrary perfect matching P of a snake graph Gγ , we let P− 	 P denote the symmetric
difference, defined as P− 	 P = (P− ∪ P )\(P− ∩ P ).

Lemma 3.10 [MS10, Theorem 5.1]. The set P− 	 P is the set of boundary edges of a (possibly
disconnected) subgraph GP of Gγ which is a union of cycles. These cycles enclose a set of tiles⋃
j∈J Gj , where J is a finite index set.
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We use this decomposition to define height monomials for perfect matchings. Note that
the exponents in the height monomials defined below coincide with the definition of height
functions given in [Pro02] for perfect matchings of bipartite graphs, based on earlier work
of [CL90, EKLP92, Thu90] for domino tilings.

Definition 3.11. With the notation of Lemma 3.10, we define the height monomial y(P ) of a
perfect matching P of a snake graph Gγ by

y(P ) =
∏
j∈J

yτij .

The height monomial y(P̃ ) of a good matching P̃ of a band graph G̃ζ is defined to be the height
monomial of the corresponding matching on the snake graph Gζ̃ .

For each generalized arc γ, we now define a Laurent polynomial xγ , as well as a polynomial
F Tγ obtained from xγ by specialization.

Definition 3.12. Let γ be a generalized arc, and let Gγ be its snake graph.

(i) If γ has a contractible kink, let γ denote the corresponding generalized arc with this kink
removed, and define xγ = (−1)xγ .

(ii) Otherwise, define

xγ =
1

cross(T, γ)

∑
P

x(P )y(P ),

where the sum is over all perfect matchings P of Gγ .

Define F Tγ to be the polynomial obtained from xγ by specializing all the xτi to 1.
If γ is a curve that cuts out a contractible monogon, then we define xγ = 0.

Theorem 3.13 [MSW11, Theorem 4.9]. If γ is an arc, then xγ is the Laurent expansion with
respect to the seed ΣT of the cluster variable in A corresponding to the arc γ, and F Tγ is its
F -polynomial.

For every closed loop ζ, we now define a Laurent polynomial xζ , as well as a polynomial F Tζ
obtained from xζ by specialization.

Definition 3.14. Let ζ be a closed loop.

(i) If ζ is a contractible loop, then let xζ =−2.

(ii) If ζ has a contractible kink, let ζ denote the corresponding closed loop with this kink
removed, and define xζ = (−1)xζ .

(iii) Otherwise, let

xζ =
1

cross(T, γ)

∑
P

x(P )y(P ),

where the sum is over all good matchings P of the band graph G̃ζ .

Define F Tζ to be the Laurent polynomial obtained from xζ by specializing all the xτi to 1.

Remark 3.15. Note that xγ depends on the triangulation T and the surface (S, M), and it lies
in (the fraction field of) A•(BT ). If we want to emphasize the dependence on T , we will use the
notation XT

γ instead of xγ ; similarly for XT
ζ and xζ .
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Figure 10. A bangle Bang3 ζ (left) and a bracelet Brac3 ζ (right).

3.3 Bangles and bracelets
Definition 3.16. Let ζ be an essential loop in (S, M). We define the bangle Bangk ζ to be the
union of k loops isotopic to ζ. (Note that Bangk ζ has no self-crossings.) We define the bracelet
Brack ζ to be the closed loop obtained by concatenating ζ exactly k times; see Figure 10. (Note
that Brack ζ will have k − 1 self-crossings.)

Note that Bang1 ζ = Brac1 ζ = ζ.

Definition 3.17. A collection C of arcs and essential loops is said to be C◦-compatible if no two
elements of C cross each other. We define C◦(S, M) to be the set of all C◦-compatible collections
in (S, M).

Definition 3.18. A collection C of arcs and bracelets is said to be C-compatible if:

– no two elements of C cross each other, except for the self-crossings of a bracelet; and

– given an essential loop ζ in (S, M), there is at most one k > 1 such that the kth bracelet
Brack ζ lies in C, and, moreover, there is at most one copy of this bracelet Brack ζ in C.

We define C(S, M) to be the set of all C-compatible collections in (S, M).

Note that a C◦-compatible collection may contain bangles Bangk ζ for k > 1, but it will
not contain bracelets Brack ζ except when k = 1. Also, a C-compatible collection may contain
bracelets but will never contain a bangle Bangk ζ except when k = 1.

Definition 3.19. Given an arc or a closed loop c, let xc denote the corresponding Laurent
polynomial defined in § 3.2. We define B◦ to be the set of all cluster algebra elements in
A=A•(BT ) corresponding to the set C◦(S, M); that is,

B◦ =
{ ∏
c∈C

xc

∣∣∣ C ∈ C◦(S, M)
}
.

Similarly, we define

B =
{ ∏
c∈C

xc

∣∣∣ C ∈ C(S, M)
}
.

Remark 3.20. Both B◦ and B contain the cluster monomials of A.

Remark 3.21. The notation C◦ is meant to remind the reader that this collection includes bangles.
We chose to use the unadorned notation C for the other collection of arcs and loops, because the
corresponding set B of cluster algebra elements is believed to have better positivity properties
than does the set B◦.
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4. Proof of the main result

The goal of this section is to prove that both sets B◦ and B are bases for the cluster algebra A.
More specifically, we will prove the following theorem.

Theorem 4.1. If the surface has no punctures and at least two marked points, then the sets
B◦ and B are bases of the cluster algebra A.

We subdivide the proof into the following three steps.

(i) B◦ and B are subsets of A.

(ii) B◦ and B are spanning sets for A.

(iii) B◦ and B are linearly independent.

4.1 B◦ and B are subsets of A
We start by describing the relation between bangles and bracelets, which involves the Chebyshev
polynomials.

If τ and ζ are arcs or closed loops and L is a lamination, we let e(τ, ζ) (respectively, e(τ, L))
denote the number of crossings between τ and ζ (respectively, τ and L).

Proposition 4.2. Let ζ be an essential loop, and let Yζ =
∏
τ∈T y

e(ζ,τ)
τ . Then we have

xBrack ζ = Tk(xζ),

where Tk denotes the kth normalized Chebyshev polynomial (with coefficients) defined in § 2.5.

Proof. We prove the statement by induction on k. Smoothing Brack+1 ζ at one point of self-
crossing produces the multicurves {ζ, Brack ζ} and {γ}, where γ is the curve Brack−1 with a
contractible kink. It follows from Theorem 2.32 that

xBrack+1 ζ =±xζxBrack ζ

n∏
i=1

y
(ci−ai)/2
i ± xBrack−1 ζ

n∏
i=1

y
(ci−bi)/2
i ,

where ci = e(Brack+1 ζ, Li), ai = e(Brack ζ, Li) + e(ζ, Li) and bi = e(Brack−1 ζ, Li). From the
definition of bracelets, it follows that ci = ai and that ci = bi + 2e(ζ, τi). Thus

xBrack+1 ζ =±xζxBrack ζ ± xBrack−1 ζYζ .

It remains to show that the first sign is + and the second is −.
Since k > 1, each of xζ , xBrack ζ and xBrack+1 ζ is a Laurent polynomial given by a band graph

formula. So, in particular, each is in Z[x±1
i , yi], has all signs positive, and has a unique term

without any coefficients yi, corresponding to the minimal matching. On the other hand, Yζ is a
monomial in the yi’s which is not equal to 1. If we set all the xi’s equal to 1 and all the yi’s
equal to 0, then we get 1 =±1± 0, which shows that the first sign must be +.

To see that the second sign is −, we use Definition 3.14 and the specialization xi = 1 and
yi = 1 for all i. Letting Good(G) denote the set of good matchings of G and using G̃mζ as a
shorthand for the band graph G̃Bracm ζ , our equation becomes∣∣Good(G̃(k+1)ζ)

∣∣= +
∣∣Good(G̃ζ)

∣∣ · ∣∣Good(G̃kζ)
∣∣± ∣∣Good(G̃(k−1)ζ)

∣∣.
Thus it suffices to show that∣∣Good(G̃(k+1)ζ)

∣∣< ∣∣Good(G̃ζ)
∣∣ · ∣∣Good(G̃kζ)

∣∣.
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For d> 2, we let •y′ •x′ denote the edge of the snake graph Gdζ or the band graph
G̃dζ succeeding the last tile of the subgraph Gζ . We will exhibit an injective map ψ :
Good(G̃(k+1)ζ)−→Good(G̃ζ)×Good(G̃kζ). In particular, given P̃ ∈Good(G̃(k+1)ζ), we define
ψ(P̃ ) = (Q̃1, Q̃2) as follows.

– Lift P̃ to P , a perfect matching of the snake graph G(k+1)ζ .

– Split P along the edge •y′ •x′ into perfect matchings P1 and P2 of the snake graphs
Gζ and Gkζ , respectively. Note that there are two cases here. If the edge •y′ •x′ is in
P , we copy it, and include it as a distinguished edge in both P1 and P2. Otherwise, either
P1 or P2 is missing one edge to be a perfect matching, and we adjoin the edge •y′ •x′
to that perfect matching.

– Swap. Consider the symmetric difference P1 	 P2, which, by Lemma 3.10, consists of a
union of cycles. Let C be the cycle which encloses the tile G1, if such a cycle exists, and
let C be empty otherwise. We then define the first segment of both P1 and P2 to be the
matching on the induced subgraph formed by the tiles enclosed by the cycle C. Swap
the first segments of P1 and P2 to obtain new perfect matchings of Gζ and Gkζ , which we
denote by Q1 and Q2.

– Descend Q1 and Q2 down to good matchings Q̃1 and Q̃2 of the band graphs G̃ζ and G̃kζ .

A straightforward analysis of nine possible cases (contingent on how the perfect matching P
looks locally around edges •x •y and •y′ •x′) shows that the map ψ is well-defined and
has a left-inverse. In particular, swapping the first segments of P1 and P2 turns the condition
that P̃ is a good matching of the band graph G̃(k+1)ζ into the condition that Q̃1 and Q̃2 are good
matchings of the band graphs G̃ζ and G̃kζ . 2

Remark 4.3. In the special case where the cluster algebra A has trivial coefficients, a similar
formula can be found in [FG00].

Remark 4.4. In the special case where the surface is an annulus, Chebyshev polynomials were
used in [Dup10, DT11] to construct an atomic basis for the cluster algebra.

Next, we show that the sets B◦ and B are subsets of the cluster algebra, using our assumption
that the number of marked points is at least two. We do not know whether the result is true for
surfaces with exactly one marked point.

Proposition 4.5. If the surface has at least two marked points, then the sets B◦ and B are
subsets of A.

Proof. First, recall that if γ is an arc, then xγ is a cluster variable by [MSW11]. Thus, if C is a
multicurve consisting of non-crossing arcs, then xC is a monomial of cluster variables, and hence
xC ∈ A.

Next, suppose that ζ is an essential loop. Suppose first that there exists one boundary
component which contains at least two marked points m1 and m2. Let γ be the arc obtained by
attaching the loop ζ to the point m1; more precisely, γ is the isotopy class of the curve γ1ζγ

−1
1 ,

where γ1 is a curve from m1 to the starting point of ζ; see Figure 11. Let γ′ be the unique arc that
crosses γ twice, connects the two immediate neighbors m−1 and m+

1 of m1 on the boundary, and
is homotopic to the part of the boundary component between m−1 and m+

1 . Note that m−1
and m+

1 coincide if this boundary component contains exactly two marked points. The multicurve
C = {γ, γ′} smoothes to the four simple multicurves shown in Figure 12, and it follows from
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m 1

m 1

m 1

Figure 11. Two arcs γ and γ′ associated to the essential loop ζ. The smoothing of the multicurve
{γ, γ′} is shown in Figure 12.

m +
1

m1

m – 
1

m – 
1

m 1

m +
1

m – 
1

m 1

m +
1

m – 
1

m1

m +
1

Figure 12. Smoothing of the multicurve {γ, γ′} of Figure 11.
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1

1

2

p2p1  2

2  

Figure 13. Two arcs γ and γ′ associated to the essential loop ζ. The smoothing of the multicurve
{γ, γ′} is shown in Figure 14.

Theorem 2.32 that

xγxγ′ = 0± y(α : C)xα ± y(β : C)xβ ± y(ζ : C)xζ
for some coefficients y(α : C), y(β : C) and y(γ : C). Solving for xζ , we get

xζ =
(
xγxγ′ ± y(α : C)xα ± y(β : C)xβ

)
/y(ζ : C),

which shows that xζ ∈ A.
Now suppose that each boundary component contains exactly one marked point. Then, by

our assumption, there exist at least two such boundary components D1 and D2. Let mi denote
the marked point on Di. Choose two distinct points p1 and p2 on the loop ζ, fix an orientation
of ζ, and denote by ζ1 the segment of ζ from p1 to p2 and by ζ2 the segment of ζ from p2 to p1.
Let γ1 be a curve from m1 to p1 and γ2 a curve from m2 to p2. Define γ to be the arc homotopic
to the concatenation γ1ζ1γ

−1
2 ; see Figure 13.

To define γ′, we start with the arc from m1 to m2 given by γ1ζ
−1
2 γ−1

2 and add to it a complete
lap around each of the boundary components D1 and D2 in the directions that create crossings
with γ. In Figure 13, γ′ corresponds to the concatenation δ1γ1ζ

−1
2 γ−1

2 δ2, where δi is a curve that
starts and ends at mi and goes around the boundary component Di exactly once.

Then the multicurve C = {γ, γ′} smoothes to the four simple multicurves shown in Figure 14,
and again it follows from Theorem 2.32 that

xγxγ′ =±y(ζ : C)xζ ± y(α : C)xα ± y(β : C)xβ ± y({σ, ρ} : C)xσxρ.

Again, solving for xζ shows that xζ ∈ A.
Thus, for every essential loop ζ the element xζ is in the cluster algebra. The element xBangk ζ

is a power of xζ , which shows that it also lies in the cluster algebra. This shows that B◦ ⊂A.
Now Proposition 4.2 implies that B ⊂A. 2

Corollary 4.6. If the surface has genus zero, then B◦ and B are subsets of A.
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Figure 14. Smoothing of the multicurve {γ, γ′} of Figure 13.

4.2 B◦ and B are spanning sets for A
Lemma 4.7. The sets B◦ and B are both spanning sets for the cluster algebra A.

Proof. We start by showing the result for B◦. Since the elements of the cluster algebra are
polynomials in the cluster variables, it suffices to show that any finite product of cluster variables
can be written as a linear combination of elements of B◦.

We will prove the more general statement that for any multicurve C, the element xC =∏
c∈C xc can be written as a linear combination of elements of B◦. If there are no crossings

between the elements of C, then xC ∈ B◦ and we are done. Suppose, therefore, that there are
exactly d crossings between the elements of C. Using Theorem 2.32, we can write

xC =±Y+xC+ ± Y−xC−
where Y+ and Y− are coefficient monomials while C+ and C− are multicurves, each having at
most d− 1 crossings between its elements. The statement for B◦ now follows by induction.

To show the statement for B, we use Propositions 2.35 and 4.2, which show that for each
bangle Bangk ζ, we can write xBangk ζ as a positive integer linear combination of elements of B.
Since B◦ is a spanning set, it follows that B is too. 2
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Remark 4.8. While B is expected to be an atomic basis, B◦ is definitely not atomic. In particular,
xBrack ζ is in A+ (it expands positively in terms of every cluster), but its expansion in the basis
B◦ uses the polynomial Tk(x), which has negative coefficients.

By comparing our construction of the basis B with that of Fock and Goncharov, we obtain
the following result.

Corollary 4.9. For a coefficient-free cluster algebra A from an unpunctured surface with at
least two marked points, the upper cluster algebra and the cluster algebra coincide. Moreover,
the sets B and B◦ are both bases of A.

Proof. It follows from [MW11, Theorem 4.11 and Proposition 4.12] that the set B coincides with
the basis of the upper cluster algebra constructed in [FG06]. Proposition 4.5 ensures that B is a
subset of the cluster algebra rather than simply the upper cluster algebra. Therefore B is a basis
for the cluster algebra and for the upper cluster algebra, and the two algebras coincide. 2

4.3 B◦ and B are linearly independent sets
It remains to show the linear independence of the sets B◦ and B. This is done in §§ 5 and 6.

5. Lattice structure of the matchings of snake and band graphs

In this section, we describe the structure of the set of perfect matchings of a snake graph and
the set of good matchings of a band graph. The main application of our analysis of matchings
is the proof of Theorem 5.1 below. In § 6, we will use this theorem to extend the definition of
g-vector to all elements of B and B◦.

Theorem 5.1. Any element z of B◦ or B contains a unique term xg not divisible by any
coefficient variable, and the exponent vector of each other term is obtained from g by adding
a non-negative linear combination of columns of B̃T . The same is true if we replace z by any
product of elements in B◦ or B.

Let G be a snake or band graph with tiles G1, . . . , Gn. Let P− denote the minimal matching
of G. Given an arbitrary matching P of G, its height function or height monomial is the monomial∏
Gi
wi where Gi ranges over all tiles enclosed by P ∪ P−. We define a twist of a matching P to

be a local move that affects precisely one tile T of G, replacing the two horizontal edges of T
with the two vertical edges, or vice versa.

The following theorem is a consequence of [Pro02, Theorem 2]. See Figure 15.

Theorem 5.2. Consider the set of all perfect matchings of a snake graph G with tiles
G1, . . . , Gn. Construct a graph L(G) whose vertices are labeled by these matchings and whose
edges connect two vertices if and only if the two matchings are related by a twist. This graph is
the Hasse diagram of a distributive lattice whose minimal element is P−. The lattice is graded
by the degree of each height monomial.

We now prove some more properties of L(G). We describe how to read off from G a poset
QG whose lattice of order ideals J(QG) is equal to L(G).

Given a snake graph G, we define a straight subgraph of G to be a subgraph H formed by
consecutive tiles which all lie in a row or in a column. We define a zigzag subgraph H of G to
be a subgraph formed by consecutive tiles such that no three consecutive tiles in H lie in a row
or in a column.
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P
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P

P

P

P

P

P

Figure 15. Lattice of perfect matchings of a snake graph.

Definition 5.3. Let G be a snake graph with tiles G1, . . . , Gn (labeled from southwest to
northeast). Group the tiles of G into overlapping connected subsets of tiles S1, . . . , Sk, where
each Si is either a maximal-by-inclusion straight or zigzag subgraph and the Si alternate
between straight and zigzag subgraphs. We associate to G (the Hasse diagram of) a poset
Q=QG as follows (see Figure 15). The elements of the poset are labeled P1, . . . , Pn, and
there is an edge in the Hasse diagram of Q between i and i+ 1. Suppose that Si consists
of tiles Gr, Gr+1, . . . , Gs. If Si is a zigzag subgraph, then the edges of the Hasse diagram
between r and r + 1, r + 1 and r + 2, up to s− 1 and s, are either all oriented northeast or
all oriented southeast. If Si is a straight subgraph, then the edges of the Hasse diagram between
i1, . . . , ir alternate between northeast and southeast orientations. If the tile G2 is to the right of
(respectively, above) the tile G1, then the edge from 1 and 2 is oriented northeast (respectively,
southeast).

Note that the snake graph in Figure 15 is made up of a straight subgraph S1 consisting of
tiles G1, . . . , G3 and a zigzag subgraph S2 consisting of tiles G2, . . . , G5.

Theorem 5.4. Let G be a snake graph with tiles G1, . . . , Gn. We assume that the tile G1 is
chosen to have positive relative orientation (see Definition 3.1). Then L(G) is the lattice of order
ideals J(QG) of the poset QG from Definition 5.3; the support of the height monomial of a
matching in L(G) consists precisely of the elements in the corresponding order ideal. Moreover,
the twist-parity condition is satisfied: if i is odd (respectively, even), a twist on tile Gi going up
in the poset replaces the horizontal edges in Gi with the vertical edges (respectively, the vertical
edges with the horizontal edges).

Proof. We use induction on the number of tiles. If G is composed of tiles G1, . . . , Gn, there are
two cases: either Gn is to the right of Gn−1, or it is directly above tile Gn−1. We consider the first
case here (the second case is similar, so we omit it). Let H1 be the subgraph of G consisting of
tiles G1, . . . , Gn−1. Note that each perfect matching of H1 can be extended uniquely to a perfect
matching of G by adding the rightmost vertical edge of Gn; we call such extended matchings
type 1 matchings of G. Now, consider perfect matchings of G which use the two horizontal edges
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of Gn; these we call type 2 matchings. Recall the decomposition of G as a union of subgraphs
S1, . . . , Sk from Definition 5.3. Suppose that Sk consists of tiles Gr, Gr+1, . . . , Gn. If Sk is a
zigzag subgraph, then type 2 perfect matchings will be forced to include every other edge of
the boundary of Gr+1 ∪ · · · ∪Gn and, indeed, will be in bijection with perfect matchings of the
subgraph H2 of G consisting of tiles G1, . . . , Gr−1. If Sk is a straight subgraph, then type 2
perfect matchings will be in bijection with perfect matchings of the subgraph H2 of G composed
of tiles G1, . . . , Gn−2.

In Figure 15, there are two type 2 perfect matchings, P1 and the minimal element in the
poset. These perfect matchings are in bijection with matchings of H2, which in this case consists
of just tile G1. The other perfect matchings are of type 1.

The set of type 1 matchings forms a sublattice L1 of L(G) (isomorphic to L(H1)), and the set
of type 2 matchings forms a sublattice L2 of L(G) (isomorphic to L(H2)). By induction, within
L1 and L2, the twist-parity condition is satisfied (note that within L1 and L2 there are no twists
involving tile Gn). The lattice L(G) is equal to the disjoint union of L1 and L2 together with some
edges connecting them, which correspond to twists on tile Gn. If n is odd (respectively, even),
then the minimal matching P− of G uses one or both of the horizontal (respectively, vertical)
edges of Gn. Therefore, when n is odd (respectively, even), if P is a matching of G which uses
both horizontal (respectively, vertical) edges of Gn, then performing a twist will increase the
height function. This proves the twist-parity condition.

To prove that L(G)∼= J(QG), we use the decomposition G= S1 ∪ · · · ∪ Sk. First, suppose
that Sk is a straight subgraph. If n is even, then the type 1 matchings do not contain wn in
their height monomial, and by induction they are in bijection with order ideals in QH1 , i.e. order
ideals of QG that do not use n. The type 2 matchings do contain wn and also wn−1 in their height
monomial, because Sk is straight and k is even. By induction, they are in bijection with order
ideals in QH2 , which in turn are in bijection with order ideals of QG that involve n and n− 1.
Together, this gives a decomposition of the order ideals of QG as a disjoint union of the type 1
and type 2 matchings, proving that L(G)∼= J(QG). When n is odd the argument is similar, but
this time it is the type 1 matchings whose height monomial contains wn.

Now suppose that Sk is a zigzag subgraph. Write Sk =Gr ∪Gr+1 ∪ · · · ∪Gn. If n is even, then
the type 1 matchings do not contain wn in their height monomial, and by induction they are in
bijection with order ideals in QH1 , which in turn are in bijection with order ideals of QG that do
not use n. The type 2 matchings must contain wr, wr+1, . . . , wn in their height monomials and,
by induction, are in bijection with order ideals in QH2 , which in turn are in bijection with order
ideals of QG that involve n (and hence n− 1, n− 2, . . . , r). Together, this gives a decomposition
of the order ideals of QG as a disjoint union of the type 1 and type 2 matchings, which proves
that L(G) is isomorphic to J(QG). When n is odd the argument is similar, but this time the
height monomials of the type 1 matchings contain wn, and the height monomials of the type 2
matchings do not contain any of wr, wr+1, . . . , wn. 2

Remark 5.5. If QT is the quiver of the triangulation T , then each generalized arc γ defines a
string module M(γ) over the corresponding Jacobian algebra; see [BZ10]. The string of M(γ) is
precisely the poset Q, and the lattice L(G) is the lattice of string submodules of M(γ).

We now consider the good matchings of a band graph G̃, where G̃ is obtained from a snake
graph G by identifying two edges. By Remark 3.9, we can identify the good matchings of G̃
with a subset of the perfect matchings of G, so, in particular, we can consider the subgraph
L(G̃) of L(G) which is obtained from L(G) by restricting to the good matchings. As we now
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Figure 16. Illustration of the proof of Theorem 5.7.

explain, L(G̃) has the structure of a distributive lattice, that is, we can identify it with the lattice
of order ideals of a certain poset.

Definition 5.6. Let G̃ be a band graph obtained from a snake graph G with tiles G1, . . . , Gn.
There are four different cases, based on the geometry of how x and y sit in the first and last
tiles of G̃; see Figure 9. Let Q=QG be the poset associated to G by Definition 5.3. We now let
Q̃= Q̃G be the poset obtained from the poset Q=QG by imposing one more relation: in Cases
1 and 2, we impose the relation 1> n; in Cases 3 and 4, we impose the relation 1< n. (It is
straightforward to verify that Q̃ is still a well-defined poset.)

We have the following analogue of Theorem 5.4 for band graphs.

Theorem 5.7. Let G̃ be a band graph obtained from the snake graph G with tiles G1, . . . , Gn.
We assume that tile G1 is chosen to have positive relative orientation. Then L(G̃) is the lattice
of order ideals J(Q̃G) of the poset Q̃G from Definition 5.6; the support of the height monomial
of a matching in L(G̃) consists precisely of the elements in the corresponding order ideal. Since
L(G̃) is a subgraph of L(G), the twist-parity condition is satisfied.

Proof. While there are four cases to consider, the proofs in all cases are essentially the same, so
we just give the proof in Case 1, where G and G̃ are as in the left diagram of Figure 16 (so, in
particular, G has an odd number of tiles). Then the minimal matching of G contains the edge
between x and y and does not use the edge between x′ and y′; see the middle picture in Figure 16.
Every perfect matching of G descends to a good matching of G̃, except for those which do not
use either the edge between x and y or the edge between x′ and y′; see the picture on the right
in Figure 16. Therefore the perfect matchings of G which do not descend to good matchings of
G̃ are precisely those whose height monomial contains w1 but not wn. Using the identification
of perfect matchings of G with order ideals of QG, we see that the height monomials of good
matchings of G̃ can be identified with the order ideals of QG which use the element n whenever
they use element 1. These are precisely the order ideals of Q̃G. 2

See Figure 17 for the lattice of good matchings of a band graph G̃ obtained from the snake
graph G from Figure 15 by identifying the vertices x with x′ and y with y′.

Remark 5.8. If QT is the quiver of the triangulation T , then each essential loop ζ defines a family
of band modules Mλ,k(ζ), λ ∈ P1 and k > 1, over the corresponding Jacobian algebra; see [BZ10].
The band is precisely the poset Q, and the lattice L(G) is the lattice of string submodules of
Mλ,1(ζ) together with Mλ,1(ζ).

The bangle Bangk(ζ) corresponds to the direct sum of k copies of Mλ,1(ζ). If the surface is
a disk or an annulus, then the basis B◦ corresponds to the generic basis in [Dup11, GLS11a].
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Figure 17. Lattice of good matchings of a band graph.

On the other hand, the bracelet Brack(ζ) does not have a module interpretation; it does not
correspond to the band module Mλ,k(ζ).

Finally, we turn to the proof of Theorem 5.1.

Proof. Let B̃ = B̃T be the extended exchange matrix. Note that if any two cluster algebra
elements z1 and z2 satisfy the conditions of Theorem 5.1, then so does z1z2. Therefore, it suffices
to prove Theorem 5.1 for cluster variables and the cluster algebra elements associated to essential
loops and bracelets. Theorem 5.1 for cluster variables follows from Proposition 2.10 and the fact
that the F -polynomials of cluster variables from surfaces have constant term 1 (see [MSW11,
§ 13.1]).

By Definition 3.14, each cluster algebra element associated to a closed loop is a generating
function for the good matchings of a band graph. By Theorem 5.7, there is a sequence of twists
from the minimal matching P− to any other good matching P of a band graph, where every
twist is a cover relation going up in the poset. Moreover, the twist-parity condition holds: along
this path, each twist on a tile of positive (respectively, negative) relative orientation will replace
horizontal edges by vertical ones (respectively, vertical edges by horizontal ones). Finally, suppose
that P2 is a good matching obtained from P1 by such a twist on tile Gi. Then it follows from
our construction of band graphs that the exponent vector of x(P2)y(P2) is equal to the exponent
vector of x(P1)y(P1) plus the ith column of B̃.

Note that similar arguments, together with Theorem 5.4, give a new proof of Theorem 5.1
for cluster variables associated to arcs. 2

6. The g-vector map and linear independence of B◦ and B

By Theorem 5.1 and Remark 2.12, each element of B and B0 is homogeneous with respect to
the g-vector grading. The same is true for any product of elements from B and B0. This allows
us to extend the definition of g-vector to all elements of B and B0 (and to all products of such
elements).
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Definition 6.1. The g-vector of any element xC of B or B0, with respect to the seed T , is the
multidegree of xC , using the g-vector grading. Additionally, for every collection xj , j ∈ J , of
elements of B (or B0), we define g(

∏
j xj) =

∑
j g(xj).

In Theorem 5.1, we have shown that every element of B◦ and B has a unique leading term.
For arcs and essential loops, this leading term is given by the minimal matching P− of the
corresponding snake graph. Therefore, we can compute its g-vector as follows.

Proposition 6.2. Let γ be an arc or an essential loop. Then xγ has a unique Laurent monomial
x(P−)/cross(T, γ) which is not divisible by any coefficient variable yτi . Moreover,

g(xγ) = deg
(

x(P−)
cross(T, γ)

)
,

where P− is the minimal matching of the snake or band graph associated to γ and T , and
cross(T, γ) is the corresponding crossing monomial.

Lemma 6.3. Let c1 and c2 be arcs or essential loops, and consider the skein relation in A
which writes xc1xc2 =

∑
i YiMi, where the Mi’s are elements of B◦ and the Yi’s are monomials

in coefficient variables yτj . Then there is a unique j such that Yj = 1. As a consequence, for
each i 6= j, the exponent vector of Mi is obtained from the exponent vector of Mj by adding a

non-negative linear combination of columns of B̃T . We call the element Mj the leading term in
the skein relation xc1xc2 =

∑
i YiMi.

Proof. The key to the proof is the observation that every skein relation which expresses a product
of crossing arcs or loops in terms of arcs and loops that do not cross has a unique term on the
right-hand-side with no coefficient variables. Once we have proved this observation, the existence
and uniqueness of j follow. The relationship between g(Mi) and g(Mj) is then a consequence
of the fact that elements of B◦ are homogeneous with respect to the g-vector grading (see
Theorem 5.1), which implies that every term in the equation xc1xc2 =

∑
i YiMi must have the

same g-vector.
It remains to verify the observation above. Theorem 2.32 implies that the skein relations have

the form
H1 =±Y2H2 ± Y3H3,

where Y2 and Y3 are monomials in the coefficient variables and each Hi represents the product
of one or two cluster algebra elements, with those elements given by our snake and band graph
formulas. In particular, each Hi is in Z[x±1

i , yi], has all coefficients positive, and has a unique
term that is not divisible by any of the yi.

It follows from [Thu, Lemma 7] and Theorem 2.32 that at least one of Y2 and Y3 is equal to 1.
For the sake of contradiction, suppose that both of them are equal to 1. In that case, we have

H1 =±H2 ±H3.

It is impossible to have two negative signs on the right-hand side, but we may have one negative
sign. So either H1 =H2 +H3 or H1 +H2 =H3. The two cases are equivalent after permuting
indices, so let us suppose without loss of generality that H1 +H2 =H3. Then, if we set all the
cluster variables equal to 1 and all the coefficient variables equal to 0, we get 1 = 1 + 1, which is
a contradiction. 2

Proposition 6.4. Let γ be an essential loop in (S, M). Then Brack(γ) and Bangk(γ) have the
same g-vector.
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Figure 18. The arc τ i.

Proof. On one hand, we have

g(Bangk γ) = g(xkγ) = kg(xγ).

On the other hand, g(Brack(γ))=g(Tk(xγ)) by Proposition 4.2, and the result follows from
Proposition 2.35. 2

Let ei denote the element of Zn with a 1 in the ith place and zeros elsewhere. Let (τ1, . . . , τn)
denote the elements of the initial triangulation T . By the definition of g-vectors, g(xτi) = ei for
all i. We now construct an element of A whose g-vector is −ei, for each 1 6 i6 n.

Proposition 6.5. Let i be an integer between 1 and n. Then there exists an arc τ i of (S, M)
such that g(xτ i) =−ei. The arc τ i is constructed as follows. Suppose that τi is an arc between
two marked points x and y, and let d1 and d2 denote the boundary segments such that d1 is
incident to x and is in the clockwise direction from τi, while d2 is incident to y and is in the
clockwise direction from τi. Let x′ and y′ be the other endpoints of d1 and d2 besides x and y.
Let τ i be the arc of (S, M) between points x′ and y′, which is homotopic to the concatenation
of d2, τi and d1. See Figure 18.

Proof. Let r and s be the arcs in (S, M) from x to y′ and from x′ to y, respectively, obtained by
resolving the crossing between τ i and τi. Then we have the exchange relation xτixτ i = Y xrxs + 1,
where Y is a monomial in the yτj . Note that the term 1 comes from the two boundary segments
obtained by resolving the crossing between τ i and τi in the other direction. Since cluster variables
are homogeneous elements with respect to the g-vector grading, it follows that g(xτixτ i) = 0. It
then follows that g(xτ i) =−g(xτi) =−ei, as desired. 2

Remark 6.6. In the corresponding cluster category, the arc τ i corresponds to the Auslander–
Reiten translate of the arc τi; see [BZ10].

6.1 Fans
Let T be a triangulation and let γ be an arc or a closed loop. Let ∆ be a triangle in T with sides
β1, β2 and τ that is crossed by γ in the following way: γ crosses β1 at the point p1 and crosses
β2 at the point p2, and the segment of γ from p1 to p2 lies entirely in ∆; see the left diagram in
Figure 19. Then there exist a unique vertex v of the triangle ∆ and a unique contractible closed
curve ε, given as the homotopy class of a curve starting at the point v, then following β1 until
the point p1, then following γ until the point p2, and then following β2 until v. We will use the
following notation to describe this definition:

ε= v
β1 p1

γ
p2

β2
v.

Definition 6.7. A (T, γ)-fan with vertex v is a collection of arcs β0, β1, . . . , βk, where βi ∈ T
and k > 0, having the following properties (see the diagram on the right in Figure 19).
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p p

Figure 19. Left diagram: construction of (T, γ)-fans. Right diagram: the fan τ1, τ2, τ3, τ4, τ2

cannot be extended to the right, because the configuration τ1, τ2, τ3, τ4, τ2, τ1 does not satisfy
condition (iii) of Definition 6.7.

(i) γ crosses β0, β1, . . . , βk in order at the points p0, p1, . . . , pk, such that pi is a crossing
point of γ and βi and the segment of γ from p0 to pk does not have any other crossing points
with T .

(ii) Each βi is incident to v.

(iii) For each i < k, let εi be the unique contractible closed curve given by

v
βi pi

γ
pi+1

βi+1
v ;

then, for each i < k − 1, the concatenation of the curves εiεi+1 is homotopic to

v
βi pi

γ
pi+1

γ
pi+2

βi+2
v.

Property (iii) in the above definition is equivalent to the condition that

v
βi pi

γ
pi+2

βi+2
v

is contractible.

Definition 6.8. A (T, γ)-fan β0, β1, . . . , βk is said to be maximal if there is no arc α ∈ T such
that β0, β1, . . . , βk, α or α, β0, β1, . . . , βk is a (T, γ)-fan.

Every (T, γ)-fan β0, β1, . . . , βk defines a triangle with simply connected interior whose
vertices are v, p0, pk and whose boundary is the contractible curve

v
β0 p0

γ
pk

βk
v.

The orientation of the surface S induces an orientation on this triangle, and we say that β0 is
the initial arc and βk is the terminal arc of the fan, if going around the boundary of the triangle

along the curve v
β0 p0

γ
pk

βk
v is in the clockwise direction. In the fan τ1, τ2, τ3, τ2

of the example given in the right-hand diagram of Figure 19, the initial arc is τ2 and the terminal
arc is τ1.

6.2 Multicurves and leading terms
Recall from § 4.2 that given any multicurve {γ1, . . . , γt}, we can always apply a series of
smoothings to replace it with a union of simple multicurves, called the smooth resolution of
{γ1, . . . , γt}. In the cluster algebra, taking the resolution of the multicurve {γ1, γ2, . . . , γt}
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corresponds to applying skein relations to the product xγ1xγ2 · · · xγt until the result is a
linear combination of elements of B◦. Also recall that, by Lemma 6.3, if we write the product
xγ1xγ2 · · · xγt as a linear combination of elements of B◦, then there is a unique term with trivial
coefficient, say xα1xα2 · · · xαs , which is called the leading term. We say that the multicurve
{α1, α2, . . . , αs} is equivalent to the leading term of the resolution of {γ1, γ2, . . . , γt}. Note that
any boundary segment b which appears during the process is not included in the multicurves,
since the corresponding element xb in the cluster algebra is equal to 1.

6.3 An inverse for the g-vector map

In this subsection, we use the (T, γ)-fans to prove that the g-vector map is a bijection between
B◦ and Zn. We will define a map f : Zn→B◦ and show that it is the inverse of the g-vector map.
Recall that for an arc τi, we denote by τ i the unique arc whose g-vector is −ei.

Definition 6.9. Let v = (v1, . . . , vn) ∈ Zn, and write it uniquely as v =
∑

i riei +
∑

j sj(−ej),
where i ranges over all coordinates of v with vi > 0 and j ranges over all coordinates of v with
vj < 0. So ri = vi > 0 and sj =−vj > 0. Then use the skein relations to write

∏
i(xτi)

ri
∏
j(xτ i)

si

as a linear combination of elements in B◦. Define f(v) to be the leading monomial in this sum,
as defined by Lemma 6.3.

Lemma 6.10. The composition g ◦ f is the identity map from Zn to itself, and so g is surjective
and f is injective.

Proof. For v∈Zn, we have g(f(v))=g(
∏
i(xτi)

ri
∏
j(xτ i)

si); thus, by Definition 6.1, g(f(v))=v. 2

Lemma 6.11. Let γ be an arc. Choose an orientation of γ, and let s be its starting point and
t its ending point. Denote by δs the arc that is clockwise from s in the first triangle of T that
γ meets, and denote by δt the arc that is clockwise from t in the last triangle that γ meets. Let
F1, . . . , F` be the maximal (T, γ)-fans ordered by the orientation of γ, and let σi be the initial
arc of Fi and τi the terminal arc of Fi.

(i) If γ crosses the initial arc of F1 first, then γ is equivalent to the leading term in the
resolution of the multicurve

{δs, δt, σi, τi, σ` | i is an odd integer with 1 6 i < `}.

(ii) If γ crosses the terminal arc of F1 first, then γ is equivalent to the leading term in the
resolution of the multicurve

{δs, δt, σi, τi, σ` | i is an even integer with 2 6 i < `}.

Proof. We may assume without loss of generality that γ crosses the initial arc of F1 first. Note
first that σi = σi+1 for all even i < ` and that τi = τi+1 for all odd i < `. We proceed by induction
on `. Suppose first that `= 1. Then {δs, δt, σ1} is the multicurve shown on the left of Figure 20,
where boundary segments are labeled b.

The leading term of the resolution of this multicurve is shown on the right of Figure 20, and
we see that it is equivalent to γ.

Now suppose that ` > 1. The smoothing at the first crossing point p1 of γ and σ1 has the
leading term {δs, γ′}, where γ′ is the arc starting at the vertex s′ of the first fan F1, following
σ1 up to the point p1 and then following γ until the endpoint t; see Figure 21. Note that γ′ is
avoiding all the crossings with the fan F1. Thus the maximal (T, γ′)-fans F ′2, F

′
3, . . . , F

′
` are given
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t
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Figure 20. Proof of Lemma 6.11 for `= 1.

F

s

s s F

F

Figure 21. Proof of Lemma 6.11 for ` > 1.

by F ′i = Fi, for i > 2, and F ′2 is obtained from F2 by removing the terminal arc τ2. By induction,
we know that γ′ is equivalent to the leading term of the resolution of the multicurve

{τ1 = δs′ , δt, σi, τi, σ` | i is an odd integer with 3 6 i < `}.

On the other hand, the leading term of the resolution of {δs, σ1, γ
′} is equivalent to γ, and the

result follows. 2

Lemma 6.12. Let γ be a closed loop. Let F1, . . . , F` be the maximal (T, γ)-fans ordered by
the orientation of γ, and let σi be the initial arc of Fi and τi the terminal arc of Fi. Then γ is
equivalent to the leading term in the resolution of the multicurve

{σi, τi | i is an odd integer with 1 6 i6 `− 1},

which is the same as

{σi, τi | i is an even integer with 2 6 i6 `}.

Proof. First, note that since γ is a closed loop, the number of maximal fans whose vertex lies in
the interior of γ must be equal to the number of maximal fans whose vertex lies in the exterior of
γ; thus ` is even. Choose a starting point p and an orientation for γ such that the first arc that
γ crosses is the terminal arc τ1 of the fan F1 in the point x, and then γ crosses the fan F1. Note
that τ` = τ1, since γ is a closed loop. Upon smoothing the multicurve {τ`, γ}, we get a leading
term γ′ that is an arc starting at a point s, following τ` up to the point x, then following γ one
time around up to the point x again, and then following τ` until its endpoint, which we label t.

Lemma 6.11 implies that γ′ is equivalent to the leading term of the resolution of the multicurve

{δs, δt, σi, τi, σ` | i is an even integer with 2 6 i < `}.

Note that δs = δt = τ`. On the other hand, γ is equivalent to the leading term of the resolution
of the multicurve {γ′, (−τ`)}, and the result follows since the leading term of {(−τ`), τ`} is
equivalent to a union of boundary segments. 2

Theorem 6.13. The g-vector maps g : B◦→ Zn and g : B → Zn are both bijections.
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Proof. By Proposition 6.4, it suffices to show that g : B◦→ Zn is a bijection. Lemmas 6.11
and 6.12 imply that each arc and each closed loop lies in the image of f , which allows us to
conclude that f is surjective. We have shown in Lemma 6.10 that g ◦ f is the identity on Zn,
which shows that f is a bijection and g = f−1. 2

Corollary 6.14. The sets B◦ and B are both linearly independent.

Proof. Clearly, the extended 2n× n exchange matrix B̃T associated to T , whose bottom n× n
submatrix consists of the identity matrix, has linearly independent columns. Let x1, . . . , xn
denote the cluster variables xτ1 , . . . , xτn , and let xn+1, . . . , x2n denote the coefficient variables
yτ1 , . . . , yτn .

Proposition 6.2 implies that if γ is any arc, essential loop or bracelet, then xγ has a unique
term xM which is a Laurent monomial in x1, . . . , xn and which is not divisible by any coefficient
variable yτi . Proposition 2.10 and Theorem 5.1 imply that the exponent vector of every other
Laurent monomial in the expansion of xγ can be obtained from the exponent vector of xM by
adding a non-negative linear combination of columns of B̃T . This means that xM is the leading
term of each Laurent expansion. Finally, Theorem 6.13 implies that the exponent vectors of
the leading terms of all elements of B◦ are pairwise distinct. Proposition 2.13 now implies that
elements of B◦ are linearly independent. The same proof works for B. 2

For completeness, we include the following result on the computation of g-vectors.

Corollary 6.15. (i) The g-vector of an arc is equal to eδs + eδt − eσ`
+
∑

(eτi − eσi), where σi
and τi are, respectively, the initial and terminal arcs of the ith fan, and the sum is taken over all
maximal T -fans Fi of the arc, with odd (respectively, even) index i if the arc crosses an initial
(respectively, terminal) arc first.

(ii) The g-vector of a closed loop is equal to
∑

(eτi − eσi), where the sum is taken over all
odd maximal T -fans of the loop, and σi and τi are, respectively, the initial and terminal arcs of
the ith fan.

Proof. This follows from Theorem 6.13 and Lemmas 6.11 and 6.12. 2

7. Coefficient systems coming from a full-rank exchange matrix

In this section we will prove Corollary 1.2, which extends the results of this paper to a cluster
algebra from a surface with a coefficient system coming from a full-rank exchange matrix.

Let (S, M) be a surface without punctures and having at least two marked points, and
let T = (τ1, . . . , τn) be a triangulation of (S, M). Let B be a full-rank m× n exchange matrix
whose top n× n part BT comes from the triangulation T . Let A∗ =A(B)⊂Q(x1, . . . , xm); here
(x1, . . . , xn) is the set of initial cluster variables. We will construct two bases B◦ and B for A∗
using the corresponding bases B◦ and B for A, where A is the cluster algebra associated to
(S, M) with principal coefficients with respect to the seed T .

In order to define B◦ and B, we need to recall the separation formulas from [FZ07]. We will
apply them here to the case of the cluster algebra of geometric type, A∗ =A(B). First, we need
some notation.
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If P (u1, . . . , un) is a Laurent polynomial, we define Trop(P ) by setting

Trop
(∏

j

u
aj

j +
∏
j

u
bj
j

)
=
∏
j

u
min(aj ,bj)
j

and extending linearly. In particular, Trop(P ) is always a Laurent monomial.
Let Σt0 = (x1, . . . , xn; y1, . . . , yn;BT ) be the initial seed of the cluster algebra with principal

coefficients A. For each 1 6 j 6 n, we define

yj =
m∏

i=n+1

x
bij
i and ŷj =

m∏
i=1

x
bij
i .

Then [FZ07, Theorem 3.7] and [FZ07, Corollary 6.3] express the cluster variable xγ of A∗
in the following equivalent forms. Recall that XT

γ and F Tγ denote the quantities defined in
Definitions 3.12 and 3.14; see also Remark 3.15.

Proposition 7.1. Let γ be an arc in (S, M). Then the cluster variable xγ ofA∗ can be expressed
as

xγ =
XT
γ (x1, . . . , xn; y1, . . . , yn)
Trop(F Tγ (y1, . . . , yn))

=
F Tγ (ŷ1, . . . , ŷn)

Trop(F Tγ (y1, . . . , yn))
· xg11 . . . xgn

n ,

where (g1, . . . , gn) is the g-vector of XT
γ .

By analogy, if ζ is a closed loop in (S, M), we define the cluster algebra element xζ in A∗ as
follows.

Definition 7.2. Let ζ be a closed loop in (S, M). Then the cluster algebra element xζ in A∗ is
defined to be

xζ =
XT
ζ (x1, . . . , xn; y1, . . . , yn)

Trop(F Tζ (y1, . . . , yn))
=

F Tζ (ŷ1, . . . , ŷn)

Trop(F Tζ (y1, . . . , yn))
· xg11 . . . xgn

n ,

where (g1, . . . , gn) is the g-vector of XT
ζ (see Definition 6.1).

Note that it is easy to check that the second and third expressions above are equivalent,
following the proof of [FZ07, Corollary 6.3].

Now that we have defined elements of A∗ associated to each arc and closed loop, we may
define the collections of elements which will constitute our bases:

B◦ =
{ ∏
c∈C

xc

∣∣∣ C ∈ C◦(S, M)
}

and B =
{ ∏
c∈C

xc

∣∣∣ C ∈ C(S, M)
}
.

As before, C◦(S, M) and C(S, M) denote the C◦-compatible and C-compatible collections of arcs
and loops.

Theorem 7.3. B◦ is a basis for A∗ and, similarly, B is a basis for A∗.

Proof. First, we show that B◦ and B are subsets of A∗. We define a homomorphism of algebras
φ :A→A∗ which sends each cluster variable XT

γ to XT
γ (x1, . . . , xn; y1, . . . , yn). This is just a

specialization of variables, so in particular it is a homomorphism. Using this notation,

xζ =
φ(XT

γ )
Trop(F Tζ (y1, . . . , yn))

, (7.1)
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where the denominator is a Laurent monomial in coefficient variables. Therefore, whenever XT
ζ

lies in A, i.e. whenever XT
ζ can be written as a polynomial in cluster variables, xζ can also be

written as a polynomial in cluster variables and hence is in A∗. Since we have shown that B◦
and B are subsets of A, it follows that B◦ and B are subsets of A∗.

Next, we show that B◦ and B are spanning sets for A∗. As before, each k-bracelet xBrack
(ζ)

can be written as a Chebyshev polynomial in xζ , so it suffices to show that B◦ spans A∗. By the
arguments of the previous paragraph and (7.1), every skein relation in A gives rise to a skein
relation in A∗. It follows that we can write every polynomial in cluster variables in terms of the
elements of B◦.

Finally, we show that the elements of B◦ (respectively, B) are linearly independent. Every
F -polynomial F Tγ and F Tζ has constant term 1. Therefore it follows from Proposition 7.1 and
Definition 7.2 that the Laurent expansion of any element xγ (respectively, xζ) contains a Laurent
monomial xg11 . . . xgn

n x
gn+1

n+1 . . . xgm
m where (g1, . . . , gn) is the g-vector of xγ (respectively, of xζ),

and the exponent vector of any other Laurent monomial in the same expansion is obtained from
(g1, . . . , gm) by adding some non-negative integer linear combination of the columns of B. The
same property holds for monomials in the variables xγ and xζ . Therefore, by Theorem 1.6 (which
shows that the g-vectors are all distinct) and Proposition 2.13, the elements of B◦ are linearly
independent. A similar argument holds for B. 2
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Appendix A. Extending the results to surfaces with punctures

In this appendix we explain how the results and proofs in this paper need to be modified when
dealing with a marked surface (S, M) which has punctures, i.e. marked points in the interior of S.
In the presence of punctures, cluster variables are in bijection with tagged arcs, which generalize
ordinary arcs, and clusters are in bijection with tagged triangulations. In this appendix we will
assume that the reader is familiar with tagged arcs; see [FST08, § 7] for details. If γ is an arc
(without notches) with an endpoint at puncture p, we denote the corresponding tagged arc which
is notched at p by γ(p). If γ is an arc (without notches) with endpoints at punctures p and q, we
denote the corresponding tagged arc which is notched at both these punctures by γ(pq).

We believe that the results of the present paper may be extended to the case of marked
surfaces (S, M) which have punctures. The main obstacle lies in proving the appropriate skein
relations for tagged arcs, using principal coefficients, and extending Lemma 6.3 to this setting.
We will present several approaches to doing so at the end of §A.4. We believe that the second
approach described there is the most feasible; the drawback is that it involves giving separate
proofs for all fifteen cases of the new tagged skein relations.

A.1 Definition of B◦ and B
Our definitions of the conjectural bases are just a slight generalization of the corresponding
definitions from § 3.3.
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Definition A.1. A closed loop in (S, M) is said to be essential if it is not contractible nor
contractible onto a single puncture and it does not have self-crossings.

Definition A.2. A collection C of tagged arcs and essential loops is said to be C◦-compatible
if the tagged arcs in C are pairwise compatible and no two elements of C cross each other. We
define C◦(S, M) to be the set of all C◦-compatible collections in (S, M).

A collection C of tagged arcs and bracelets is said to be C-compatible if:

– the tagged arcs in C are pairwise compatible;

– no two elements of C cross each other except for the self-crossings of a bracelet; and

– given an essential loop γ in (S, M), there is at most one k > 1 such that the kth bracelet
Brack γ lies in C, and, moreover, there is at most one copy of this bracelet Brack γ in C.

We define C(S, M) to be the set of all C-compatible collections in (S, M).

Definition A.3. We define B◦ to be the set of all cluster algebra elements in A=A•(BT )
corresponding to the set C◦(S, M), that is,

B◦ =
{∏
c∈C

xc

∣∣∣ C ∈ C◦(S, M)
}
.

Similarly, we define

B =
{∏
c∈C

xc

∣∣∣ C ∈ C(S, M)
}
.

A.2 Cluster algebra elements associated to generalized tagged arcs
In order to prove that B◦ and B are spanning sets, we need to prove skein relations involving
tagged arcs. As in the unpunctured case, the skein relation involving tagged arcs should have
a simple pictorial description in terms of resolving a crossing. However, when one resolves two
(tagged) arcs that cross each other more than once, one may get a generalized (tagged) arc, i.e.
a (tagged) arc with a self-crossing; see Figure A.1. For this reason, we need to make sense of
the element of the (fraction field of the) cluster algebra associated to a generalized tagged arc.
As in [MSW11], in order to deduce the positivity of such elements with respect to all clusters,
it suffices to consider cluster algebras of the form A•(BT ) where T is an ideal triangulation of
(S, M). (Note that the snake graph or band graph corresponding to an arc can be defined even
if it crosses through self-folded triangles.)

There are several options for how to define the elements xγ(p) and xγ(pq) when γ(p) and γ(pq)

are generalized tagged arcs. All three options should be equivalent.

(i) Algebraic definition. If γ is an arc (without self-crossings) with one end incident to a
puncture p, then x` = xγxγ(p) where ` is the arc cutting out a once-punctured monogon enclosing
p and γ. If γ is an arc (without self-crossings) between two punctures p and q, then there is a
more complicated identity (see [MSW11, Theorem 12.9]) that expresses xγ(pq) in terms of xγ ,
xγ(p) and xγ(q) . By analogy, if γ is a generalized arc (with self-crossings allowed), then one could
define xγ(p) and xγ(pq) using the above algebraic identities.

(ii) Combinatorial definition. In [MSW11, Theorems 4.16 and 4.20], we proved that the
cluster algebra elements associated to singly and doubly notched arcs xγ(p) and xγ(pq) have
Laurent expansions which are given as sums over γ-symmetric matchings and γ-compatible pairs
of matchings, respectively. By analogy, when γ is a generalized arc with self-intersections, one
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p

p

p

Figure A.1. Smoothing two arcs may produce a generalized arc with a self-crossing.

could define xγ(p) and xγ(pq) combinatorially, in terms of γ-symmetric matchings and γ-compatible
pairs of matchings. The proofs of [MSW11, § 12] should carry over and show that the above
algebraic and combinatorial definitions of xγ(p) and xγ(pq) are equivalent.

(iii) Definition using the separation formula. The separation formula [FZ07, Theorem 3.7]
expresses the cluster variables of a cluster algebra over an arbitrary semifield, with a seed at t0,
using the cluster variables and F -polynomials of the corresponding cluster algebra with principal
coefficients at t0. By using the separation formula together with the fact that the B-matrix of
a tagged triangulation equals the B-matrix of a corresponding ideal triangulation (obtained
by changing the tagging around a collection of punctures), one obtains a formula for cluster
variables associated to ordinary arcs, in cluster algebras A•(BT ) where T is an arbitrary tagged
triangulation. One can then combine this formula with [MSW11, Proposition 3.15] to obtain a
formula for cluster variables associated to tagged arcs, in cluster algebras A•(BT ) where T is an
arbitrary ideal triangulation. By analogy, when γ is a generalized arc, one could define xγ(p) and
xγ(pq) by extending the above formula from tagged arcs to generalized tagged arcs.

A.3 Cluster algebra elements associated to closed loops
A closed loop is not incident to any marked points, so there is no such thing as a tagged closed
loop. We therefore define XT

ζ = xζ when ζ is a closed curve via good matchings in a band graph,
just as before (in Definition 3.14) but with one exception. If ζ is a closed loop without self-
intersections enclosing a single puncture p, then XT

ζ = 1 + yτ/y
(p)
τ or 1 +

∏
τ∈T y

ep(τ)
τ , depending

on whether or not T contains a self-folded triangle enclosing p. Here, ep(τ) denotes the number
of ends of τ incident to p.

A.4 B◦ and B are spanning sets for A
In order to prove that both B◦ and B span A•(S, M), one must prove skein relations involving
tagged arcs. Note that two tagged arcs are incompatible if they cross each other or if they have
an incompatible tagging at a puncture, as in the left-hand diagram of Figure A.2.
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p

p

p

Figure A.2. Resolving an incompatibility at a puncture.

In particular, one must prove skein relations involving:

(i) an ordinary arc and a singly notched arc which cross each other;

(ii) an ordinary arc and a doubly notched arc which cross each other;

(iii) two singly notched arcs which cross each other;

(iv) a singly notched arc and a doubly notched arc which cross each other;

(v) two doubly notched arcs which cross each other;

(vi) an ordinary arc and a singly notched arc which have an incompatible tagging at a
puncture;

(vii) an ordinary arc and a doubly notched arc which have one incompatible tagging at a
puncture;

(viii) an ordinary arc and a doubly notched arc which have two incompatible taggings at a
puncture;

(ix) two singly notched arcs which have one incompatible tagging at a puncture;

(x) two singly notched arcs which have two incompatible taggings at a puncture;

(xi) a singly notched arc and a doubly notched arc which have an incompatible tagging at a
puncture;

(xii) a singly notched arc and a loop;

(xiii) a doubly notched arc and a loop;

(xiv) a singly notched generalized arc with a self-crossing;

(xv) a doubly notched generalized arc with a self-crossing.

In the coefficient-free case, proving skein relations is straightforward. One can use the fact
that given a puncture p in M , the map Ψp which sends an arc γ to either γ(p) or γ (depending
on whether or not γ has an endpoint at p) induces an automorphism on the cluster algebra
A(BT ) =A(S, M). This automorphism maps the cluster corresponding to the triangulation T
to the cluster corresponding to the triangulation T ′ obtained from T by changing the tags at
the puncture p, and it is easy to show that it commutes with the mutations at these clusters;
note that this is a cluster automorphism in the sense of [ASS12]. This reduces all of the tagged
skein relations involving a crossing to the untagged skein relations that we have already proved.
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Z Z

Figure A.3. Illustration of Example A.4.

Furthermore, it is straightforward to prove the skein relation from Figure A.2 involving an
ordinary arc and a singly notched arc with an incompatible tagging at a puncture, by using the
identity xγxγ(p) = x` together with an ordinary skein relation (and the same proof works with
principal coefficients as well). Similar proofs should work for all other skein relations involving
an incompatible tagging at a puncture, at least in the coefficient-free case. Note that Fock
and Goncharov proved (see [FG06, § 12.6]) that B is a basis of the upper cluster algebra in
the coefficient-free case, even in the presence of punctures, by utilizing the monodromy around
punctures.

However, in the presence of principal coefficients, the map Ψp is not a cluster automorphism
on A•(BT ); it acts non-trivially on the coefficients. Therefore it is not possible, as above, to use
this map to reduce the tagged skein relations involving a crossing to the corresponding untagged
skein relations.

Additionally, we do not know a good analogue of the matrix formulas in [MW11] for cluster
variables associated to arcs with notches. If one had such matrix formulas, one might hope to
prove the corresponding skein relations via matrix identities, as in [MW11].

There are several alternative approaches that one might use. A first approach is to use
the formulas and definitions of §A.2(iii) (the separation formula) to prove the tagged skein
relations. This approach allows us to express the cluster algebra elements associated to tagged
arcs and tagged generalized arcs in terms of the cluster variables and F -polynomials associated to
untagged arcs and generalized arcs. From such formulas, one could obtain some ‘skein relations’
immediately. However, using this approach, it is not at all clear how to prove the analogue of
Lemma 6.3.

A second approach is to use the algebraic identities that the cluster algebra elements
associated to tagged arcs satisfy. For example, if one wants to prove the skein relation involving
an ordinary arc xγ1 and a singly notched arc x

γ
(p)
2

which cross each other, one could use the
identity xγ2xγ(p)

2

= x`0 . By considering the skein relation involving xγ1 and x`0 , and keeping
careful track of the coefficients using the lamination corresponding to the initial triangulation
T , it is possible to write down the skein relation that expresses xγ1xγ(p)

2

.

Example A.4 (Case (i) of the skein relations). Let α1, α2, α3 and α4 be the four arcs obtained
by smoothing at the intersection point of γ1 and γ2, as shown in Figure A.3. Then there are
monomials in the coefficient variables Z1 and Z2 such that

xγ1xγ(p)
2

= Z1xα(p)
1

xα2 + Z2xα3xα(p)
4

, (A.1)

and precisely one of them equals 1.

Proof. To show this, we will show that Z1 = Y0Y2a and Z2 = Y1Y3b, where Y0, Y1, Y2a and Y3b are
monomials in coefficient variables representing contributions from the laminations whose local
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Figure A.4. Left-hand side of (A.1).

Y

Y
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Y

Figure A.5. First term on the right-hand side of (A.1).

configurations are as shown by the dotted curves in Figure A.3. Note that we use the subscript
‘a’ (respectively, ‘b’) to indicate a contribution from laminations spiraling counterclockwise
(respectively, clockwise) into the puncture.

We multiply both sides of (A.1) by xγ2 and verify the resulting equation. Applying skein
relations to xγ2 times the left-hand-side of (A.1), i.e. to xγ2xγ1xγ(p)

2

= xγ1x`0 , we get

xγ1x`0 = Y1xα3xβ0 + Y2aY2bY0xβ1xα2 (A.2)
= Y1Y3aY3bxα3xβ2 + Y0Y1Y4xα2xα3xω + Y0Y2aY2bxα2xβ1 , (A.3)

where the (generalized) arcs β0, β1 and β2 and the closed loop ω are as in Figure A.4. Also,
Y2a, Y2b, Y3a, Y3b and Y4 are monomials in coefficient variables representing contributions from
laminations whose local configurations are as shown by the dotted curves in Figure A.4.

On the right-hand side of (A.1), after multiplying through by xγ2 we obtain

xγ2xα(p)
1

xα2 = x`1xβxα2(xα1)−1

= (Y2bxα1xα2xβ1 + Y1Y3aY4Y5axα1xα2xα3)(xα1)−1

= Y2bxα2xβ1 + Y1Y4Y3aY5axα2xα3 ;

see Figure A.5. Here Y5a represents the contribution from all leaves spiraling counterclockwise
into p which are not already included in Y2a or Y3a.

Similarly, using the notation of Figure A.6, we get

xγ2xα3xα(p)
4

= xγ2xα3x`2(xα4)−1 = Y3axα3xβ2 + Y0Y4Y2bY5bxα3xα2 .

Therefore, xγ2 times the right-hand-side of (A.1) is equal to

Z1Y2bxβ1xα2 + Z2Y3axα3xβ2 + (Z1Y1Y4Y3aY5a + Z2Y0Y4Y2bY5b)xα2xα3 . (A.4)

We need to show that the expressions (A.4) and (A.3) are equivalent.
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Y
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Figure A.6. Second term on the right-hand side of (A.1).

Setting Z1 = Y0Y2a and Z2 = Y1Y3b makes two terms in each of the above expressions coincide,
so we have reduced the proof of (A.1) to showing that Y0Y2aY1Y4Y3aY5a + Y1Y3bY0Y4Y2bY5b =
Y0Y1Y4xω or, equivalently,

Y2aY3aY5a + Y3bY2bY5b = xω. (A.5)

There are two cases, based on whether or not T contains a self-folded triangle enclosing
the puncture p. If not, then all leaves of the lamination spiral counterclockwise into p, and so
Y2bY3bY5b = 1. In this case, it follows from the definition that xω = 1 + Y2bY3bY5b (since the second
monomial represents the product of all coefficient variables indexed by arcs of T incident to p).
This proves (A.5).

If T does contain a self-folded triangle enclosing the puncture p, then let us denote the radius
incident to p by r. In this case, there are exactly two leaves of the lamination spiraling into p, Lr
and Lrp , which spiral counterclockwise and clockwise, respectively. The left-hand-side of (A.5)
then equals yr + yr(p) . But this agrees with the definition of xω. Either way, we have now shown
(A.1).

Now, we claim that at least one of Y0 and Y1 is not equal to 1. If both were 1, then any
laminations cutting across the quadrilateral formed by the endpoints of γ1 and γ2 would have
to cut across corners of the quadrilateral. But such a lamination could not have come from a
triangle. Now note that if Y1 6= 1, then Y0 and Y2a must equal 1, since the leaves of a lamination
cannot intersect each other. Similarly, if Y0 6= 1, then Y1 and Y3b must equal 1. 2

We have shown how to prove the first of fifteen skein relations, as well as how to prove
the analogue of Lemma 6.3 for this case. In theory, one could use a similar argument on a
case-by-case basis for the remaining fourteen types of skein relations above. We believe that
this approach would successfully generalize the results of the present paper to the case of general
surfaces (S, M), with or without punctures.

A.5 B◦ and B are linearly independent sets
If one could extend Lemma 6.3 to the case of tagged arcs, then it would be possible to prove
that the sets B◦ and B are linearly independent.

Indeed, one can extend Proposition 6.5 to define a tagged arc τ i of (S, M) such that
g(xτ i) =−ei for each 1 6 i6 n. This could be called the anti-arc construction.

– If τi is an arc between two marked points which are both on a boundary component, then
the definition of τ i is the same as in Proposition 6.5.

– Suppose that τi is an arc between two marked points x and p, where x lies on a boundary
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component and p is a puncture. Let d1 denote the boundary segment such that d1 is incident
to x and is in the clockwise direction from τi; let x′ denote the other endpoint of d1. Let τ i
be the tagged arc of (S, M) between the points x′ and p, tagged plain at x′ and notched at
p, such that its untagged version is homotopic to the concatenation of d1 and τi.

– Suppose that τi is an arc between two punctures p and q. Let τ i be the tagged arc of (S, M)
which is obtained from τi by notching both ends.

In order to prove that g(xτ i) =−ei, one uses the tagged skein relations.

It is then straightforward to extend the arguments of § 6.3 to show that in almost all cases, the
g-vector maps g : B◦→ Zn and g : B → Zn are bijections. A main tool here is the generalization
of Lemma 6.3. The only situation in which the g-vector map is not a bijection to Zn is the
case where (S, M) is a once-punctured closed surface. In this case, g is an injection but not a
surjection. (This is because the anti-arc construction for such a surface always gives a doubly
tagged arc which is in the tagged arc complex but not the cluster complex, when (S, M) is a
once-punctured closed surface.) However, injectivity suffices to show linear independence: by the
proof of Corollary 6.14, it is enough to know that the g-vectors of the basis elements are all
distinct.

A.6 B◦ and B are subsets of A

One can show that the bases B◦ and B are subsets of A• if S has a non-empty boundary and
at least two of its marked points are on the boundary, or if S has genus zero. It suffices to show
that the cluster algebra elements corresponding to essential loops lie in A•.

The proof of Proposition 4.5 (which treats the case where at least two marked points are on
the boundary) goes through without changes in the presence of punctures.

However, when (S, M) has punctures, a new argument is required in order to prove
Corollary 4.6 (which treats the case where S has genus zero). Let ζ be an essential loop that
cuts out a disk with at least two punctures m1 and m2 inside it. If S is a sphere, then ζ cuts out
two disks, and we choose the one with the smaller number of punctures inside it. One can then
prove Corollary 4.6 by induction on the number of punctures inside ζ. The idea is to consider an
appropriate skein relation involving an unnotched arc between m1 and m2 and a doubly notched
arc between m1 and m2.
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