VOL. 8 (1973), 247-259

On a class of diophantine inequalities

Kurt Mahler

Dedicated to B. Segre, on his 70th birthday, 16 February 1973.

Abstract

As a special case of more general results, it is proved in this note that, if α is any real number and δ any positive number, then there exists a positive integer X such that the inequality $$
\left|X\left(\frac{3}{2}\right)^{h}-Y_{h}-\alpha\right|<\delta
$$ has infinitely many solutions in positive integers h and Y_{h}. The method depends on the study of infinite sequences of real linear forms in a fixed number of variables. It has relations to that used by Kronecker in the proof of his classical theorem and can be generalised.

1.

For real α put

$$
\|\alpha\|=\min _{y=0, \pm 1, \pm 2, \ldots}|\alpha-y|
$$

so that $\|\alpha\|$ denotes the distance of α from the nearest integer and hence that

$$
0 \leq\|\alpha\| \leq \frac{1}{2}
$$

By H_{0} we understand a fixed strictly increasing infinite sequence of positive integers $h \quad\left(H_{0}\right.$ usually will be the set of all positive Received 20 November 1972.
integers), and H denotes some infinite subsequence of H_{0}, not necessarily always the same.

2.

Let r be a fixed and n a variable positive integer; let further S_{n} be the set of all r-vectors $x=\left(x_{1}, \ldots, x_{r}\right)$ with integral
components satisfying

$$
1 \leq \max \left(\left|x_{1}\right|, \ldots,\left|x_{r}\right|\right) \leq n .
$$

Thus S_{n} is a finite set, and all vectors in S_{n} are distinct from the zero vector

$$
0=(0, \ldots, 0)
$$

Next consider an infinite sequence of r-vectors

$$
a_{h}=\left(a_{h 1}, \cdots, a_{h r}\right) \quad\left(h \in H_{0}\right)
$$

with real components and the associated linear forms

$$
L_{h}(\mathrm{x})=a_{h 1} x_{1}+\ldots+a_{h r^{x}} x_{r} \quad\left(h \in H_{0}\right)
$$

in X. Then put

$$
M_{h}(n)=\min _{x \in S_{n}}\left\|L_{h}(x)\right\| \quad\left(h \in H_{0}\right)
$$

and

$$
M(n)=\underset{\substack{h \rightarrow \infty \\ h \in H_{0}}}{\lim \sup } M_{h}(n)
$$

It is obvious that

$$
0 \leq M_{h}(n) \leq \frac{1}{2} \quad\left(h \in H_{0}\right)
$$

and hence that also

$$
0 \leq M(n) \leq \frac{1}{2}
$$

3.

For $n \geq 3$ these upper bounds for $M_{h}(n)$ and $M(n)$ can be improved.

For this purpose, denote by y a further integral variable. The system of $r+1$ linear forms

$$
n^{-1} x_{1}, \ldots, n^{-1} x_{r}, n^{r}\left(a_{h 1} x_{1}+\ldots+a_{h r} x_{r}-y\right) \quad\left(h \in H_{0}\right)
$$

in x_{1}, \ldots, x_{r}, y has the determinant -1 . Hence, by Minkowski's Theorem on linear forms, there exist integers

$$
x_{h 1}, \ldots, x_{h r}, y_{h}
$$

not all zero, which in general will depend on h, such that simultaneously $\max \left(\left|x_{h 1}\right|, \ldots,\left|x_{h r}\right|\right) \leq n, \quad\left|a_{h 1} x_{h 1}+\ldots+a_{h r} x_{h r}-y_{h}\right|<n^{-r} \quad\left(h \in H_{0}\right)$.

Here at least one of the first r integers

$$
x_{h 1}, \ldots, x_{h r}
$$

does not vanish. For otherwise $y_{h} \neq 0$, whence

$$
1 \leq\left|y_{h}\right|<n^{-r} \leq 1,
$$

which is impossible.
The vector

$$
x_{h}=\left(x_{h 1}, \ldots, x_{h r}\right)
$$

therefore lies in S_{n} and in addition satisfies the inequality

$$
\left\|L_{h}\left(x_{h}\right)\right\|<n^{-r} \quad\left(h \in H_{0}\right)
$$

From this it follows immediately that

$$
\begin{equation*}
0 \leq M_{h}(n)<n^{-\boldsymbol{r}} \quad\left(h \in H_{0}\right) \tag{1}
\end{equation*}
$$

and hence also that
(2)

$$
0 \leq M(n) \leq n^{-r} .
$$

On the other hand, since obviously $S_{n} \subset S_{n+1}$, it is clear that

$$
M_{h}(1) \geq M_{h}(2) \geq M_{h}(3) \geq \ldots \geq 0 \quad\left(h \in H_{0}\right),
$$

from which it is easily deduced that also

$$
M(1) \geq M(2) \geq M(3) \geq \ldots \geq 0 .
$$

4.

The definition of $M(n)$ as an upper limit implies that there exists a subsequence H of H_{0} such that

$$
\lim _{\substack{h \rightarrow \infty \\ h \in H}} M_{h}(n)=M(n)
$$

Here, to each suffix h in H, we can find a vector x_{h} in S_{n} such that

$$
M_{h}(n)=\left\|L_{h}\left(\mathrm{x}_{h}\right)\right\| \quad(h \in H) ;
$$

note that x_{h} need not be the same as the vestor x_{h} constructed in $\S 3$.
As h runs over H, x_{h} is restricted by the condition of belonging to the finite set S_{n}. Therefore, if necessary, H can be replaced by an infinite subsequence which we call again H such that, without loss of generality,

$$
\mathrm{x}=\mathrm{x}_{h} \text { for all } h \in H
$$

is a fixed vector in S_{n} independent of h; naturally,

$$
x \neq 0 .
$$

Since this vector has the basic property that

$$
\begin{equation*}
\lim _{\substack{h \rightarrow \infty \\ h \in H}}\left\|L_{h}(x)\right\|=M(n), \tag{3}
\end{equation*}
$$

the following result has been established.
LEMMA 1. For every positive integer n there exist an infinite subsequence H of H_{0} and a constant vector x in S_{n} with the property (3).

5.

In this lemma, H will in general be a proper subsequence of H_{0} as the following example shows.

Fix n and choose $r=1$ so that a_{h} and x are now scalars a_{h} and x. As the linear forms take

$$
L_{h}(x)= \begin{cases}x & \text { if } h \text { is even } \\ x \sqrt{2} & \text { if } h \text { is odd }\end{cases}
$$

In this example, $M_{h}(n)$ evidently vanishes for even h (we may put $x=1$), but is positive and independent of h for odd h. Hence also $M(n)$ is positive. Thus, if H_{0} is the set of all positive integers h, H in (3) essentially (that is, except for possibly finitely many even numbers) is the sequence of all odd integers.

6.

Consider again the general case, but assume that, for a certain n, $M(n)=0$. Since $M_{h}(n) \geq 0$ for all $h \in H_{0}$, it is clear that now the upper limit in the definition of $M(n)$ becomes the limit, hence that (3) takes the form

$$
\begin{equation*}
\lim _{\substack{h \rightarrow \infty \\ h \in H_{0}}}\left\|L_{h}(x)\right\|=0 \tag{4}
\end{equation*}
$$

Denote by α an arbitrary real number which is not an integer. The relation (4) implies that

$$
\lim _{\substack{h \rightarrow \infty \\ h \in H_{0}}}\left\|L_{h}(x)-\alpha\right\|=\|\alpha\|>0
$$

This formula suggests the problem whether there exist an infinite subsequence H of H_{0} and an integral vector X distinct from X such that

$$
\lim _{\substack{h \rightarrow \infty \\ h \in H}}\left\|L_{h}(X)-\alpha\right\|=0 .
$$

The answer to this problem depends very much on the special forms L_{h} and the sequences H_{0} and H.

A positive answer can be given in the following trivial example. Let $r=1$ and $n=2$; let H_{0} and H be the sequences of all positive integers and of all odd positive integers, respectively; and let further

$$
L_{h}(x)=\frac{1}{2} x \quad \text { for } \quad h \in H_{0}
$$

Since $L_{h}(2)=1$, evidently

$$
M_{h}(2)=M(2)=0 .
$$

On the other hand,

$$
\left\|L_{h}(1)-\frac{1}{2}\right\|=0 \text { for all } h \in H .
$$

A negative answer holds in the following rather more interesting exámple. Let again $r=1$, and let H_{0} be again the sequence of all positive integers. Assume that the forms L_{h} have the property

$$
\begin{equation*}
\lim _{h \rightarrow \infty}^{h \in H_{0}} \mid\left\|L_{h}(1)\right\|=0 . \tag{5}
\end{equation*}
$$

Then obviously also

$$
\begin{equation*}
\lim _{\substack{h \rightarrow \infty \\ h \in H_{0}}}\left\|L_{h}(x)\right\|=0 \text { for every integer } x \text {, } \tag{6}
\end{equation*}
$$

and hence there cannot exist a subsequence H of H_{0} and an integer X satisfying

$$
\begin{equation*}
\lim _{\substack{h \rightarrow \infty \\ h \in H}}\left\|L_{h}(X)-\alpha\right\|=0 \tag{7}
\end{equation*}
$$

unless α is an integer.

$$
7 .
$$

A simple example in which the condition (5) is satisfied and therefore also the conclusion about (7) is given by the linear forms

$$
L_{h}(x)=h \text { lex for } h \in H_{0}
$$

where H_{0} still denotes the sequence of all positive integers.
Of much greater interest is, however, the sequence of forms

$$
\begin{equation*}
L_{h}(x)=\lambda \theta^{n} x \text { for } h \in H_{0} \tag{8}
\end{equation*}
$$

where $\theta>l$ is a fixed algebraic number, and $\lambda>0$ is a constant. A theorem due to Pisot [1] (see also Salem [2]) asserts that the limit equation

$$
\lim _{h \rightarrow \infty}\left\|\lambda \theta^{h}\right\|=0
$$

that is, the condition (5), is satisfied if and only if the following two properties hold.
(i) $\theta=\theta^{(1)}$ is an algebraic integer of some degree $m \geq 1$ such that all its algebraic conjugates $\theta^{(2)}, \ldots, \theta^{(m)}$ are less than 1 in absolute value.
(ii) λ lies in the algebraic number field $Q(\theta)$ generated by θ. Call $\{\theta, \lambda\}$ a Pisot pair whenever these two properties are satisfied. By (7), such pairs have the following further property.
(iii) If α is any real number, H any subsequence of H_{0}, and X any integer, then the equation

$$
\lim _{\substack{h \rightarrow \infty \\ h \in H}}\left\|\lambda \theta^{h} X-\alpha\right\|=0
$$

implies that α is an integer.
If $\{\theta, \lambda\}$ is a Pisot pair, then by (6) the forms (8) satisfy

$$
\begin{equation*}
M(n)=0 \text { for all } n \geq 1 \tag{9}
\end{equation*}
$$

This result has a converse. For assume that $\{\theta, \lambda\}$ is not necessarily a Pisot pair, but that (9) is true. This equation (9) is equivalent to

Now for every real number α and for every integer g,

$$
\|g \alpha\| \leq|g| \cdot\|\alpha\|
$$

hence

$$
\left\|n \mid \lambda \theta^{h_{\|}}\right\| \leq n!\min _{x= \pm 1, \pm 2, \ldots, \pm n}\left\|\lambda \theta^{h} x\right\|
$$

because all factors x are divisors of $n!$. The equation (10) implies then that

$$
\lim _{h \rightarrow \infty}\left\|n!\lambda \theta^{h}\right\|=0
$$

This, however, means that $\{\theta, n!\lambda\}$ and hence also $\{\theta, \lambda\}$. are Pisot pairs. Thus the following result holds.

LEMMA 2. Let $\theta>1$ be an algebraic number and λ a positive number, let again H_{0} be the sequence of all positive integers, and Zet

$$
L_{h}(x)=\lambda \theta^{h} x \quad \text { for } \quad h \in H_{0}
$$

Then $\{\theta, \lambda\}$ is a Pisot pair if and only if

$$
M(n)=0 \text { for all } n \geq 1
$$

8.

We return to the general case of $\S 2$, but assume now that for a certain value of n,

$$
M(n)>0 .
$$

Denote by x the constant vector in S_{n} given by Lemma 1 and for which

$$
\begin{equation*}
\lim _{h \rightarrow \infty}\left\|L_{h}(x)\right\|=M(n) . \tag{3}
\end{equation*}
$$

It follows that there exists an infinite subsequence of H which we call
again H such that

$$
\frac{2}{3} M(n)<\left\|L_{h}(x)\right\|<\frac{4}{3} M(n) \text { for all } h \in H
$$

In explicit form, $x=\left(x_{1}, \ldots, x_{r}\right)$, and there exists to each $h \in H$ an integer y_{h} such that the sum

$$
s_{h}=a_{h 1} x_{1}+\ldots+a_{h r_{r}}-y_{h}
$$

satisfies the equation

$$
\left|s_{h}\right|=\left\|L_{h}(x)\right\|
$$

and therefore also the inequality

$$
\begin{equation*}
\frac{2}{3} M(n)<\left|s_{h}\right|<\frac{4}{3} M(n) \text { for all } h \in H \tag{11}
\end{equation*}
$$

9.

Next let α be an arbitrary real number, and let y be the unique integer for which the real number

$$
\beta=\alpha+y
$$

satisfies the inequality

$$
\begin{equation*}
\frac{2}{3}<\beta \leq \frac{5}{3} \tag{12}
\end{equation*}
$$

The integral multiples

$$
s_{h} s \quad(z=0, \pm 1, \pm 2, \ldots)
$$

of s_{h} form an arithmetic progression of distance $\left|s_{h}\right|>0$. By (11), every open interval of length $\frac{4}{3} M(n)$ contains then at least one element of this progression.

We apply this property to the open interval

$$
\text { from } \beta-\frac{2}{3} M(n) \text { to } \beta+\frac{2}{3} M(n)
$$

of this length and deduce that
for every $h \in H$ there exists an integer z_{h} such that

$$
-\frac{2}{3} M(n)<s_{h} z_{h}-\beta<\frac{2}{3} M(n)
$$

Here $\beta \leq \frac{5}{3}$ and $M(n) \leq \frac{1}{2}$, so that by (11),

$$
\left|z_{h}\right|<\frac{\beta+\frac{2}{3} M(n)}{\frac{2}{3} M(n)} \leq \frac{5+2 M(n)}{2 M(n)}
$$

and therefore

$$
\begin{equation*}
\left|z_{h}\right|<\frac{3}{M(n)} . \tag{13}
\end{equation*}
$$

On the other hand, $\beta>\frac{2}{3}$, and so again by (11),

$$
s_{h} z^{2}>\beta-\frac{2}{3} M(n) \geq \frac{2}{3}-\frac{1}{3}>0,
$$

whence also

$$
z_{h} \neq 0 .
$$

In this construction, z_{h} is a function of $h \in H$ which, by (13), has only finitely many possible values. Since H may, if necessary, once more be replaced by a suitable infinite subsequence, we may without loss of generality assume that

$$
z_{h}=z \text { for all } h \in H
$$

has a fixed integral value independent of h, where by (13) and (14)

$$
\begin{equation*}
0<|z|<\frac{3}{M(n)} . \tag{15}
\end{equation*}
$$

10.

Put finally

$$
X_{1}=x_{1} z, \ldots, X_{r}=x_{r} z, Y_{h}=y_{h} z+y .
$$

Then $X=\left(X_{1}, \ldots, X_{r}\right)$ is an integral r-vector independent of h such that

$$
\begin{equation*}
1 \leq \max \left(\left|x_{1}\right|, \ldots,\left|x_{r}\right|\right)<\frac{3 n}{M(n)}, \tag{16}
\end{equation*}
$$

while y_{h} is an integer which in general depends on h. In this new notation, the lower and upper estimates for $s_{h} z_{h}-\beta$ take the form

$$
-\frac{2}{3} M(n)<L_{h}(X)-Y_{h}-\alpha<\frac{2}{3} M(n) \text { for all } h \in H
$$

Since $\frac{2}{3} M(n)<\frac{1}{2}$, this is equivalent to

$$
\begin{equation*}
\left\|L_{h}(X)-\alpha\right\|<\frac{2}{3} M(n) \text { for all } h \in H \tag{17}
\end{equation*}
$$

Thus the following result has been obtained.
LEMMA 3. For a certain $n \geq 1$ let $M(n)>0$. Then, to every real number α, there exist an infinite subsequence H of H_{0} and a constant integral vector X such that both (16) and (17) are satisfied.

This lemma becomes particularly interesting when $M(n)$ is positive for $a l l$. positive integers n. For, by the earlier estimate (2),

$$
\lim _{n \rightarrow \infty} M(n)=0
$$

Therefore, for sufficiently large n, the right-hand side of (17) can be made arbitrarily small, giving the following result.

THEOREM 1. Let $r \geq 1$ be a fixed integer, and let H_{0} be a strictly increasing infinite sequence of positive integers. Associate with each h in H_{0} a real linear form

$$
L_{h}(x)=a_{h 1} x_{1}+\ldots+a_{h r} x_{r},
$$

and assume that the upper limit $M(n)$, as defined in $\S 2$, is positive for every positive integer n.

Then, given any real number α and any positive number δ, there exist an infinite subsequence H of H_{0} and an integral vector $X \neq 0$ independent of h such that

$$
\left\|L_{h}(X)-\alpha\right\|<\delta \text { for all suffices } h \text { in } H
$$

11.

We combine this theorem with Lemma 2, taking $r=1$. Let θ and λ be as in Lemma 2, but assume that $\{\theta, \lambda\}$ is not a Pisot pair. Then $M(n)$ is positive for all $n \geq 1$, and Theorem 1 gives the following consequence.

THEOREM 2. Let $\theta>1$ be an algebraic number, and $\lambda>0$ a
constant. Assume that at least one of the following two properties is not satisfied.
(i) $\theta=\theta^{(1)}$ is an algebraic integer of degree $m \geq 1$ such that all its algebraic conjugates $\theta^{(2)}, \ldots, \theta^{(m)}$ have absolute values less than 1 .
(ii) λ lies in the algebraic number field $Q(\theta)$ generated by θ. Then, given any real number α and any positive number δ, there exists a positive integer X such that the inequality

$$
\left\|x \lambda \theta_{-\alpha \|}^{h}\right\|<\delta
$$

has infinitely many solutions in positive integers h.
By way of example, this theorem can be applied to each of the inequalities

$$
\left\|x \sqrt{2}\left(\frac{1+\sqrt{5}}{2}\right)^{h}-\alpha\right\|<\delta,\left\|X e(1+\sqrt{2})^{h}-\alpha\right\|<\delta,\left\|X \lambda\left(\frac{3}{2}\right)^{h}-\alpha\right\|<\delta,
$$

where in the last inequality λ may be an arbitrary positive number.
12.

We conclude this note with an application of Theorem 1 when r is an arbitrary positive integer. For this purpose, assume that

$$
L_{h}(x)=a_{1} x_{1}+\ldots+a_{r} x_{r}
$$

does not depend on h. Any relation $M(n)=0$ where $n \geq 1$ now implies that the numbers

$$
a_{1}, \ldots, a_{r}, 1
$$

are linearly dependent over the rational field Q. Conversely, if these numbers are linearly independent over Q, then $M(n)$ is positive for all $n>1$. In this case it follows from Theorem 1 that for every real number α and for every positive number δ there exist r integers X_{1}, \ldots, X_{r} not all zero such that

$$
\left\|a_{1} X_{1}+\ldots+a_{r} X_{r}-\alpha\right\|<\delta .
$$

We obtain thus a rather special case of Kronecker's Theorem.

 References

 References
 [1] Charles Pisot, "La repartition modulo 1 et les nombres algébriques", Ann. ScuoZa Norm. Sup. Pisa, Sci. Fis. Math. (2) 7 (1938), 205-248.

[2] Raphael Salem, Algebraic numbers and Fourier analysis (D.C. Heath and Co., Boston, Massachusetts, 1963).

Department of Mathematics,
Institute of Advanced Studies,
Australian National University,
Canberra, ACT.

