
18
Solutions

Chapter 1

1.1 100 keV � mec
2 ⇒ classical (non-relativistic) treatment acceptable

Ekin =
1
2
mev

2 ⇒ v =
√

2Ekin

me
= 1.9 · 108 m/s ,

range s =
1
2
at2 , v = at ,

⇒ t =
2s
v

= 2.1 · 10−12 s = 2.1 ps .

1.2 mμc
2 � 1 TeV, therefore in this approximation mμ ≈ 0;

R =
∫ 0

E

dE
dE/dx

=
∫ E

0

dE
a+ bE

=
1
b

ln
(

1 +
b

a
E

)
,

R(1 TeV) = 2.64 · 105 g/cm2

=̂ 881 m rock (�rock = 3 g/cm3 assumed) .

1.3

σ(E)
E

=
√
F · √

n

n
=

√
F√
n

;

n is the number of produced electron–hole pairs,

n =
E

W
.
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W = 3.65 eV is the average energy required for the production of
an electron–hole pair in silicon:

σ(E)
E

=
√
F ·W√
E

= 8.5 · 10−4 = 0.085% .

1.4

R =
∫ 0

Ekin

dEkin

dEkin/dx
=

∫ Ekin

0

Ekin dEkin

az2 ln(bEkin)

≈ 1
az2

∫ Ekin

0

Ekin dEkin

(bEkin)1/4 ≈ 1
a 4
√
b z2

∫ Ekin

0
E

3/4
kin dEkin

=
4

7a 4
√
b z2

E
7/4
kin ∝ E1.75

kin ;

experimentally, the exponent is found to vary depending on the
energy range and the type of particle. For low-energy protons with
energies between several MeV and 200 MeV it is found to be 1.8,
and for α particles with energies between 4 MeV and 7 MeV, it is
around 1.5 [1, 2].

1.5 Longitudinal- and transverse-component momentum conservation
requires, see Fig. 18.1:

longitudinal component hν − hν′ cosΘγ = p cosΘe,
transverse component hν′ sinΘγ = p sinΘe,
(c = 1 assumed):

cotΘe =
hν − hν′ cosΘγ

hν′ sinΘγ
.

Because of

hν′

hν
=

1
1 + ε(1 − cosΘγ)

:

cotΘe =
1 + ε(1 − cosΘγ) − cosΘγ

sinΘγ
=

(1 + ε)(1 − cosΘγ)
sinΘγ

.

p γ

p

p γ

Θe

Θγ

Fig. 18.1. Kinematics of Compton scattering.
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Because of

1 − cosΘγ = 2 sin2 Θγ

2

one gets

cotΘe = (1 + ε)
2 sin2 Θγ

2

sinΘγ
.

With sinΘγ = 2 sin(Θγ/2) · cos(Θγ/2) follows

cotΘe = (1 + ε)
sin(Θγ/2)
cos(Θγ/2)

= (1 + ε) tan
Θγ

2
.

This relation shows that the scattering angle of the electron can
never exceed 90◦.

1.6 qμ + qe = q′
μ + q′

e ⇒

(
Eμ

�pμ

)(
me
�0

)
=

(
E′

μ

�pμ
′

)(
E′

e
�pe

′

)
, meEμ = E′

μE
′
e − �pμ

′ · �pe′ .

Head-on collision gives maximum energy transfer ⇒ cosΘ = 1:

meEμ = E′
μE

′
e −

√
E′2

μ −m2
μ

√
E′2

e −m2
e

= E′
μE

′
e − E′

μE
′
e

√
1 −

(
mμ

E′
μ

)2
√

1 −
(
me

E′
e

)2

= E′
μE

′
e

{
1 −

[
1 − 1

2

(
mμ

E′
μ

)2

+ · · ·
][

1 − 1
2

(
me

E′
e

)2

+ · · ·
]}

= E′
μE

′
e

[
1
2

(
mμ

E′
μ

)2

+
1
2

(
me

E′
e

)2

+ · · ·
]

,

2meEμ ≈ E′
e

E′
μ

m2
μ +

E′
μ

E′
e
m2

e ⇒ 2meEμE
′
eE

′
μ = E′2

e m
2
μ + E′2

μ m
2
e ,

m2
eE

′2
μ � m2

μE
′2
e ⇒ 2meEμE

′
eE

′
μ ≈ E′2

e m
2
μ ,
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energy conservation: E′
μ + E′

e = Eμ +me ,me � Eμ;

2meEμ(Eμ − E′
e) = m2

μE
′
e = 2meE

2
μ − 2meEμE

′
e ,

E′
e =

2meE
2
μ

m2
μ + 2meEμ

=
E2

μ

Eμ + m2
μ

2me

=
E2

μ

Eμ + 11 GeV
,

therefore E′
e = 90.1 GeV .

1.7 Argon: Z = 18, A = 40, � = 1.782 · 10−3 g/cm3,

φ(E) dE = 1.235 · 10−4 GeV
dE
β2E2 = α

dE
β2E2 .

For a 10 GeV muon β ≈ 1,

P (> E0) =
∫ Emax

E0

φ(E) dE = α

∫ Emax

E0

dE
E2 = α

(
1
E0

− 1
Emax

)
,

Emax =
E2

μ

Eμ + 11 GeV
= 4.76 GeV ,

P (> E0) = 1.235 · 10−4
(

1
10

− 1
4760

)
= 1.235 · 10−5 ≈ 0.0012% .

1.8 The sea-level muon spectrum can be approximated by

N(E) dE ∝ E−α dE , where α ≈ 2 ,

dE
dx

= constant (= a) ⇒ E = a · h (h – depth),

I(h) = const h−α ,∣∣∣∣ΔI

I

∣∣∣∣ =
αh−α−1Δh

h−α
= α

Δh

h
= 2 · 1

100
= 2% .

Chapter 2

2.1

ρ(Al) = 2.7 g/cm3 → μ = (0.189 ± 0.027) cm−1 ,

I(x) = I0 exp(−μ · x) → x = 1/μ · ln(I0/I) .
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Statistical error of the count rates:
√
I0/I0 = 1/

√
I0 ≈ 4.2% ,

√
I/I = 1/

√
I ≈ 5.0% .

The fractional error of I0/I is√
(4.2%)2 + (5.0%)2 ≈ 6.5% .

Hence I0/I = 1.440±6.5%.
Since x ∝ ln(I0/I) = ln r → dx ∝ dr/r, so that the absolute

error in ln r is equal to the fractional error in I0/I.
Therefore, ln(I0/I) = ln 1.44±0.065 ≈ 0.365±0.065 ≈ 0.37±18%.
The fractional error in μ was 14.3%, so the fractional error in

x is √
(18%)2 + (14.3%)2 ≈ 23% .

Therefore

x = 1/μ · ln(I0/I) = 1.93 cm±23% = (1.93 ± 0.45) cm .

2.2

P (n, μ) =
μn · e−μ

n!
, n = 0, 1, 2, 3, . . . →

P (5, 10) =
105 · e−10

5!
≈ 0.0378 ,

P (2, 1) =
12 · e−1

2!
≈ 0.184 , P (0, 10) =

100 · e−10

0!
≈ 4.5 · 10−5 .

2.3 The true dead-time-corrected rate at d1 = 10 cm is

R∗
1 =

R1

1 − τ R1
.

Because of the inverse square law (∝ 1/r2) the true rate at d2 =
30 cm is

R∗
2 =

(
d1

d2

)2

R∗
1 ;

and because of R∗
2 = R2/(1 − τ R2) one gets(
d1

d2

)2
R1

1 − τ R1
=

R2

1 − τ R2
.
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Solving for τ yields

τ =

(
d2
d1

)2
R2 −R1[(

d2
d1

)2
− 1

]
R1R2

= 10 μs .

Chapter 3

3.1

dose =
absorbed energy

mass unit
=

activity · energy per Bq · time
mass

=
109 Bq · 1.5 · 106 eV · 1.602 · 10−19 J/eV · 86 400 s

10 kg
= 2.08 J/kg = 2.08 Gy .

Here, also a common unit for the energy, like eV (electron volt), in
addition to Joule, is used: 1 eV = 1.602 · 10−19 J.

3.2 The decrease of the activity in the researcher’s body has two
components. The total decay rate λeff is

λeff = λphys + λbio .

Because of λ = 1
τ = ln 2

T1/2
one gets

T eff
1/2 =

Tphys Tbio

Tphys + Tbio
= 79.4 d .

Using Ḋ = Ḋ0 e−λ t and Ḋ/Ḋ0 = 0.1 one has†

t =
1
λ

ln

(
Ḋ0

Ḋ

)
=
T eff

1/2

ln 2
ln

(
Ḋ0

Ḋ

)
= 263.8 d .

† The notation Ḋ0 describes the dose rate at t = 0. Ḋ0 does not represent the time derivative
of the constant dose D0 (which would be zero, of course).
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A mathematically more demanding calculation allows to work out
the dose that the researcher has received in this time span:

Dtotal =
∫ 263.8 d

0
Ḋ0 e−λ t dt = Ḋ0

(
−1
λ

)
e−λ t

263.8 d

0

=
Ḋ0

λ

(
1 − e−λ·263.8 d) .

With

λ =
1
τ

=
ln 2
T eff

1/2
= 8.7 · 10−3 d−1

one obtains (1 μSv/h = 24 μSv/d)

Dtotal =
24 μSv/d

λ
(1 − 0.1) = 2.47 mSv .

The 50-year dose equivalent commitment D50 =
∫ 50 a
0 Ḋ(t) dt is

worked out to be

D50 =
∫ 50 a

0
Ḋ0 e−λ tdt =

Ḋ0

λ

(
1 − e−λ·50 a) ≈ Ḋ0

λ
= 2.75 mSv .

3.3 The recorded charge ΔQ is related to the voltage drop ΔU by the
capacitor equation

ΔQ = C ΔU = 7 · 10−12 F · 30 V = 210 · 10−12 C .

The mass of the air in the ionisation chamber is

m = �L V = 3.225 · 10−3 g .

This leads to an ion dose of

I =
ΔQ

m
= 6.5 · 10−8 C/g = 6.5 · 10−5 C/kg .

Because of 1 R = 2.58 · 10−4 C/kg, this corresponds to a dose of
0.25 Röntgen or, respectively, because of 1 R = 8.8 mGy,

D = 2.2 mGy .

3.4 The total activity is worked out to be

Atotal = 100 Bq/m3 · 4000 m3 = 4 · 105 Bq .
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This leads to the original activity concentration in the containment
area of

A0 =
4 · 105 Bq
500 m3 = 800 Bq/m3 .

3.5 For the activity one has

A = λ N =
1
τ
N =

ln 2
T1/2

N ,

corresponding to

N =
A T1/2

ln 2
= 1.9 · 1012 cobalt nuclei

and m = N mCo = 0.2 ng. Such a small amount of cobalt can
hardly be detected with chemical techniques.

3.6 The radiation power is worked out to be

S = 1017 Bq · 10 MeV = 1024 eV/s = 160 kJ/s ;

the temperature increase is calculated to be

ΔT =
energy deposit

m c
=

160 kJ/s · 86 400 s/d · 1 d
120 000 kg · 0.452 kJ/(kg K)

= 255 K .

This temperature rise of 255 ◦C eventually leads to a temperature
of 275 ◦C.

3.7 X rays are attenuated according to

I = I0 e−μ x ⇒ eμ x =
I0
I

.

This leads to

x =
1
μ

ln
(
I0
I

)
= 30.7 g/cm2 ,

and accordingly

x∗ =
x

�Al
= 11.4 cm .

3.8 With modern X-ray tubes the patient gets an effective whole-body
dose on the order of 0.1 mSv. For a holiday spent at an altitude of
3000 m at average geographic latitudes the dose rate by cosmic rays
amounts to about 0.1 μSv/h corresponding to 67 μSv in a period
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of 4 weeks [3]. If, in addition, the radiation load due to terrestrial
radiation is also taken into account (about 40 μSv in 4 weeks), one
arrives at a total dose which is very similar to the radiation dose
received by an X ray of the chest. It has to be mentioned, however,
that older X-ray tubes can lead to higher doses, and that the period
over which the dose is applied is much shorter for an X ray, so that
the dose rate in this case is much higher compared to the exposure
at mountain altitudes.

3.9 The effective half-life for 137Cs in the human body is

T eff
1/2 =

T phys
1/2 T bio

1/2

T phys
1/2 + T bio

1/2

= 109.9 d .

The remaining amount of 137Cs after three years can be worked
out by two different methods:

a) the period of three years corresponds to 3·365
109.9 = 9.9636 half-

lives:

activity(3 a) = 4 · 106 · 2−9.9636 = 4006 Bq ;

b) on the other hand, one can consider the evolution of the
activity,

activity(3 a) = 4 · 106 · e−3 a·ln 2/T eff
1/2 = 4006 Bq .

3.10 The specific dose constants for β and γ radiation of 60Co are

Γβ = 2.62 · 10−11 Sv m2/Bq h , Γγ = 3.41 · 10−13 Sv m2/Bq h .

For the radiation exposure of the hands the β dose dominates.
Assuming an average distance of 10 cm and an actual handling
time of the source with the hands of 60 s, this would lead to a
partial-body dose of

Hβ = Γβ
A

r2
Δt = 2.62 · 10−11 · 3.7 · 1011

0.12 · 1
60

Sv = 16.1 Sv .

The whole-body dose, on the other hand, is related to the γ radi-
ation of 60Co. For an average distance of 0.5 m and an exposure
time of 5 minutes the whole-body dose is worked out to be

Hγ = Γγ
A

r2
Δt = 42 mSv .
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Actually, a similar accident has happened to an experienced team
of technicians in Saintes, France, in 1981. The technicians should
have under no circumstances handled the strong source with their
hands! Because of the large radiation exposure to the hands and the
corresponding substantial radiation hazard, the hands of two tech-
nicians had to be amputated. For a third technician the amputation
of three fingers was unavoidable.

3.11 After the first decontamination the remaining activity is N(1 −
ε), where N is the original surface contamination. After the third
procedure one has N(1 − ε)3. Therefore, one gets

N =
512 Bq/cm2

(1 − ε)3
= 64 000 Bq/cm2 .

The third decontamination reduced the surface contamination by

N(1 − ε)2 ε = 2048 Bq/cm2 .

The number of decontaminations to reduce the level to 1 Bq/cm2

can be worked out along very similar lines (Nn = N/(Bq/cm2)):

N(1 − ε)n = 1 Bq/cm2 → (1 − ε)n =
1
Nn

→

n · ln(1 − ε) = ln
(

1
Nn

)
= − lnNn → n =

− lnNn

ln(1 − ε)
= 6.9 ,

i.e. ≈ seven times.

Chapter 4

4.1

s = E2
CMS = (q1 + q2)2

= (E1 + E2)2 − (�p1 + �p2)2

= E2
1 − p2

1 + E2
2 − p2

2 + 2E1E2 − 2�p1 · �p2

= 2m2 + 2E1E2(1 − β1β2 cosΘ)
because p = γm0β = Eβ (c = 1 assumed) .

In cosmic rays β1 ≈ 1 and β2 = 0, since the target is at rest
(E2 = m); also 2E1m � 2m2:

s ≈ 2mE1 .
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Under these conditions, one gets

Elab = E1 =
s

2m
=

(14 000 GeV)2

2 · 0.938 GeV
= 1.045 · 108 GeV ≈ 1017 eV .

4.2 Centrifugal force F =
mv2

R
= evBSt:

BSt =
m

e
· v
R

. (18.1)

(4.13) ⇒ d
dt

(mv) = e| �E| =
eR

2
dB
dt

⇒ mv =
eR

2
B . (18.2)

Compare Eqs. (18.1) and (18.2):

BSt =
1
2
B ,

which is called the Wideroe condition.

4.3

m(Fe) = � · 300 cm · 0.3 cm · 1 mm = 68.4 g ,

ΔT =
ΔE

m(Fe) · c =
2 · 1013 · 7 · 103 GeV · 1.6 · 10−10 J/GeV · 3 · 10−3

0.56 J/(g · K) · 68.4 g
= 1754 K

⇒ the section hit by the proton beam will melt.

4.4 Effective bending radius

ρ =
27 km · 2/3

2π
= 2866 m ,

mv2

ρ
= evB ⇒ p = eBρ ,

pc = eBρc ,

109 pc [GeV] = 3 · 108 B [T] · ρ [m] ,
pc [GeV] = 0.3 B [T] · ρ [m] ,

pcmax(LEP) = 116 GeV ,

pcmax(LHC) = 8.598 TeV .

4.5 Magnetic potential V = −g · x · y
with g – quadrupole field strength or gradient of the quadrupole;

�B = − gradV = (gy, gx) ;
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the surface of the magnet must be an equipotential surface ⇒

V = −g · x · y = const ⇒ x · y = const ⇒ hyperbolas .

Chapter 5

5.1

Rtrue =
Rmeasured

1 − τD ·Rmeasured
= 2 kHz . (18.3)

5.2 For vertical incidence

ΔE =
dE
dx

· d , (18.4)

for inclined incidence ΔE(Θ) = ΔE/ cosΘ;
measured energy for vertical incidence: E1 = E0 − ΔE,
measured energy for inclined incidence: E2 = E0 − ΔE/ cosΘ,

E1 − E2 = ΔE

(
1

cosΘ
− 1

)
;

plot E1 − E2 versus
( 1

cos Θ − 1
) ⇒ gives a straight line with a

slope ΔE. With the known dE/dx (from tables) for semiconductors
Eq. (18.4) can be solved for d.

5.3

q =
(

E
�p

)
, q′ =

(
E′

�p ′

)
, qγ =

(
hν
�pγ

)
are the four-momentum vectors of the incident particle, the particle
after Cherenkov emission, and the emitted Cherenkov photon;

q′ = q − qγ ,

E′2 − p′2 = (q − qγ)2 =
(

E − hν
�p− �pγ

)2

= E2 − 2hνE + h2ν2 − (p2 + p2
γ − 2�p · �pγ) .

Since E2 = m2 + p2 and �pγ = ��k:

0 = −m2 +m2 + p2 − 2hνE + h2ν2 − p2 + 2p�k cosΘ − �
2k2 ,
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2p�k cosΘ = 2hνE − h2ν2 + �
2k2,

cosΘ =
2πνE
pk

+
�k

2p
− 2πhν2

2pk
;

because of c
n = ν · λ = 2πν

k one has (c = 1)

cosΘ =
E

np
+

�k

2p
− �k

2pn2

with E = γm0, γ =
1√

1 − β2
, and p = γm0β one gets

cosΘ =
1
nβ

+
�k

2p

(
1 − 1

n2

)
.

Normally �k/2p � 1, so that the usually used expression for the
Cherenkov angle is quite justified.

5.4 Let us assume that the light flash with the total amount of light, I0,
occurs at the centre of the sphere. In a first step the light intensity
qI0, where q = Sp/Stot arrives at the photomultiplier. The majority
of the light ((1 − q)I0) misses the PM tube and hits the reflecting
surface. Then, let us select a small pad S1 anywhere on the sphere,
at a distance r from the photomultiplier and calculate how much
light reflected by this pad reaches the photomultiplier after just
one reflection (see Fig. 5.46). Denoting the total amount of light
reflected from S1 as ΔJ0 we find

ΔIPM
1 =

ΔJ0

π
cosχΔΩ =

ΔJ0

π
cosχ

Sp cosχ
(2R cosχ)2

= ΔJ0 q .

Since ΔIPM
1 has no angular dependence, this value can be simply

integrated over the sphere which gives the total amount of light
collected by the photomultiplier after the first reflection:

IPM
1 = I0q + I0(1 − q)(1 − μ)q .

The iteration of this argument leads to an expression for the total
amount of light collected by the photomultiplier after an infinite
number of reflections:

IPM
tot = I0q + I0(1 − q)(1 − μ)q + I0(1 − q)2(1 − μ)2q + · · ·

= I0q
1

1 − (1 − μ)(1 − q)
. (18.5)
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Then the light collection efficiency, η = IPM
tot /I0, is

η =
q

μ+ q − μq
≈ q

μ+ q
. (18.6)

Similar considerations for non-focussing Cherenkov counters were
presented already a long time ago by M. Mando [4].

Chapter 6

6.1 If a small-diameter tube is submerged in a liquid, the liquid level
will rise in the tube because the saturation vapour pressure of the
concave liquid surface in the tube is smaller than the correspond-
ing pressure over the planar liquid surface (capillary forces). An
equilibrium condition is obtained for an elevation h of

2πrσ = π�r2hg , (18.7)

where
r – radius of the capillary vessel,

σ – surface tension,

� – density of the liquid,

g – acceleration due to gravity.

For convex droplets the barometric scale formula

pr = p∞ exp
(
Mgh

RT

)
with
M – molar mass,

R – gas constant,

T – temperature

can be combined with (18.7) to give

ln(pr/p∞) =
M

RT

2σ
�r

.
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With numbers:
M = 18 g/mol for water (46 g/mol for C2H5OH),

σ = 72.8 dyn/cm for water (22.3 dyn/cm for C2H5OH),

� = 1 g/cm3 (0.79 g/cm3 for C2H5OH),

R = 8.31 J/mol K,

T = 20 ◦C,

pr/p∞ = 1.001,

→ r = 1.08 · 10−6 m (1.07 · 10−6 m),

i.e., droplets of diameter ≈ 2 μm will form.
If the droplets are electrically charged, the mutual repulsive

action will somewhat reduce the surface tension.

6.2 Increase of electron number

dne = (α− β)ne dx ;

α= first Townsend coefficient,

β = attachment coefficient,

ne = n0 e(α−β)d ,

dnion = βne dx ,

dnion = βn0 e(α−β)x dx ,

nion = βn0

∫ d

0
e(α−β)x dx

=
n0β

α− β

[
e(α−β)d − 1

]
,

ne + nion

n0
=
n0 e(α−β)d + n0β

α−β

[
e(α−β)d − 1

]
n0

=
1

α− β

{
(α− β) e(α−β)d + β

[
e(α−β)d − 1

]}
=

1
α− β

(
α e(α−β)d − β

)
=

1
18

(
20 e18 − 2

)
= 7.3 · 107 .

6.3 √
〈θ2〉 =

13.6 MeV
βcp

√
x

X0
[1 + 0.038 ln(x/X0)] ,

βcp = 12.86 MeV .
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For electrons of this energy β ≈ 1 ⇒ p = 12.86 MeV/c. More
precisely, one has to solve the equation

βcγm0βc = 12.86 MeV ,

β2√
1 − β2

=
12.86 MeV

m0c2
= 25.16 = α ,

β2 =
√

1 − β2 · α ⇒ β4 = α2 − α2β2 ,

β4 + α2β2 − α2 = 0 ,

β2 = − α2

2
+

√
α4

4
+ α2 = 0.998 42 ,

γ = 25.16 ,

p = 12.87 MeV/c .

Chapter 7

7.1

Δt =
T1 + T3

2
− T2 ; (18.8)

resolution on Δt:

σ2(Δt) =
(σ1

2

)2
+

(σ3

2

)2
+ σ2

2 =
3
2

· σ2
t ; (18.9)

for one wire one has

σt =

√
2
3
σ(Δt) = 5 ns → σx = v · σt = 250 μm . (18.10)

Correspondingly, the spatial resolution on the vertex is (Fig. 18.2)

sin
α

2
=
σx

σz
→ σz =

σx

sin α
2

= 500 μm . (18.11)

7.2 What matters is the transverse packing fraction. A simple geomet-
rical argument (Fig. 18.3) leads to the maximum area that can be
covered.

https://doi.org/10.1017/9781009401531.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401531.022


Chapter 7 549

z

α /2

σx

σx

Fig. 18.2. Illustration of the vertex resolution σz as derived from the track
resolution σx.

x

r

2r

Fig. 18.3. Determination of the maximum packing fraction for a scintillating
fibre tracker.

From

r2 + x2 = (2r)2 (18.12)

one gets x =
√

3 · r and finds the fraction

πr2/2
r · √

3r
= π/(2

√
3) ≈ 90.7% , (18.13)

Afibre = π · 0.52 cm2 = 0.785 mm2 → N =
A · π/(2√

3)
Afibre

= 46 211 .

(18.14)

7.3

mv2

ρ
= evB , (18.15)

ρ =
mv

eB
=

9.1 · 10−31 kg · 0.1 · 106 m/s
1.6 · 10−19 A s ·B ≤ 10−5 m , (18.16)

→ B ≥ 0.057 T = 570 Gauss . (18.17)
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7.4

Q = C · U . (18.18)

The liberated charge is

q =
60 keV
26 eV

· qe = 3.70 · 10−16 A s , (18.19)

and the required gain is obtained to be

G =
C · U
q

=
180 · 10−12 · 10−2

3.70 · 10−16 = 4865 . (18.20)

For the energy resolution one gets

σ

E
=

√
N · F
N

=
√
F√
N

=
√
F ·W√
E

= 8.58 · 10−3 , (18.21)

i.e. (60 ± 0.5) keV.

7.5 The horizontal force (tension) Fh does not change along the wire,
whereas the vertical one Fv is position-dependent, more precisely,
the vertical force at the left boundary is diminished by the weight
of the wire to the left of position x:

Fv(x) = Fv −
∫ x

x′=xl

�g
√

1 + y′2(x) dx , dm = � ds ,

ds =
√

dx2 + dy2 =
√

1 + y′2(x) dx .

From the above assumptions the slope y′(x) reads

y′(x) = −Fv(x)
Fh

= −Fv

Fh
+
�g

Fh

∫ x

x′=xl

√
1 + y′2(x′) dx′ ,

with L(x) =
∫ x

x′=xl

√
1 + y′2(x′) dx′ being the length of the wire

measured from the left boundary. Differentiating this equation
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leads to a differential equation for y′ that can be directly integrated
by separation of variables,

y′′(x) =
�g

Fh

√
1 + y′2(x) ,

d
dxy

′(x)√
1 + y′2(x)

=
�g

Fh
.

Its solution is

arsinh y′(x) =
�g

Fh
x+ c , y′(x) = sinh

(
�g

Fh
x+ c

)
,

and a subsequent integration straightforwardly leads to the curve

y(x) =
Fh

�g
cosh

(
�g

Fh
x+ c

)
+ y0 ,

where the integration constant c and the horizontal force Fh are to
be determined from the geometry and the total length L of the wire.
This solution for the form of the wire shows that it is a catenary
rather than a parabola. In a symmetric environment and/or for
an appropriate choice of the coordinate system the constants can
be chosen to be c = 0 and y0 = −Fh

�g . This also guarantees y(x =
0) = 0. For the further calculation we set the horizontal tension to
T := Fh.

The sag of the wire will be small compared to its length.
Therefore, the cosh can be expanded into a series

cosh
(�gx
T

)
= 1 +

1
2

(�gx
T

)2
+ · · ·

giving

y(x) = sag = − T

�g
+

T

�g

[
1 +

1
2

(�gx
T

)2
+ · · ·

]
,

x =
�

2
⇒ y

(
�

2

)
=

1
2
�g

T

(
�

2

)2

=
�g�2

8T
,

� =
dm
ds

= πr2i �
∗

mass per unit length, with �∗ = density of the wire material,

y

(
�

2

)
=

1
8
πr2i · �∗ · g

T
�2 .

For a tension of 50 g, corresponding to T = mT · g = 0.49 kg m/s2,
� = 1 m, �∗(tungsten) = 19.3 g/cm3 = 19.3 · 103 kg/m3, and ri =
15 μm one gets a sag of 34 μm.
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Chapter 8

8.1 If ε1 and ε2 are the energies of the two photons and ψ the opening
angle between them, the two-gamma invariant mass squared is:

m2
γγ = (ε1 + ε2)2 − (�p1 + �p2)2 = 4ε1ε2 sin2(ψ/2) .

Using the common error-propagation formula one gets for the
relative m2 uncertainty:

δ(m2)
m2 =

√[
δ(ε1)
ε1

]2

+
[
δ(ε2)
ε2

]2

+ cot2
ψ

2
δ2ψ ,

where δ(εi) and δψ are the energy and angular resolution, respec-
tively. The angular distribution is peaked near ψmin (sin(ψmin/2) =
mη/E0), so that one can take as an estimation a value of ψmin =
31.8◦. Since

δ(m2)
m2 =

m2
1 −m2

2

m2 =
(m1 +m2)(m1 −m2)

m2 = 2
δm

m

or, just by differentiating,

δ(m2)
m2 = 2m

δ(m)
m2 = 2

δm

m
,

one gets

δm

m
=

1
2

√
2 · (0.05)2 + cot2(15.9◦)(0.05)2 ≈ 9.5% .

One can see that in this case the angular accuracy dominates the
mass resolution.

8.2 The photon interaction length in matter is λ = (9/7)X0. Then the
probability that the photon passes the aluminium layer without
interaction is

Wn = exp
(

−L

λ

)
= exp

(
− 7

18

)
= 0.68 .

In this case the calorimeter response function remains unchanged,
namely, it is close to a Gaussian distribution g(E,E0), where E is
the measured energy and E0 is the incident photon energy.
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If the photon produces an e+e− pair in the aluminium, at a
distance x from the calorimeter, the electron and positron lose
part of their energy:

ΔE = 2εMIPx ,

where εMIP = (dE/dx)MIP is the specific ionisation loss. For Al one
has εMIP = 1.62 MeV/(g/cm2) and X0 = 24 g/cm2 resulting in ΔE
to vary from 0 MeV to 39 MeV. As one can see, e.g. for 100 MeV, the
measured energy spectrum will consist of a narrow peak (g(E,E0))
comprising 68% of the events, and a wide spectrum ranging from
0.6E0 to the full energy E0 containing the other 32%. For a 1 GeV
photon the events with pair production cannot be resolved from
the main peak and just result in increasing the width of it.

To estimate the resulting rms one can use a simplified form of
the probability density function (PDF):

ϕ(E) = pf1(E) + (1 − p)g(E,E0) ,

where p is the photon conversion probability in Al and f1(E) is
just an uniform distribution between Emin = E0 − ΔEmax and E0.
The modified rms can be calculated as

σ2
res = pσ2

1 + (1 − p)σ2
0 + p(1 − p)(E1 − E0)2 ,

where σ1, E1, σ0, E0 are the rms and average values for f1(E) and
g(E,E0), respectively. For f1(E) one has Emin

1 = E0 − 2εMIPL =
E0 − 39 MeV and σ1 = 2 · εMIPL/

√
12 = εMIPL/

√
3 = 11 MeV (see

Chap. 2, Eq. (2.6)). One has to consider that the energy loss ΔE
varies uniformly between 0 MeV and 39 MeV with an average value
of E1 = 19.5 MeV, and this value has to be used in the formula for
σres. With these numbers one gets σres ≈ 11 MeV for the 100 MeV
photon and σres ≈ 17 MeV for the 1 GeV photon.

8.3 When the pion interacts at depth t, the energy deposited in the cal-
orimeter is a sum of the pion ionisation losses before the interaction
(Eion) and the shower energy (Esh) created by the π0,

EC = Eion + Esh , Eion =
dE
dX

tX0 = Ecrt ,

Esh = (E0 − Eion)
∫ L−t

0

(
dE
dt

)
dt ,
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where Ecr is the critical energy. Formula (8.7) describes the elec-
tromagnetic shower development. For this estimation one can
take

dE
dt

= EγF (t) ,

where Eγ is the energy of both photons from the π0 decay and t is
the thickness measured in radiation lengths X0. Let us assume that
the resolution of the calorimeter is σE/E = 2% and the condition
of the correct particle identification as a pion is

ΔE(tc) = (Ee − EC) > 3σE ,

where Ee is the energy deposition for an electron in the calorimeter.
For an electron–positron shower of 200–500 MeV in the NaI

absorber, the parameter a in Formula (8.7) can be roughly
estimated as a ≈ 2. Then Formula (8.7) simplifies,

1
Eγ

dE
dt

=
1
4

(
t

2

)2

exp(−t/2) ,

and can be easily integrated for any t. To find tc one has to tabulate
the function ΔE(tc) numerically. The calculated dependencies of
Eion, Esh and EC on t are shown in Fig. 18.4. Since σE = 2% ·E =
10 MeV for a 500 MeV shower, and Ee − EC > 3σE is required,
one has to ask for EC < 470 MeV. Reading this limit from the

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16

t [X0]

E
C
/E

C
,m

ax

0

100

200

300

400

500

600

E
 [M

eV
]

Eion

Esh

Fig. 18.4. The calculated dependencies of Eion, Esh and EC (lower line with
triangle symbols) on t. The upper line with diamond symbols shows the ratio of
the energy deposition in the calorimeter to its maximum value (without leakage).
Even when the charge exchange occurs in the very beginning of the calorimeter,
some part of the energy leaks through the rear side.
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figure leads to tc ≈ 4 which corresponds to a thickness of 38 g/cm2.
Working out the interaction probability W from the interaction
length λint = 151 g/cm2 and with the knowledge of the charge-
exchange probability of 0.5, one obtains the pion misidentification
probability P to be

PM = 0.5W (t < tc) = 0.5 [1 − exp(−tc/λint)] ≈ 0.12 .

The probability of misidentification of the electron as pion is much
lower.

Chapter 9

9.1 Convert momenta to total energy:

E = c
√
p2 +m2

0c
2 =

⎧⎨⎩ 3.0032 GeV for 3 GeV/c
4.0024 GeV for 4 GeV/c
5.0019 GeV for 5 GeV/c

,

m0 = 139.57 MeV/c2 ,

γ =
E

m0c2
=

⎧⎨⎩ 21.518 for 3 GeV/c
28.677 for 4 GeV/c
35.838 for 5 GeV/c

,

β =
√

1 − 1
γ2 =

⎧⎨⎩ 0.9989195 for 3 GeV/c
0.9993918 for 4 GeV/c
0.9996106 for 5 GeV/c

,

cos θc =
1
nβ

⇒ θc = arccos
(

1
nβ

)
;

3 GeV/c 4 GeV/c 5 GeV/c
Lucite 47.8◦ 47.8◦ 47.8◦

silica aerogel 12.40◦–21.37◦ 12.52◦–21.44◦ 12.58◦–21.47◦

Pyrex 47.08◦ 47.10◦ 47.11◦

lead glass 58.57◦ 58.59◦ 58.60◦
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9.2

mK = 493.677 MeV/c2
, nwater = 1.33 ,

EK = c
√
p2 +m2

Kc
2 = 2.2547 GeV ;

β =
√

1 − 1
γ2 = 0.9757 ⇒ θC = 39.59◦ ,

dE
dL

=
dN
dL

· hν =
dN
dL

hc

λ
= 2παz2hc

∫ λ2

λ1

(
1 − 1

β2n2

)
dλ
λ3 ;

assume n �= f(λ), then

dE
dL

= 2παz2hc

(
1 − 1

β2n2

)
1
2

(
1
λ2

1
− 1
λ2

2

)
= παz2hc

(
1 − 1

β2n2

)(
1
λ2

1
− 1
λ2

2

)
;

h = 2π� = 41.36 · 10−22 MeV s ,

c = 3 · 1017 nm/s , n = 1.33 for water ,

λ1 = 400 nm, λ2 = 700 nm

→ dE
dL

= 0.49 keV/cm .

9.3

Ep = c
√
p2 +m2 · c2 = 5.087 GeV .

If water is considered as Cherenkov medium, one has

β =
√

1 − 1
γ2 = 0.9805 ⇒ θC = 40.1◦ in water ,

N = 203.2 photons per cm ,

n = 12 photoelectrons = N · x · ηPM · ηGeom · ηTransfer ,

x =
n

N · ηPM · ηGeom · ηTransfer
= 1.48 cm .

A counter of ≈ 1.5 cm thickness is required for the assumed
collection/conversion efficiencies.
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9.4

nLucite = 1.49 ,

threshold energy for electrons

β >
1
n

= 0.67 ⇒ γ =
1√

1 − β2
= 1.35 ⇒ E = 689 keV ,

d2N

dxdT
=

1
2
K · z2Z

A

1
β2

1
T 2 ;

T – kinetic energy of the δ rays,

K = 4πNA [mol−1]/g r2emec
2 = 0.307 MeV/(g/cm2) ,

dN
dT

=
1
2

· 0.307
MeV
g/cm2 · 6

12
1
β2

1
T 2x

= 0.171
MeV
g/cm2 · 1

T 2x → N = x ·
∫ ∞

T

0.171
MeV
g/cm2 · 1

T ′2 dT ′ ,

N = 0.171
MeV
g/cm2 · x 1

T
,

Tthreshold = 689 keV − 511 keV = 178 keV.
This gives N = 9.6 δ rays above threshold. These electrons are dis-
tributed according to a 1/T 2 spectrum. The maximum transferable
energy to electrons by 3 GeV/c protons is

Emax
kin =

E2

E +m2
p/2me

= 3.56 MeV .

However, the 1/T 2 dependence of the δ rays is strongly modified
close to the kinematic limit (the spectrum gets steeper). The 9.6
δ rays should be taken from a 1/T 2 spectrum by a suitable Monte
Carlo. Here we argue that the chance to find a δ ray with more
than 1 MeV is only

P =
(

178
1000

)2

≈ 3% .
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Therefore, we average the energies over the range 178 keV to
1 MeV,

〈T 〉 =

∫ 1 MeV
178 keV T · 1

T2 dT∫ 1 MeV
178 keV

1
T2 dT

= 372 keV ,

β372 keV =
√

1 − 1
γ2 = 0.815 , γ = 1.73 ,

cosΘ =
1
nβ

= 0.82 ⇒ Θ = 34.6◦ ,

NPhotons = 9.6 · 490 · sin2Θ · 0.08 = 121 photons ,

where x = 0.08 cm is the range of the δ rays of 372 keV (see
Chap. 1).

n = NPhotons · ηPM · ηGeom · ηTransfer = 0.97

if all efficiencies are assumed to be 20%.

⇒ ε = 1 − e−n = 62%

is the efficiency for δ rays.

9.5 Imaging Air Cherenkov telescopes measure γ-ray cascades initiated
in the atmosphere. Because of the large cross section of photons
these cascades are initiated at large altitudes, where the refractive
index is smaller than the value given at STP. Does the observed
angle of 1◦ allow to determine the typical altitude where these
showers develop?

Density variation in the atmosphere

� = �0 · e−h/h0 ,

where h0 = 7.9 km for an isothermal atmosphere.
The index of refraction n varies with the permittivity ε like n =√
ε. Since ε− 1 ∝ �, one has

n2 = ε− 1 + 1 ∝ �+ 1 → �(h)
�0

=
n2(h) − 1
n2

0 − 1
.

Because of Θ = 1◦ → n(h) = 1.000 152, if β = 1 is assumed.

⇒ �0

�(h)
= 1.94 ⇒ h = h0 ln

n2
0 − 1

n2(h) − 1
≈ 5235 m .
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9.6 Since
dE
dx

= a
mz2

Ekin
· ln

(
b
Ekin

m

)
a measurement of

dE
dx

· Ekin

identifies m · z2, since the logarithmic term is usually compara-
ble for non-relativistic particles, and the Lorentz factor is always
close to unity. Therefore a measurement of (dE/dx)Ekin provides
a technique for particle identification.

Let us first assume that muons and pions of 10 MeV kinetic
energy can be treated non-relativistically, and that we can approx-
imate the Bethe–Bloch formula in the following way:

dE
dx

= K · z2Z

A

1
β2 · ln

(
2mec

2β2γ2

I

)
with K = 0.307 MeV/(g/cm2) and β2 = (2 · Ekin)/(m · c2) in the
classical approximation. (The correction terms characterising the
saturation effect (Fermi plateau) should be rather small in this
kinematic domain.)

For singly charged particles one has

dE
dx

= K
Z

A

mc2

2Ekin
· ln

(
2mec

2

I

2Ekin

mc2
γ2

)
= 0.076 75

MeV
g/cm2

mc2

Ekin
· ln

(
14 600 · Ekin

mc2
γ2

)
leading to 6.027 MeV/(g/cm2) for muons and 7.593 MeV/(g/cm2)
for pions. Since Δx = 300 μm · 2.33 g/cm3 = 6.99 · 10−2 g/cm2, one
gets ΔE(muons) = 0.421 MeV and ΔE(pions) = 0.531 MeV.

For muons one would obtain ΔE · Ekin = 4.21 MeV2 and for
pions, correspondingly, ΔE · Ekin = 5.31 MeV2.

Neither of these results agrees with the measurement. Redoing
the calculation and dropping the assumption that muons and pions
can be treated in a non-relativistic fashion, one gets for a consid-
eration of the non-approximated Bethe–Bloch formula and a full
relativistic treatment for muons, ΔE · Ekin = 4.6 MeV2, and for
pions, correspondingly, ΔE ·Ekin = 5.7 MeV2. The difference to the
earlier result mainly comes from the correct relativistic treatment.
Therefore the above measurement identified a pion.
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For the separation of the beryllium isotopes it is justified to use
the non-relativistic approach

ΔE = 0.076 75
MeV
g/cm2 z

2mc
2

Ekin
· ln

(
14 600 · Ekin

mc2
γ2

)
· Δx .

This leads to ΔE · Ekin = 3056 MeV2 for 7Be and ΔE · Ekin =
3744 MeV2 for 9Be.

The full non-approximated consideration gives results which
differ only by about 1%.

Therefore the measured isotope is 9Be, and 8Be did not show up
because it is highly unstable and disintegrates immediately into
two α particles.

Chapter 10

10.1 The neutrino flux φν is given by the number of fusion processes
4p → 4He + 2e+ + 2νe times 2 neutrinos per reaction chain:

φν =
solar constant

energy gain per reaction chain
· 2

≈ 1400 W/m2

26.1 MeV · 1.6 · 10−13 J/MeV
· 2 ≈ 6.7 · 1010 cm−2 s−1 .

10.2

(qνα
+ qe−)2 = (mα +mνe )

2 , α = μ, τ ;

assuming mνα to be small (� me ,mμ,mτ) one gets

2Eνα
me +m2

e = m2
α ⇒ Eνα

=
m2

α −m2
e

2me
⇒

α = μ : Eνμ = 10.92 GeV , α = τ : Eντ = 3.09 TeV ;

since solar neutrinos cannot convert into such high-energy neutri-
nos, the proposed reactions cannot be induced.

10.3 The interaction rate is

R = σNNA[mol−1]/g dAφν ,

where σN is the cross section per nucleon, NA = 6.022×1023 mol−1

is the Avogadro constant, d the area density of the target, A the
target area and φν the solar neutrino flux. With d ≈ 15 g cm−2,
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A = 180 × 30 cm2, φν ≈ 7 · 1010 cm−2 s−1, and σN = 10−45 cm2

one gets R = 3.41 · 10−6 s−1 = 107 a−1. A typical energy of solar
neutrinos is 100 keV, i.e., 50 keV are transferred to the electron.
Consequently, the total annual energy transfer to the electrons is

ΔE = 107 · 50 keV = 5.35 MeV = 0.86 · 10−12 J .

With the numbers used so far the mass of the human is 81 kg.
Therefore, the equivalent annual dose comes out to be

Hν =
ΔE

m
wR = 1.06 · 10−14 Sv ,

actually independent of the assumed human mass. The contribu-
tion of solar neutrinos to the normal natural dose rate is negligible,
since

H =
Hν

H0
= 5.3 · 10−12 .

10.4 Four-momentum conservation yields

q2π = (qμ + qν)2 = m2
π . (18.22)

In the rest frame of the pion the muon and neutrino are emitted
in opposite directions, �pμ = −�pνμ

,(
Eμ + Eν

�pμ + �pνμ

)2

= (Eμ + Eν)2 = m2
π . (18.23)

Neglecting a possible non-zero neutrino mass for this consideration,
one has

Eν = pνμ

with the result

Eμ + pμ = mπ .

Rearranging this equation and squaring it gives

E2
μ +m2

π − 2Eμmπ = p2
μ ,

2Eμmπ = m2
π +m2

μ ,

Eμ =
m2

π +m2
μ

2mπ

. (18.24)

For mμ = 105.658 369 MeV and mπ± = 139.570 18 MeV one gets
Ekin

μ = Eμ −mμ = 4.09 MeV. For the two-body decay of the kaon,
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K+ → μ+ + νμ, (18.24) gives Ekin
μ = Eμ − mμ = 152.49 MeV

(mK± = 493.677 MeV).
The neutrino energies are then just given by

Eν = mπ − Eμ = 29.82 MeV

for pion decay and

Eν = mK − Eμ = 235.53 MeV

for kaon decay.

10.5 The expected difference of arrival times Δt of two neutrinos with
velocities v1 and v2 emitted at the same time from the supernova is

Δt =
r

v1
− r

v2
=
r

c

(
1
β1

− 1
β2

)
=
r

c

β2 − β1

β1 β2
. (18.25)

If the recorded electron neutrinos had a rest mass m0, their energy
would be

E = mc2 = γm0c
2 =

m0c
2√

1 − β2
, (18.26)

and their velocity

β =
(

1 − m2
0c

4

E2

)1/2

≈ 1 − 1
2
m2

0c
4

E2 , (18.27)

since one can safely assume that m0c
2 � E. This means that the

neutrino velocities are very close to the velocity of light. Obviously,
the arrival-time difference Δt depends on the velocity difference of
the neutrinos. Using (18.25) and (18.27), one gets

Δt ≈ r

c

1
2

m2
0c4

E2
1

− 1
2

m2
0c4

E2
2

β1β2
≈ 1

2
m2

0c
4 r

c

E2
2 − E2

1

E2
1 E

2
2

. (18.28)

The experimentally measured arrival-time differences and indi-
vidual neutrino energies allow in principle to work out the
electron-neutrino rest mass

m0 =
(

2Δt

r c3
E2

1 E
2
2

E2
2 − E2

1

)1/2

. (18.29)
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10.6 The interaction cross section of high-energy neutrinos was mea-
sured at accelerators to be

σ(νμN) = 6.7 · 10−39 Eν [GeV] cm2/nucleon . (18.30)

For 100 TeV neutrinos one would arrive at a cross section of 6.7 ·
10−34 cm2/nucleon. For a target thickness of 1 km an interaction
probability W per neutrino of

W = NA[mol−1]/g σ d � = 4 · 10−5 (18.31)

is obtained (d = 1 km = 105 cm, �(ice) ≈ 1 g/cm3).
The total interaction rate R is obtained from the integral neu-

trino flux Φν, the interaction probability W , the effective collection
area Aeff = 1 km2 and a measurement time t. This leads to an event
rate of

R = Φν W Aeff (18.32)

corresponding to 250 events per year. If a target volume of 1 km3 is
fully instrumented, the effective collection area will be even larger.

Chapter 11

11.1
dE
dx

= a+ bE

is a good approximation for the energy loss, where a represents the
ionisation loss and b stands for the losses due to pair production,
bremsstrahlung and photonuclear interactions. For 1 TeV muons
one finds [5]

a ≈ 2.5 MeV/(g/cm2) ,

b ≈ 7.5 · 10−6 (g/cm2)−1 .

For 3 m of iron (� · x = 2280 g/cm2) one gets

ΔE = 3 m
dE
dx

= 22.8 GeV .

Because of energy-loss fluctuations, one gets a radiative tail in
the momentum distributions of an originally monoenergetic muon
beam as sketched in Fig. 18.5 [5].
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950 960 970 980 990 1000

final momentum, p [GeV/c]

0.00

0.02

0.04

0.06

0.08

0.10

1 TeV muons
on 3 m Fe

mean
977 GeV/c

median
987 GeV/c

dN
 / d

p 
[1

/(
G

eV
/c

)]

FWHM
9 GeV/c

Fig. 18.5. The momentum distribution of 1 TeV/c muons after traversing 3 m
of iron [6].

11.2 The production probability can be determined along the lines of
Eq. (1.25) and the references given in that context. For argon
(Z = 18, A = 36, � = 1.782 · 10−3 g/cm3) the column density is

d = 0.5346 g/cm2
.

Bending radii from 5 cm to 20 cm correspond to momenta

p [GeV/c] = 0.3B [T] ·R [m]

of 30 MeV/c to 120 MeV/c. The δ-electron differential energy
spectrum for high-momentum muons can be approximated by

φ(ε) dε = 2Cmec
2 dε
ε2

,

where ε is the energy of the δ electron and me the electron rest
mass [7, 8]. With C = 0.150 Z

A g−1 cm2 one gets

P =
∫ 120 MeV

30 MeV
φ(ε) dε = 0.150 · Z

A

(
1
30

− 1
120

)
cm2

g

= 1.875 · 10−3 cm2

g
,

P · d = 10−3 = 0.1% per track .

For 100 tracks one has a 10% probability that one of the charged
particles will create a δ electron with the properties in question.
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11.3 (a)

Θρ = Θϕ for n =
1
2

⇒ Θ = π
√

2 = 255.6◦ ,

B(ρ) = B(ρ0)
(
ρ0

ρ

)1/2

.

(b)

dE
dx

(10 keV) = 27
keV
cm

· π
√

2 · ρ0 · p

patm

= 27 · 103 · π
√

2 · 50 · 10−3

760
eV = 7.9 eV ,

i.e., just about one or perhaps even zero ionisation processes
will occur.

11.4

By · � ∝ x , Bx · � ∝ y ,

� = const ⇒ By = g · x , Bx = g · y .

This leads to a magnetic potential of

V = −g · x · y

with

g =
∂By

∂x
=
∂Bx

∂y
,

where g is called the gradient of the quadrupole;

− gradV = −
(
∂V

∂x
�ex +

∂V

∂y
�ey

)
= g · y︸︷︷︸

Bx

�ex + g · x︸︷︷︸
By

�ey .

Since the surface of the yoke must have constant potential, one
has

V = V0 = −g · x · y , i.e. x ∝ 1
y
,

which means that the surface of the yoke must be hyperbolic.
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Chapter 12

12.1

τ(T ∗) =
1
12
τ(T ) , τ0 eEa/kT∗

=
1
12
τ0 eEa/kT ;

solve for kT∗
kT →

kT ∗

kT
=

1
1 − kT

Ea
ln 12

= 1.18 .

→ The temperature has to be increased by 18%.

12.2

ΔU−∗

ΔU− =
− N e

C ln[ra/(1.1 ri)]
ln[r0/(1.1 ri)]

− N e
C ln(ra/ri)

ln(r0/ri)
=

1 − ln 1.1
ln(r0/ri)

1 − ln 1.1
ln(ra/ri)

≈ 0.88 .

→ The gain is decreased by 12%.

Chapter 13

13.1 Assume Poisson statistics:

efficiency = 50% ⇒ e−m = 0.5 ⇒ m = 0.6931 ,

N =
m

ηPM · ηGeom · ηTransfer
= 43.32 ,

dN
dx

= 490 sin2 θC cm−1 · 150 cm = 43.32 ,

sin2 θC = 5.89 · 10−4 ,

θC = 1.39◦ ;

cos θC =
1
nβ

⇒ β =
1

n cos θC
.

Index of refraction of CO2 at 3 atm:

n = 1.00123 ⇒ β = 0.99907
⇒ γ = 23.14
⇒ Eπ = 3.23 GeV .
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13.2 By grouping the photons into pairs one can work out the invariant
mass of the different γγ combinations,

m2 = (qγi + qγj )
2 = 2 · Eγi · Eγj (1 − cos θ) .

One finds for m(γ1, γ2) = 135 MeV and for m(γ3, γ4) = 548 MeV,
i.e., the four photons came from a π0 and an η.

13.3

Δt =
L · c
2 · p2 (m2

2 −m2
1) =

L · c
2 · p2 (m2 −m1)(m2 +m1) ;

if m1 ≈ m2 →
Δt =

L · c
2 · p2 · 2m · Δm ;

since

p2 = γ2 ·m2 · β2 · c2
one gets

Δt =
L · c

γ2 · β2 · c2 · Δm

m
;

→
Δm

m
= γ2 · c

2 · β2

L · c · Δt .

For β ≈ 1 one has

Δm

m
= γ2 · c

L
· Δt = γ2 Δt

t
. (18.33)

For a momentum of 1 GeV/c the flight-time difference for muons
and pions is

Δt =
L

c
·
(

1
β1

− 1
β2

)
.

From γβmc2 = 1 GeV one gets γμ · βμ = 9.46, γπ · βπ = 7.16
corresponding to βμ = 0.989, γμ = 9.57 and βπ = 0.981, γπ =
7.30. With these values the flight-time difference becomes Δt =
27.5 ps. The absolute flight times for pions and muons are not very
different (this is the problem!), namely tμ = 3.37 ns and tπ =
3.40 ns, resulting in

Δt

t
≈ 8.12 · 10−3 .

This excellent value is, however, spoiled by the factor γ2 in
Eq. (18.33), leading to a relatively poor mass resolution.
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13.4 The quantity E2
CM is equal to the kinematical invariant s = (p+ +

p−)2, where p+ and p− are the positron and electron four-momenta,
respectively. Then this value can be expressed as

s = (p+ + p−)2 = 2m2
e + 2(E+E− − �p+�p−) .

Neglecting the electron mass and the angle between the beams,
22 mrad, one gets

ECM = 2
√
E+E− = 10.58 GeV .

Considering the finite crossing angle of 22 mrad results in a decrease
of the centre-of-mass energy of 200 keV only!

13.5 Since a particle energy loss is recovered at every revolution when it
passes the RF cavities, let us calculate first the probability of the
emission of a bremsstrahlung photon carrying away more than 1%
of the particle’s energy. The number of photons which are emit-
ted along the path ΔX in the energy interval [ε, ε + dε] to first
approximation is (see Rossi’s book [7])

dn =
ΔX

X0

dε
ε

.

Integration of this expression from ε0 to the beam energy, E0, gives
the required probability

w1 =
ΔX

X0
ln
E0

ε0
.

The density of the residual gas (assuming air, having the density
of 1.3 · 10−3 g/cm3 at 100 kPa) is 1.3 · 10−15 g/cm3 which results
in w1 ≈ 0.5 · 10−10, which means that after an average of 1/w1 ≈
2·1010 revolutions a bremsstrahlung process with an energy transfer
of more than 1% of the beam energy occurs. This corresponds
to a beam lifetime of tb ≈ 2 · 105 s. In a real experiment with
intensively colliding beams, the beam lifetime is much shorter and
it is determined by other effects, such as beam–beam interactions,
the Touschek effect,‡ nuclear interactions of the electrons with the
residual gas, interactions with the ambient blackbody photons of
room temperature and so on.

‡ An effect observed in electron–positron storage rings in which the maximum particle con-
centration in the counterrotating electron bunches is limited at low energies by the loss of
electrons in Møller scattering [9].
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13.6 The differential cross section for this process is expressed as (see,
for example, [5] (2006), p. 325)

dσ
dΩ

=
α2

4s
(1 + cos2 θ) .

Integration of this formula over the mentioned solid angle and
converting the ‘natural units’ of the cross-section formula into
numerical values by using �c = 0.1973 GeV fm results in

σdet =
πα2

s

(
z0 +

z3
0

3

)
=

65.1 nb
s [GeV2]

(
z0 +

z3
0

3

)
=

70.5 nb
s [GeV2]

,

where z0 = cos θ0. Thus, one gets σdet = 0.63 nb at ECM =
10.58 GeV corresponding to a muon event rate of 6.3 Hz.

Chapter 14

14.1 When the overall resolution of a system is determined by the convo-
lution of multiple Gaussian distributions, the individual resolutions
add in quadrature:

Δt =
√

Δt21 + Δt22 =
√

1002 + 502 ps = 112 ps .

14.2 (a)

Qn =
√
Q2

ni +Q2
nv =

√
1202 + 1602 eV = 200 eV .

(b)

Qn =
√
Q2

ni +Q2
nv =

√
102 + 1602 eV = 160 eV .

After cooling, the current noise contribution is not discernible.

14.3 (a) The two Gaussian peaks are adequately resolved at σE =
ΔE/3, so since the spacing between the two peaks is ΔE =
(72.87 − 70.83) keV = 2.04 keV, the required resolution is
σE = 0.68 keV or 1.6 keV FWHM. Note that in systems dom-
inated by electronic noise it is more useful to specify absolute
resolution rather than relative resolution, as the linewidth is
essentially independent of energy.

(b) Since the individual resolutions add in quadrature, σ2
E =

σ2
det + σ2

n, the allowable electronic noise is σn = 660 eV.
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14.4 (a) The noise current sources are the detector bias current, con-
tributing i2nd = 2eId, and the bias resistor with i2nb = 4kT/Rb.
The noise voltage sources are the series resistance and the
amplifier, contributing e2nR = 4kTRs and e2na = 10−18 V2/Hz,
respectively. The shape factors for a CR–RC shaper are
Fi = Fv = 0.924. This results in an equivalent noise charge

Q2
n = i2nTsFi + C2

de
2
n
Fv

Ts
,

Q2
n =

(
2eId +

4kT
Rb

)
· Ts · Fi + C2

d · (4kTRs + e2na) · Fv

Ts
,

Q2
n = (3.2 · 10−26 + 1.66 · 10−27) · 10−6 · 0.924 C2+ (18.34)

+ 10−20 · (1.66 · 10−19 + 10−18) · 0.924
10−6 C2 .

The detector bias current contributes 1075 e, the bias current
245 e the series resistance 246 e and the amplifier 601 e. These
add in quadrature to yield the total noise of Qn = 1280 e or
4.6 keV rms (10.8 keV FWHM).

(b) As calculated in (a) the current noise contribution is

Qni =
√

10752 + 2452 e = 1103 e

and the voltage noise contribution is

Qnv =
√

2462 + 6012 e = 649 e .

Minimum noise results when the current and voltage noise
contributions are equal. From Eq. (14.18) this condition yields
the optimum shaping time

Ts,opt = Ci
en
in

√
Fv

Fi
.

This yields Ts,opt = 589 ns and Qn,min = 1196 e.

(c) Without the bias resistor, the noise is 1181 e. For the resistor
to add 1% to the total, its noise may be 2% of 1181 e or 24 e,
so Rb > 34 MΩ.

14.5 (a) Equation (14.26) yields the timing jitter

σt =
σn

(dV/dt)VT

.
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The noise level is σn = 10 μV and the rate of change is

dV
dt

≈ ΔV

tr
=

10 · 10−3 V
10 · 10−9 s

= 106 V/s ,

yielding the timing jitter

σt =
10 · 10−6

106 s = 10 ps .

(b) For the 10 mV signal the threshold of 5 mV is at 50% of
the rise time, so the comparator fires at (5 + 1) ns, whereas
for the 50 mV signal the threshold is at 10% of the rise time,
so the comparator fires at (1 + 1) ns. The time shift is 4 ns.
Note that the time t0 drops out, so it can be disregarded.

Chapter 15

15.1

Nacc = εeNe + επNπ = εeNe + επ(Ntot −Ne)

Solving for Ne gives

Ne =
Nacc − επNtot

εe − επ
.

In case of εe = επ there would obviously be no chance to determine
Ne .

15.2

E[t] =
1
τ

∫ ∞

0
t e−t/τ dt = τ ,

σ2[t] =
1
τ

∫ ∞

0
(t− τ)2 e−t/τ dt

=
1
τ

[∫ ∞

0
t2 e−t/τ dt−

∫ ∞

0
2tτ e−t/τ dt+ τ2

∫ ∞

0
e−t/τ dt

]
=

1
τ

(
2τ3 − 2τ3 + τ3) = τ2 .

15.3 Source rate

nν =
N1

t1
− N2

t2
= (nν + nμ) − nμ .
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Standard deviation from error propagation:

σnν
=

[(
σN1

t1

)2

+
(
σN2

t2

)2
]1/2

=
(
N1

t21
+
N2

t22

)1/2

=
(
nν + nμ

t1
+
nμ

t2

)1/2

.

t1 + t2 = T is fixed. Therefore, dT = dt1 + dt2 = 0. Squaring and
differentiating σnν with respect to the measurement times gives

2σnν
dσnν

= −nν + nμ

t21
dt1 − nμ

t22
dt2 .

Setting

dσnν
= 0

yields the optimum condition (dt1 = −dt2):

nν + nμ

t21
dt2 − nμ

t22
dt2 = 0 ⇒ t1

t2
=

√
nν + nμ

nμ
=

√
nν

nμ
+ 1 = 2 .

15.4 y = mE, m – slope. The fitted linear relation is obtained from
y +Am = 0 (Cy – error matrix) with [10]

A = −

⎛⎜⎜⎜⎜⎜⎜⎝
0
1
2
3
4
5

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Cy =

⎛⎜⎜⎜⎜⎜⎜⎝
0.32

0.32 0
0.32

0.32

0 0.32

0.32

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.09 I ,
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m = − (ATA)−1ATy =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(

0 1 2 3 4 5
)
⎛⎜⎜⎜⎜⎜⎜⎝

0
1
2
3
4
5

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

−1

·

(
0 1 2 3 4 5

)
⎛⎜⎜⎜⎜⎜⎜⎝

0
0.8
1.6
2.5
2.8
4.0

⎞⎟⎟⎟⎟⎟⎟⎠ =
1
55

· 42.7 ≈ 0.7764 ,

(Δm)2 = (ATC−1
y A)−1

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(

0 1 2 3 4 5
)
0.09−1

⎛⎜⎜⎜⎜⎜⎜⎝
0
1
2
3
4
5

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

−1

= 0.09 · 1
55

≈ 0.00164 ,

→ m = 0.7764 ± 0.0405 .

The data points – corrected for the offset – along with the best fit
are shown in Fig. 18.6.

4
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1

0

linear fit
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energy [GeV]
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sp
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.u

.]

Fig. 18.6. Calibration data, corrected for the offset, along with the best fit
calibration function.
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Chapter 16

16.1 P = 10 mW laser power at the frequency ν; rate of photons n =
P/hν, h – Planck’s constant; momentum of the photon (after de
Broglie) p = h/λ = hν/c; change of momentum upon reflection
2p = 2hν/c; the force has two components: (a) reflected photons
F1 = n · 2p · ε = (P/hν)2(hν/c)ε = 2(P/c)ε; (b) absorbed photons
F2 = (P/hν)(hν/c)(1−ε) = (P/c)(1−ε); F = F1+F2 = P

c ·(ε+1) =
5 · 10−11 N.

16.2 Number of 238U nuclei: N = N0 ·e−λt, where λ = ln 2/T1/2; number
of lead nuclei: N0(1 − e−λt). r = N0(1 − e−λt)/N0 e−λt = eλt − 1 =
0.06, t = 3.8 · 108 years.

16.3 Total power radiated by the Sun: P = 4πR2σT 4
S , where σ – Boltz-

mann’s constant, TS – Sun’s surface temperature (≈ 6000 K), R –
Sun’s radius. The satellite will absorb the power

P1 =
4πR2σT 4

S

4πD2 · πr2ε =
R2

D2σT
4
Sπr

2ε ,

where D – distance Sun–satellite, r – radius of the satellite,
ε – absorption coefficient. Since the emissivity is equal to the
absorption, one gets

P2 = 4πr2σT 4 · ε

for the radiated power by the satellite. At equilibrium one has
P1 = P2, and therefore

R2

D2σT
4
Sπr

2 · ε = 4πr2σT 4 · ε

yielding

T = TS ·
(
R2

4D2

)1/4

;

with R ≈ 700 000 km and D ≈ 150 000 000 km one obtains T =
290 K.

16.4

ELi + Eα = 2.8 MeV , E =
p2

2m
→

√
2mLiELi =

√
2mαEα
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because the lithium nucleus and the α particle are emitted back to
back;

Eα =
mLi

mα
· (Q− Eα) → Eα =

mLi

mLi +mα
·Q = 1.78 MeV .

16.5 dσ/dΩ ∝ 1/ sin4 θ/2 ∝ 1/θ4 for Bhabha scattering. The count rate
is determined by the lower acceptance boundary,

σBhabha(θ0) =
∫

θ0

(dσ/dΩ)2π dθ ∝ 1/θ3
0 .

Doubling the accuracy of σ(e+e− → Z) by a factor of 2 means

σBhabha(θnew) = 4 · σBhabha(θ0) , 1/θ3
new = 4 · 1/θ3

0 .

This leads to

θnew = θ0 · 3
√

1/4 = 0.63 θ0 ≈ 19 mrad .

16.6 A 100 GeV γ-induced shower starts at an altitude of d ≈ 20 km
and has just about 100 energetic secondaries which emit Cherenkov
light over a distance of ≈ 20X0(= 6000 m). The photon yield in
air is ≈ 20 photons/m, leading to a total number of Cherenkov
photons of

Nγ � 100 · 20 · 6000 = 1.2 · 107 .

These photons will be distributed at sea level over a circular area

A = π · (d · tan θ)2 ,

where θ is the Cherenkov angle of relativistic electrons in air at
20 km altitude (≈ 1.2◦):

A = 550 000 m2 .

With an absorption coefficient in air of ε ≈ 30% one gets

n = Nγ/A · (1 − ε) � 15/m2 .
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