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On a class of diophantine inequalities

Kurt Mahler

Dedicated to B. Segre, on his 70th bir thday, 16 February 1973.

As a special case of more general r e s u l t s , i t i s proved in th i s

note tha t , i f a i s any real number and 6 any posit ive number',

then there exists a posit ive integer X such that the

inequality

has inf in i te ly many solutions in posit ive integers h and J, .

The method depends on the study of in f in i te sequences of real

l inear forms in a fixed number of variables . I t has relat ions

to that used by Kronecker in the proof of his c lass ical theorem

and can be generalised.

1.

For real a put

||a|| = min | a-!/1 ,
y=0,±l,±2,...

so that ||a|| denotes the distance of a from the nearest integer and

hence that

0 < ||a|| « i " .

By HQ we understand a fixed strictly increasing infinite sequence of

positive integers h (BQ usually will be the set of all positive
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integers), and H denotes some infinite subsequence of #. , not

necessarily always the same.

2.

Let r be a fixed and n a variable positive integer; let further

S be the set of all r-vectors X = (x^ . . . , x 1 with integral

components satisfying

< n .

Thus S is a finite set, and all vectors in S are distinct from then n

zero vector

0 = (0 0) .

Next consider an infinite sequence of r-vectors

with real components and the associated linear forms

V x ) = ahlxl+ ••• +ahrxr ^ € S o)

in X . Then put

Mh(n) = min ||

and

M{n) = lim sup ^j,(n) •

I t is obvious that

0 5 Mh(n) < J

and hence tha t also

0 5

3.

For n 2 3 these upper bounds for AJ, (n) and M{n) can be improved.
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For this purpose, denote by y a further integral variable. The system of

r + 1 linear forms

in X., . . . , x , y has the detenainant -1 . Hence, by Minkowski's

Theorem on linear forms, there exist integers

^ 1 xhr' yh

not al l zero, which in general will depend on h , such that simultaneously

m a x d ^ l , . . . , \xhr\) < „ , \ahxxh± * ... * a^x^-y^ < nT [h € HQ) .

Here at least one of the first r integers

"Til' • " • ' xhr

does not vanish. For otherwise y, $ 0 , whence

2 \yh\ < n"r < 1 ,

which is impossible.

The vector

therefore lies in S and in addition satisfies the inequality

M ^ n <n~r ^ iHo)
From this i t follows .immediately that

(1) 0 5 Mh(n) < n~T [h € HQ)

and hence also that

(2) 0 5 M(n) 5 nT .

On the other hand, since obviously SR c S^+1 , i t is clear that

Mh(l) 2 Mh(2) > Mh(3) Z . . . > 0 (ft € ffQ) ,
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from which i t is easily deduced that also

A/(l) > M(2) > M(3) > . . . > 0 .

4.

The definition of M(n) as an upper limit implies that there exists
ch that

lim MAn)

a subsequence H of #_. such that

Here, to each suffix h in H , we can find a vector X, in 5 such
n n

that
MAn) = \\Lh{\)\\ (h € B) ;

note that X̂  need not be the same as the vector X, constructed in §3.

As h runs over H , X, is restricted by the condition of belonging

to the finite set S . Therefore, if necessary, H can be replaced by an

infinite subsequence which we call again H such that, without loss of
generality,

X = Xh for all h € U

is a fixed vector in S independent of h ; naturally,

X t 0 .

Since this vector has the basic property that

(3) lim ||MX)|| = M{n) ,

the following result has been established.

LEMMA 1. For every positive integer n there exist an infinite

(3).

subsequence H of H and a constant vector X in S with the property
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5.

In this lemma, H will in general be a proper subsequence of #„ as

the following example shows.

Fix n and choose r = 1 so that 3, and X are now scalars a,

and x . As the linear forms take

x if h is even,

Lh(x) =

J if h is odd.

In this example, M-,(n) evidently vanishes for even h (we may put

x = 1 ), but is positive and independent of h for odd h . Hence also

M{n) is positive. Thus, if fl. is the set of all positive integers h, H

in (3) essentially (that is, except for possibly finitely many even

numbers) is the sequence df all odd integers.

6.

Consider again the general case, but assume tha t , for a certain n ,

MM = 0 . Since A^(«) > 0 for a l l h € HQ , i t i s clear that now the

upper limit in the definition of M(n) becomes the limit, hence that (3)

takes the form

(U) lim ||L. (X)|| = 0 .

Denote by a an arbitrary real number which is not an integer. The

relation {h) implies that

lim ||I, (x)-a|| = ||a|| > 0 .

This formula suggests the problem whether there exist an infini te

subsequence B of ff_ and an integral vector X distinct from X such

that

lim HL^W-all = 0 .

heH
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The answer to this problem depends very much on the special forms £, and

the sequences HQ and H .

A positive answer can be given in the following t r ivia l example. Let
r = 1 and n = 2 ; let HQ and H be the sequences of a l l positive

integers and of a l l odd positive integers, respectively; and let further

Lh(x) = \x for h € HQ .

Since Z>A2) = 1 , evidently

Mh(2) = M(2) = 0 .

On the other hand,

UhU)-j\\ =0 for all h € B .

A negative answer holds in the following rather more interesting
example. Let again r = 1 , and let H. be again the sequence of al l

positive integers. Assume that the forms L, have the property

(5) lim ||I, (1)|| = 0 .
n

Then obviously also

(6) lim \\L, (x)|| = 0 for every integer x

and hence there cannot exist a subsequence H of H. and an integer X

satisfying

(7) lim l|£fctf)-a|| = 0

unless a is an integer.

7.

A simple example in which the condition (5) is satisfied and therefore
also the conclusion about (T) is given by the linear forms
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LAx) = hlex for h (. H

where # still denotes the sequence of all positive integers.

Of much greater interest is, however, the sequence of forms

(8) LA.x) = \Qnx for h (. HQ

where 9 > 1 is a fixed algebraic number, and X > 0 is a constant. A

theorem due to Pisot [7] (see also Salem [2]) asserts that the limit

equation

lim \\xeh\\ = o ,

that is, the condition (5)> is satisfied if and only if the following two

properties hold.

(i) 6 = 8 is an algebvaia integer of some degree m > 1 such

that all its algebraic conjugates 6 , ... , 8 are less

than 1 in absolute value.

(ii) X lies in the algebraic number field Q(6) generated by 8 .

Call {9, X} a Pisot pair whenever these two properties are satisfied. By

(7), such pairs have the following further property.

(Hi) If a is any real number, H any subsequence of HQ , and X

any integer, then the equation

lim HXê -all = 0

implies that a. is an integer.

If {6, X} is a Pisot pair, then by (6) the forms (8) satisfy

(9) M(n) = 0 for all n i l .

This result has a converse. For assume that {9, X} is not necessarily a

Pisot pair, but that (9) is true. This equation (9) is equivalent to
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(10) 11m min pencil = 0 .
h-**> x=±l,±2,... ,±n

Now for every real number a and for every integer g ,

||ga|| £ |ff|.||a|| ,

hence

HwlXĝ H £ n\ min 11X9̂ x11 ,
x=±l,±2,.. . ,±w

because all factors x are divisors of n\ . The equation (10) implies

then that

lim ||nlA9 || = 0 .

This, however, means that {9, nlX} and hence also {9, X} are Pisot

pairs. Thus the following result holds.

LEMMA 2. Let 9 > 1 be an algebraic number and X a positive

number, let again HQ be the sequence of all positive integers, and

let

Lh(x) = Xê x for h (. HQ .

Then {9, X] is a Pisot pair if and only if

M(n) = 0 for all n > 1 .

8.

We return to the general case of §2, but assume now that for a certain

value of n ,

M(n) > 0 .

Denote by X the constant vector in S given by Lemma 1 and for which

(3) lim \\L, (x)|| = M{n) .

It follows that there exists an infinite subsequence of H which we call
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again H such that

\M(n) < \\Lh{K)\\ < |W(n) for a l l h € H

In explicit form, X = (x.. x ) , and there exists to each- li ( S

an integer y, such that the sum

8h=ahlxl+ ••• *ahr*r-Vh

satisfies the equation

and therefore also the inequality

(11) |w(n) < \eh\ < \M(n) for a l l h i H .

9.

Next let a be an arbitrary real number, and let y be the unique

integer for which the real number

8 = a + y

satisfies the inequality

(12) | < B = | .

The integral multiples

8hB (s = 0, ±1, ±2, ...)

of e, form an arithmetic progression of distance \s, \ > 0 . By (11),

every open interval of length \M{n) contains then at least one element of

this progression.

We apply this property to the open interval

from 3 - |W(«) to 6 + %M(n)

of this length and deduce that

for every h € H there exists an integer z, such that
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Here 3 2 | and M(n) 5 ^ , so that by ( l l ) ,

I2J71 \M{n)

and therefore

On the other hand, 3 > | , and so again by (11),

whence also

In this construction, s, is a function of h (. H which, by (13),

has only finitely many possible values. Since H may, if necessary, once

more be replaced by a suitable infinite subsequence, we may without loss of

generality assume that

z, = z for all h (. H

has a fixed integral value independent of h , where by (13) and

(15) 0 < l 3 l f t

10.

Put finally

X± = XjS, . . . , Xp= xpz , Yh = yha + y .

Then X = {x , . . . , X ) is an'integral P- vector independent of h such

that

(16) 1

while v, is an integer which in general depends on h . In this new

notation, the lower and upper estimates for 8i,zh ~ ® take the form
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< L,(X) - I. - a < ̂ M(n) for all h € H .
s n n 3

Since |w(n) < - , this is equivalent to

(17) \\LhW-a\\ < %(n) for all h € H .

Thus the following result has been obtained.

LEMMA 3. For a certain n > 1 let M(n) > 0 . Then, to every real

number a , there exist an infinite subsequence H of H and a constant

integral vector X such -that both (l6) and (IT) are satisfied.

This lemma becomes par t icular ly interest ing when M(n) i s posit ive

for aII- positive integers n . For, by the ear l i e r estimate (2) ,

lim M(n) = 0 .
n-**>

Therefore, for sufficiently large n , the right-hand side of (17) can be

made arbitrarily small, giving the following result.

THEOREM 1. Let r > 1 be a fixed integer, and let HQ be a

strictly increasing infinite sequence of positive integers. Associate with

each h in HQ a real linear form

V X ) = %XX1+ ••• +ahrxr>

and assume that ihe upper limit M(n) , as defined in §2, is positive for

every positive integer n .

Then, given any real number a and any positive number 6 , there

exist an infinite subsequence H of HQ and an integral vector X / 0

independent of h such that

||L^(X)-a|| < 6 for all suffices h in H .

11.

We combine this theorem with Lemma 2, taking r = 1 . Let 8 and X

be as in Lemma 2, but assume that {6, A} is not a Pisot pair. Then M(n)

is positive for all n 2 1 , and Theorem 1 gives the following consequence.

THEOREM 2. Let 8 > 1 be an algebraic number, and X > 0 a
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constant. Assume that at least one of -the following two properties is not

satisfied.

(i) 9 = 6 is an algebraic integer of degree m > 1 such that

all its algebraic conjugates 8 9 have absolute

values less than 1 .

(ii) A lies in the algebraic number field Q(8) generated by 9 .

Then3 given any real number a and any positive number 8 , there exists a

positive integer X such that the inequality

\\X\Qh-a.\\ < 6

has infinitely many solutions in positive integers h .

By way of example, this theorem can fee applied to each of the

inequalities

j j| ha\\ < 6 \\X\[%)h
-otj| < 6 , \\Xe{l+J5)h-a\\ < 6 , \\X\[%)h-a\\ < 6 ,

where in the last inequality A may be an arbitrary positive number.

12.

We conclude this note with an application of Theorem 1 when r is an

arbitrary positive integer. For this purpose, assume that

does not depend on h . Any relation M(n) = 0 where n > 1 now implies

that the numbers

c^, . . . , ar, 1

are linearly dependent over the rational field Q . Conversely, if these

numbers are linearly independent over Q , then M{n) is positive for all

n > 1 . In this case i t follows from Theorem 1 that for every real number

a and for every positive number 6 there exist r integers X,, . . . , X

not ail zero such that

+ . . . + arXp-a\\ < 6 .
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We obtain thus a rather special case of Kronecker's Theorem.
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