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Abstract
We study a stochastic model for a target benefit pension plan suffering from rising longevity and falling fertility.
Policies for postponing retirement are carried out to hedge the payment difficulties caused by the aging population.
The plan members’ contributions are set in advance while the pension payments reflect intergenerational equity by
a target payment level and intergenerational risk sharing by an adjustment. The pension fund is invested in both a
risk-free asset and a risky asset. Applying the stochastic optimal control methods, we derive analytic solutions for
optimal investment and benefit payment strategies which minimize the benefit risk. Besides, an optimal delayed
retirement age which can hedge against the aging phenomenon under certain parameters is given. Therefore, it can
provide a basis for quantifying the delay of retirement time.

1. Introduction
The target benefit pension (TBP) plan, as a new type of pension system combining traditional defined
benefit (DB) and defined contribution (DC) pension funds, has attracted more and more attention. The
target benefit plan is a collective pension scheme featuring fixed contributions and a target benefit level
preset by trustees, and actual benefits may exceed or fall short of the target, depending on the return
of the fund in the financial market. Its primary advantage is that risks are shared between different
generations rather than being borne individually (Wang et al., 2018, 2019), which may enhance welfare
compared to either traditional defined benefit or defined contribution plans (Gollier, 2008; Cui et al.,
2011). Nowadays, TBP has developed in Canada and Germany (CIA, 2015; Chen and Rach, 2021).
Zhu et al., 2021) study fair transitions from defined benefit pension schemes to target benefit pension
schemes. Besides, the flexible selection of targets gives TBP a huge space for optimization in design.
Chen et al. (2022) design a TBP plan possessing a linear risk-sharing structure with cyclical parameters
that balances the sustainability and the benefit stability.

Recently, the intergenerational risk-sharing pension design has attracted more and more attention. In
this pension design, investment and other risks are distributed among different generations. Many risk-
sharing schemes have emerged around the world, including risk-sharing DB plan in Japan (Pugh and
Yermo, 2008; Turner, 2014), target benefit plan in Canada (Munnell and Sass, 2013; CIA, 2015), and
collective DC plans from the Netherlands (Kortleve, 2013; Bovenberg et al., 2016). Some academic dis-
cussions on collective pension schemes with risk sharing have been put forward (Baumann and Müller,
2008; Gollier, 2008; Cui et al., 2011; Khorasanee, 2012; Chen et al., 2017; Wang et al., 2018; Wang
and Lu, 2019).

‡This article has been updated since its original publication. A notice detailing this change can be found here:
https://doi.org/10.1017/asb.2023.9

C© The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association

https://doi.org/10.1017/asb.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.27
https://doi.org/10.1017/asb.2023.9
https://doi.org/10.1017/asb.2022.27


ASTIN Bulletin 85

In addition to financial risk, risks that need to be shared between generations also include longevity
risk. Generally speaking, longevity trends means people born later live longer than those born before,
and longevity risk is a fluctuation that interferes with people’s estimation of longevity trends. In recent
decades, countries around the world have been enduring demographic transition, characterized by
increasing life expectancy at birth and declining lifetime fertility (Oeppen and Vaupel, 2002; Medford,
2017; Pascariu et al., 2018). The proportion of the global population aged 65 years or over is expected
to increase from 9.3% in 2020 to about 16% in 2050 (United Nations, 2020). This development is a
particular challenge for pension systems.

The negative effects of the increase of life expectancy and the decrease of fertility rate on collective
pension systems are mainly reflected in two aspects. First, rising longevity and falling fertility threaten
the financial sustainability of pension plans (Heeringa and Bovenberg, 2009; Villegas and Haberman,
2014). Neglecting longevity trends may cause inadequate funding for pension liabilities (Coughlan et al.,
2011). Second, the inequality of pension redistribution may increase in the sense of transfers of wealth
from the poorer (usually with shorter lifespans) to the richer (with longer lifespans) (Ayuso et al., 2017;
Holzmann et al., 2019). Cohorts with a high longevity are compensated at the expense of cohorts with a
relatively short longevity (Andersen, 2014), which is unavoidable in collective pension systems, and ris-
ing longevity will exacerbate this trend. Therefore, there is an increased need to reform pension systems
in many countries.

In order to maintain financial sustainability, postponing retirement has become a seemingly default
method in designing pension systems (Galasso, 2008; Alvarez et al., 2021). One way is to increase
the retirement age to make the remaining life expectancy fixed. In Denmark, the statutory retirement
age will be gradually raised to the target age at which the remaining life expectancy is 14.5 years, see
(Danish Ministry of Economic Affairs and Interior, 2017, 2018). Another way is to set the retirement age
proportional to cohort-specific longevity (Knell, 2018). However, if an increase in life expectancy does
not lead to difficulties in pension payments, it may not be necessary to delay retirement. Therefore, in this
paper, we abandon the assumption that retirement ages directly link to life expectancy and explore the
demographic conditions for how long to delay retirement in the view of the pension fund’s investments
and payments.

In the TBP plan, the amount of pension is based on the target and the adjustment of risk sharing, so
in addition to establishing a good risk-sharing mechanism, the determination of a reasonable target also
needs to be considered. In this paper, the target setting is based on the principle of actuarial equity, which
can reflect intergenerational equity. In the multigenerational pension model, intergenerational equity is
important, since different generations face different life curves and external environments (e.g., salaries).
If their pension annuities are the same, intergenerational equity will be damaged. In addition, people who
delay retirement should enjoy higher pension income than those who retire normally, otherwise it will
undermine fairness and cause dissatisfaction. Therefore, each generation has its own target annuity, and
its amount is determined by the principle of actuarial equity, which means the expected future value of
accumulated contributions at the retirement date is equal to the present value at that time of the expected
total benefits to be received in retirement. The actual benefit (target plus adjustment) for each generation
draws lessons from longevity-linked life annuities (LLLA), where the welfare is adjusted up and down
according to the life index calculated by using the reference population (Denuit et al., 2011; Bravo and
De Freitas, 2018).

To the best of the authors’ knowledge, the proposed study is a maiden attempt at investigating the
proper length of postponing retirement under the condition of longevity risk and fertility decline in the
target benefit pension plan. In this paper, we study a stochastic model for a TBP suffering from rising
longevity and falling fertility. Policies for postponing retirement are carried out to hedge the payment
difficulties caused by aging population. The pension fund is invested in both a risk-free asset and a risky
asset. Applying the stochastic optimal control methods, we derive analytic solutions for optimal invest-
ment and benefit payment strategies which minimize the benefit risk. Compared with Chen et al. (2022),
where the target benefit level is externally given and the longevity risk is ignored, the target benefit in
this paper is endogenous by the principle of actuarial equity and can be affected by the longevity risk and
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postponing retirement. Thus, our paper reflects the adaptability of the TBP plan in the face of population
structure changes.

This study contributes three primary developments. First, we explore the potential of the TBP in
intergenerational equity and intergenerational risk sharing. In this paper, the target benefit reflects inter-
generational equity and the adjustment (the difference between the actual benefit and target benefit)
reflects intergenerational risk sharing. Second, we consider longevity risk (systematic) and fertility
decline in a multigenerational superposition pension model. Through endogenous target benefits, we can
dynamically respond to demographic changes and postponing retirement. Third, we obtain an optimal
delayed retirement age which is able to maximize the interests of the pension fund and individuals.

This paper is organized as follows. In Section 2, we introduce the basic settings of our model. The
optimal stochastic problem is discussed in Section 3. In Section 5, we analyze some numerical examples
to demonstrate our results. Finally, Section 6 concludes the paper.

2. Model formulation
2.1. Longevity risk
The aging population is driven by two demographic factors: declining fertility rates and increasing life
expectancy. We set n(h) to be the instantaneous density of the newborn cohort at time h, which drops
over time to represent declining fertility rates.

The longevity risk can be classified into systematic and nonsystematic (Boon et al., 2022). Here
we focus on the systematic longevity risk. To describe the systematic longevity risk, we introduce the
assumed survival function S̄(x, h) to be the assumed probability that a member of cohort h survives to
age x. We denote the random death time of cohort h as k(h), and then we have P(k(h) > x) = S̄(x, h). The
values of S̄(x, h) come from an initial life table. When signing a pension annuity contract, the insurer
determines the value of the annuity according to S̄(x, h).

The real survival function is denoted by S(x, h) and is nonnegative. The real survival function often
exceeds the insurer’s expectation due to the systematic longevity risk, which will bring losses to the
insurer. The difference between the real survival function S(x, h) and the hypothetical survival function
S̄(x, h) constitutes the systematic longevity risk. It holds that S(0, h) = 1 and S(ω, h) = 0, where ω is a
sufficient large constant to be an upper bound lifespan for all cohorts h considered in this model. For
fixed h, S(x, h) is decreasing in x, and for fixed x, S(x, h) is increasing in h. It follows that the life
expectancy of cohort h is nondecreasing which can be calculated by integrating the survival function
with respect to age x from 0 to ω.

Assume all the members join the TBP at age a. Let the retirees’ minimum age (also the active
members’ maximum age) at time t be r(t). Then the density of those who reach age x at time t is
n(t − x)S(x, t − x). Then the expected total number of active members at time t is given by

A(t) =
∫ r(t)

a

n(t − x)S(x, t − x)dx.

Similarly, the expected total number of retired members at time t is

R(t) =
∫ ω

r(t)

n(t − x)S(x, t − x)dx.

The old-age dependency ratio which describes the average number of elderly people to support per
working population is thus

D(t) = R(t)

A(t)
.

Generally speaking, the aging population is accompanied by the increase of the dependency ratio.
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2.2. Postponing the retirement age
By assumption, the TBP fund manager decides to implement a postponing retirement policy. Before
time t = 0, active members retire at the age of r0. Then at time t = 0, a postponing retirement policy is
carried out that the statutory retirement age is set to r1, which means active members need to work until
they are r1 years old. Those who have retired before t = 0 can continue to enjoy their retirement life,
even if part of them do not reach the new retirement age r1. After t = 0, active members are supposed
to work until they reach the new retirement age r1. For example, if we set the initial retirement age r0

to 55 and the new retirement age r1 to 60, then at time 0, the minimum age of retirees is still 55, while
at time t = 1, the retirees’ minimum age becomes 56. More specifically, at time t = 1, except those who
died, the retired members are the same as a year ago, because the increase of the statutory retirement age
causes that there are no new retirees this year. However, when t ≥ 5, new retirees begin to appear, then
the retirees’ minimum age will be fixed at age 60. To conclude, when t ≤ r1 − r0, the retirees’ minimum
age is r0 + t and the active members’ ages range from a to r0 + t. For t > r1 − r0, the retirees’ minimum
age (also the active members’ maximum age) will always be r1. We now introduce r(t) to be the retirees’
minimum age at time t, which is subtly different from the statutory retirement age. It holds that

r(t) =

⎧⎪⎪⎨
⎪⎪⎩

r0, t ≤ 0,

r0 + t, 0 < t ≤ r1 − r0,

r1, t > r1 − r0.

2.3. Plan provisions
Consider a plan consisting of active and retirement members. While the active members make
contributions to the pension fund, the retired members receive benefits paid from the pension fund.

Denote by Y (x, h) the annual salary rate of an active member aged x of cohort h. Then each active
member aged x contributes cY(x, t − x) to the pension fund at time t, where c is the contribution ratio
related to the salary. Thus, the aggregate instantaneous contribution rate of all active members at time t
is given by

C(t) =
∫ r(t)

a

n(t − x)S(r(t), t − x)cY(x, t − x)dx.

The reason why we use S(r(t), t − x) rather than S(x, t − x) here is that for those who pass away before
retirement, their contributions are refunded. When a member joins the pension fund, she will continue
to make contributions to her account. At the moment, her account is part of the pension fund, and the
manager will invest it. If she dies before retirement, the pension fund will return all the accumulated
contributions in her account. We do not care how the manager invests the funds in her account, because
no matter what the investment is, when she dies before retirement, the funds in her account will be
withdrawn from the pension fund. Therefore, we only consider the contribution of people who live to
retirement age.

When the retirees reach their retirement age r0 or r1, they begin to receive pension benefits. Let
b(t, h) be the actual benefit at time t for retirees of cohort h, which is given by

b(t, h) = b̄(h) + θ (t), (2.1)

where b̄(h) is the target annuity for the cohort h, and θ (t) reflects the risk sharing at time t, including
investment risks and longevity risks. Their expressions are discussed in the next two subsections.
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2.4. Financial market
Let (�, F , P) be a complete probability space, where P is the real-world probability measure on � and
F = {Ft}t≥0 is a complete and right continuous filtration generated by a standard Brownian motion.

We assume that there are two underlying assets available to the pension trustees: one risk-free asset
(a bank account) and one risky asset (a stock). The evolution of the value of the risk-free asset S1(t) is
given by

dS1(t) = m(t)S1(t)dt, t ≥ 0, (2.2)

where m(t) represents the risk-free interest rate.
The price process of the risky asset is denoted by S2(t), and S2(t) is supposed to follow a stochastic

differential equation of the form

dS2(t) = S2(t)(μ(t)dt + σ (t)dW(t)), t ≥ 0, (2.3)

where μ(t) is the appreciation rate of the stock and σ (t) is the volatility rate, and W (t) is a standard
Brownian motion. To exclude arbitrage opportunities, we assume that μ(t) > m(t).

2.5. Target benefit: intergenerational equity
The pension plan provides members with a life annuity payable continuously commencing at retirement
age r0 or r1 and has a pre-set retirement benefit target b̄(h) for retired members of cohort h (which means
they are born at time h). The target benefit is assumed as a fixed annuity, which means retirees of the
cohort h get a fixed annuity b̄(h) until they die. The value of b̄(h) is based on the principle of actuarial
equity, that is, the expected future value of accumulated contributions at the retirement date is equal
to the present value at that time of the expected total benefits to be received in retirement. Since we
only consider people who can live to retirement age, we introduce the conditional probability that an
individual aged z at time h + z can live to x years old here, which is denoted by

S̄(x, z, h) = P(k(h) > x|k(h) > z) = S̄(x, h)

S̄(z, h)
.

When the pension contract is generated, the basis of the insurer is the assumed conditional survival
function S̄(x, z, h) rather than the real survival function S(x, h).

For the cohort h with h ≥ −r0 (thus their retirement age is deferred), they encounter a delay in
retirement and the value of b̄(h) should conform to actuarial equity, that is,∫ r1

a

e
∫ r1

x m(s)dscY(x, h)dx =
∫ ω

r1

e
∫ x

r1
−m(s)dsb̄(h)S̄(x, r1, h)dx.

The left of the equal sign is the value of accumulated contributions at retirement r1, and the right is
the discounted present value of the expected overall annuity income at r1.

So the target fixed annuity is

b̄(h) =
∫ r1

a
e

∫ r1
x m(s)dscY(x, h)dx∫ ω

r1
e

∫ x
r1

−m(s)dsS̄(x, r1, h)dx
, (2.4)

when h ≥ −r0.
Similarly, for h < −r0, we have

b̄(h) =
∫ r0

a
e

∫ r0
x m(s)dscY(x, h)dx∫ ω

r0
e

∫ x
r0

−m(s)dsS̄(x, r0, h)dx
.

In this way, even if the retirement is delayed, the interests of the policyholders can be guaranteed. In
addition, this form of b̄(h) can also correspond well to the change of longevity trends (S̄(x, r0, h)) and
the external environment (Y (x, h)).
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From the perspective of the insurer, the target aggregate payment rate B̄(t) for all retirees at time t is
given by

B̄(t) =
∫ ω

r(t)

n(t − x)S(x, t − x)b̄(t − x)dx.

Since the target benefit b̄(h) of each cohort h is based on actuarial equity, we say that this target
aggregate payment B̄(t) reflects intergenerational equity.

2.6. Actual benefit: intergenerational risk sharing
The actual aggregate payment rate is B(t) for all retirees at time t, which is a strategy determined by
the plan trustees and thus is affected by market fluctuations. Since B(t) is affected by the return from
the financial market, it contains investment risks. The difference between B(t) and B̄(t) is B(t) − B̄(t)
which actually reflects risks (including longevity risks and investment risks). The adjustment is denoted
by θ (t), which shares the risks among all retirees. We have

θ (t) = B(t) − B̄(t)

R(t)
. (2.5)

The value of B̄(t) and R(t) is affected by longevity risks. We aim to achieve this effect: when B(t) −
B̄(t) < 0, the trend of longevity makes more people share the loss; when B(t) − B̄(t) > 0, the trend of
longevity makes more people share the benefits. Therefore, θ shares the longevity risk and the investment
risk.

Since θ (t) is independent of cohort h, the value of risk sharing is the same for all cohorts, and it
reflects that the risk is shared among all generations.

2.7. Terminal wealth: future security
Let {F(t), t ∈ [0, T]} be the wealth process of the pension fund, where T > 0 is the terminal time point.
The target terminal wealth is a value that F(T ) is supposed to get close and is denoted as M, which
contains two components: M = M1 + M2. To keep the fund size from shrinking, M1 is set to F(0)e

∫ T
0 m(s)ds,

which is the future value at time T of the initial wealth F(0). If F(T ) is close to M1, it may imply that
the pension fund operates stably and is prepared for the next cycle.

Let M2 be the capital reserve which can ensure that the pension is supported for at least τ years. It is the
accumulation of the present discounted value of the difference between income and target expenditure
in the next τ years at time T :

M2 =
∫ T+τ

T

e− ∫ s
T m(u)du(B̄(s) − C(s))ds.

If the terminal wealth F(T ) reaches M2, the pension fund will last for at least τ years with risk-free
investments only. This provides a guarantee for the pension payment in the next τ years.

Therefore M is used to achieve the following two goals: to maintain the fund pool size and to leave
enough funds to run for τ years.

3. The stochastic control problem
In this subsection, we present the wealth process of the pension fund including the dynamics of the
fund investment, the contributions from active members, and the benefits for all retirees. We then estab-
lish a continuous-time stochastic optimal control problem based on the target benefit plan to realize
intergenerational risk sharing and equity.
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3.1. Objective function
Assume that the plan trustees can invest in both the risk-free and risky assets and use the fund to pay
retirement benefits. Let f0 denote the initial wealth of this fund, π (t) denote the amount that the plan
manager invests in the risky asset at time t, and F(t) denote the wealth of the pension fund at time t after
adopting the investment strategy π (t). Then the fund’s value follows the dynamics:⎧⎪⎨

⎪⎩
dF(t) = π (t)

dS2(t)

S2(t)
+ (F(t) − π (t))

dS1(t)

S1(t)
+ [C(t) − B(t)]dt,

F(0) = f0.

(3.1)

Using (2.2) and (2.3), we can easily rewrite (3.1) as{
dF(t) = π (t)(μ(t)dt + σ (t)dW(t)) + (F(t) − π (t))(m(t)dt) + [C(t) − B(t)]dt,

F(0) = f0.
(3.2)

We now define η = {(π (s), B(s))}s∈[t,T] to be a strategy adopted by the plan trustees between time
t and T , where T > 0 is the terminal time point. This strategy includes the investment strategy π (s)
which is the amount to be invested in the risky asset at time s and the pension benefit B(s) which is
the amount of annuity for the retirees at time s, for s ∈ [t, T]. The definition for a strategy being an
Admissible Strategy with respect to SDE (3.2) is provided below.

Definition 2.1 (Admissible Strategy). For any fixed t ∈ [0, T], a portfolio and benefit payment processes
pair η = (π (s), B(s))s∈[t,T] is said to be admissible if

(i) η is Ft-adapted;
(ii) for all s ∈ [t, T], B(t) ≥ 0 and E

[∫ T

t
[π (s)2 + B(s)2]ds

]
< +∞;

(iii) (Fη, η) is the unique solution to SDE (3.2).

Remark 3.1. It will be more realistic if we assume that the fund is prohibited from borrowing (π (t) >

F(t)) and short selling (π (t) < 0). However, such restrictions may make it impossible to derive an analytic
solution. So it is a weakness of our analysis.

We now turn to the objective function of the problem. The composition of the objective function
mainly considers the following three aspects. First, in order to reduce the general deviation between
the actual benefit and the target benefit, we integrate the squared deviation between B(t) and B̄(t) with
respect to time t, and if this term is smaller, B(t) gets closer to B̄(t). Next, under the precondition that
the actual and target benefit are close, the deviations are expected to be positive, that is, it will be better
if the actual benefits are higher than target benefits. Finally, the actual terminal value of the fund F(T )
is supposed to approach M to ensure the security of the pension fund. Combined with the three factors
above, then the objective function J(t, f ) at time t with the fund value f is defined as

J(t, f ) = Eπ ,B

{ ∫ T

t

[(B(s) − B̄(s))2 − λ1(B(s) − B̄(s))]ds (3.3)

+ λ2(F(T) − M)2|F(t) = f

}
,

where both λ1 and λ2 are nonnegative constants, interpreted as penalty weights given to the negative inte-
gration of deviation between B(s) and B̄(s) and the achievement of the terminal fund target, respectively.
The expectations in (3.3) are conditional on the state of f at time t.

The value function is defined as

V(t, f ) := min
η∈


J(t, f ), t > 0, (3.4)

where 
 is a set of all the admissible strategies of η.
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3.2. Optimal retirement age
Under the certain condition of the aging population, we expect to obtain different values of V(0, f0) with
different deferred retirement ages r1. In Section 3.1, we find that the smaller value of V(0, f0) means the
benefit B(t) and the terminal wealth F(T ) are more close to their targets B̄(t) and M, and the overpayment
B(t) − B̄(t) is larger. Thus, our purpose is to determine an optimal deferred retirement age to minimize
the value function V(0, f0).

If the new retirement age r1 can minimize V(0, f0), we denote it as the optimal retirement age r∗:
r∗ = inf{arg inf

r1∈[r0,ω]
V(0, f0)}. (3.5)

The deferred retirement ages r1 which make V(0, f0) reach its minimum value may not be unique, so
we select the smallest possible r1 to be r∗.

4. Main results
In this section, we use standard methods to solve the optimal control problem (3.4) and derive closed-
form expressions of the optimal policy, denoted by η∗(t) = (π ∗(t), B∗(t)).

First, we derive an HJB equation associated with the stochastic control problem (3.4). We refer to
Fleming and Soner (2006) for more details. Using variational methods and Itô’s formula, we get the
following HJB equation satisfied by the value function V (t, f ):

Vt + inf
η

{
1

2
Vff σ (t)2π 2 + Vf [μ(t)π + m(t)f − m(t)π + C(t) − B] (4.1)

+ (B − B̄(t))2 − λ1(B − B̄(t))

}
= 0

with boundary condition
V(T , f ) = P(T)f 2 + Q(T)f + K(T) = λ2f

2 − 2λ2Mf + λ2M
2, (4.2)

where Vt, Vf are partial derivatives of V (t, f ).
We state our findings on the optimal asset allocation and benefit payment policies for optimal control

problem (3.4) in the following theorem.

Theorem 4.1. For the optimal control problem (3.4), the optimal asset allocation policy and benefit
payment policy are given, respectively, by

π ∗(t) = π ∗(t, F(t))

and
B∗(t) = B∗(t, F(t)),

where

π ∗(t, f ) = m(t) − μ(t)

σ (t)2

(
f + Q(t)

2P(t)

)
, (4.3)

B∗(t, f ) = B̄(t) + λ1

2
+ P(t)f + Q(t)

2
, (4.4)

and the corresponding value function is given by
V(t, f ) = P(t)f 2 + Q(t)f + K(t), (4.5)

where

P(t) =
[

1

λ2

e

(
(μ(t)−m(t))2

σ (t)2
−2m(t)

)
(T−t) + e

(
(μ(t)−m(t))2

σ (t)2
−2m(t)

)
(T−t)

∫ T

t

e

(
2m(x)− (μ(x)−m(x))2

σ (x)2

)
(T−x)

dx

]−1

, (4.6)
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J(t) = C(t) − B̄(t) − λ1

2
, (4.7)

H(t) = − (μ(t) − m(t))2

σ (t)2
+ m(t) − P(t), (4.8)

Q(t) = −2λ2Me
∫ T

t H(x)dx + e
∫ T

t H(x)dx

∫ T

t

2P(x)J(x)e− ∫ T
x H(y)dydx, (4.9)

K(t) = λ2M
2 −

∫ T

t

[
(μ(x) − m(x))2

4σ (x)2

Q(x)2

P(x)
− Q(x)J(x) + 1

4
Q(x)2 + λ2

1

4

]
dx. (4.10)

The proof can be found in Appendix A.

Corollary 4.2. If m(t), σ (t), and μ(t) are constants (m, σ , and μ, respectively), then P(t) is a positive
and monotonically increasing function.

Proof. Denoting (μ−m)2

σ 2 − 2m as γ , we can simplify (4.6) as

P(t) = γeγ (t−T)

(
eγ (T−t) − 1 + γ

λ2

)−1

,

for γ �= 0.
If γ = 0, then we have

P(t) =
(

1

λ2

+ T − t

)−1

,

which is positive and monotonically increasing function.
Note that λ2 > 0. If γ > 0, then γ eγ (t−T) and (eγ (T−t) − 1 + γ

λ2
)−1 are both positive and monotonically

increasing functions. Therefore, their product P(t) is a positive, monotonically increasing function.
Conversely, if γ < 0, then γ eγ (t−T) and (eγ (T−t) − 1 + γ

λ2
)−1 are both negative and monotonically

decreasing function. Therefore, their product P(t) is a positive, monotonically increasing function.

Remark 4.3. If we allow m(t), σ (t), and μ(t) to be deterministic functions, not just constants, then P(t)
is still positive (not necessarily monotonic increasing). It is an important item of the adjustment θ (t),
which can be seen in the following corollary.

Corollary 4.4. The adjustment θ (t) is

θ (t) = λ1 + 2P(t)F(t) + Q(t)

2R(t)
(4.11)

or

θ (t) = λ1(m(t) − μ(t)) + 2σ (t)2π ∗(t)P(t)

2R(t)(m(t) − μ(t))
. (4.12)

Proof. According to (2.5) and (4.4), the adjustment θ (t) is given by

θ (t) = B∗(t) − B̄(t)

R(t)
= B∗(t, F(t)) − B̄(t)

R(t)

= λ1 + 2P(t)F(t) + Q(t)

2R(t)
.

Rearranging (4.3), we have

F(t) = σ (t)2

m(t) − μ(t)
π ∗(t) − Q(t)

2P(t)
. (4.13)
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Substituting (4.13) into (4.4), we have

B∗(t) = B̄(t) + λ1

2
+ σ (t)2

m(t) − μ(t)
π ∗(t)P(t). (4.14)

Therefore, the adjustment θ (t) can be written as

θ (t) = λ1(m(t) − μ(t)) + 2σ (t)2π ∗(t)P(t)

2R(t)(m(t) − μ(t))
.

Remark 4.5. Reviewing (3.3), we find that λ1 is the weight of the amount exceeding the target payment
B̄(t). Note that the expressions of P(t) and Q(t) do not contain λ1. According to both (4.11) and (4.12),
the effect of λ1 on θ (t) is obvious: under the same condition, the larger λ1 is, the larger θ (t) is.

We regard the difference between the real payment B∗(t) and the target payment B̄(t) as the risks
which contains both financial risks and longevity risks, since B∗(t) is affected by the financial market
and B̄(t) is affected by the number of retirees. Then θ (t) is the risk divided by the number of retirees
R(t). Assuming that the numerator in (4.11) is fixed, the large R(t) caused by the longevity trend will
lead to θ (t) close to 0. For example, if the fixed numerator is positive, then θ is positive and decreases
to 0 with a large enough R(t). If the fixed numerator is negative, then θ is negative and increases to 0
with a large enough R(t). Through this mechanism, the longevity trend increases the number of people
taking financial risks, which realizes the effect of reducing risks.

Proposition 4.6. If we regard r1 as an independent variable of b̄(h), the monotonicity of b̄(h) with
respect to r1 is ambiguous.

Proof. If we assume Y (x, h) to be a constant y > 0 and m(s) to be zero, then we can simplify (2.4) as

b̄(h) = cyr1∫ ω

r1
S̄(x, r1, h)dx

, h ≥ −r0. (4.15)

Since S̄(x, r1, h) is monotonically decreasing with respect to r1, we can introduce a special case where

S̄(x, r1, h) = 1

(ω − r1)2
, 0 ≤ r1 < ω.

Substituting it into (4.15) we have

b̄(h) = cyr1(ω − r1), h ≥ −r0,

which is quadratic function with respect to r1 and is monotonically increasing for r1 ∈ [r0, ω

2
] (if r0 < ω

2
)

and monotonically decreasing for r1 ∈ [ ω

2
, ω).

Through this special case, we find that the monotonicity of b̄(h) with respect to r1 is ambiguous.

Remark 4.7. Unlike intuitive thinking, delaying retirement does not necessarily lead to a higher target
annuity b̄. This is because we adopt the assumption that the contribution of members who pass away
before retirement is refunded and thus the target annuity is related to form of the conditional probability
S̄(x, r1, h), whose monotonicity is not obvious. Considering extreme cases, if r1 = a, which means the
individual skips the contribution process, naturally b̄(h) should be 0. If r1 = ω, which means no one can
live to pensionable age and all their contributions are refunded, then b̄(h) should be set to 0 too.

If we replace S̄(x, h) with S̄(x, r1, h), which means the pension does not refund the contribution of
those who pass away early, then b̄(h) will be monotonically increasing.

Proposition 4.8. Let U(s) denote V(0, f0)|r1=s, where s ∈ [r0, ω], then U(s) is continuous w.r.t. s.

Proof. Let G(s, t) = ∫ ω

a
Z(s, t, x)dx, where Z(s, t, x) is continuous on [r0, ω] × [0, T] × [a, ω]. Then

Z(s, t, x) is bounded and by Lebesgue-dominated convergence theorem, G(s, t) is continuous w.r.t. s.
Here G(s, t) can be C(t)|r1=s and then Z(s, t, x) = χ[a,r(t)|r1=s](x)n(t − x)S(r(t)|r1=s, t − x)cY(x, t − x) is
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continuous if we assume that n(·), S(·, ·) and Y(·, ·) are continuous. Thus, C(t) is continuous w.r.t. r1.
Similarly, we have B̄(t), J(t), Q(t), and K(t) are continuous w.r.t. r1. Then by (4.5), V (t, f ) is continuous
w.r.t. r1.

Remark 4.9. Since U(s) is continuous w.r.t. s in [r0, ω], we obtain the existence of r∗. The explicit
expression of r∗ is difficult to get. Therefore, we obtain r∗ by substituting some possible discrete r1 into
U(s) and comparing them in the numerical analysis.

5. Illustration
We have obtained in the previous section explicit expressions of the optimal investment allocation and
benefit strategy as well as the value function for the TBP model. To demonstrate our results regarding
optimal strategies, we present numerical illustrations obtained through simulation in this section under
different scenarios.

5.1. Assumptions
Now we make two assumptions that allow for numerical solutions with respect to the changing demo-
graphic structure. First, we assume that the number of people entering the plan per unit time evolves in
an exponential manner, that is:

n(h) = N exp(−w(h − t0)χ{h≥t0}),

where w is the decreasing rate, t0 = −80 is the time point when the fertility decline begins, and N is the
initial pension entry rate at time t = t0. This setting is similar to Knell (2018). Note that the fertility rate
begins to decrease at time t0 rather than 0. We begin to observe the behavior of the pension fund at t = 0,
while the demographic structure may have changed for a long time.

The second assumption is that the survival function S(x, h) satisfies the Gompertz-Makeham law,
which goes back to Gompertz (1825). Milevsky (2020) summarizes a Gompertz-Makeham calculation
model with the compensation law from the life data of various countries. This enlightens us that we
can use the mortality rate of low life span countries evolving to that of high life span countries with
generation to describe the longevity trend. Now we introduce the mortality rate q(x, h):

q(x, h) =

⎧⎪⎨
⎪⎩

ρ + 1

β(h)
e

x−α(h)
β(h) , x ∈ [0, x∗],

ρ + eL, x ∈ (x∗, ω],

(5.1)

where ρ is a nonage-dependent accidental death rate (Makeham constant), and x∗, L, α, and β are
Gompertz parameters. In Milevsky (2020), it is observed that ρ + eL is an upper limit of the mortal-
ity rate, which is reached by all countries near the age of x∗, and x∗ and L are suggested to be set to 100
and −1, respectively. This setting is followed in this paper. Note that q(x, h) has an argument h, which
means the mortality rate changes with generation. We assume α and β involves with the cohort h to
simulate the longevity trend, thus they are denoted as α(h) and β(h). If we adopt an equivalent form of
q(x), that is, q(x) = ρ + κeςx, x ∈ [0, x∗], where κ = (1/β)e− α

β and ς = 1/β, then the compensation law
means a linear relationship between κ and ς , that is, ln[κ] = L − x∗ς . We can understand the compensa-
tion law as countries with a relatively low initial natural mortality rate κ tend to have a higher mortality
growth rate ς and vice versa. This consequently forces a relationship between α(h) and β(h):

α(h) = x∗ − β(h)(L + ln(β(h))).

Next, we assume that

β(h) = β0 − d(h − t0)χ{h≥t0},

where d is the parameter that controls the speed of the longevity trend, and t0 = −80 is the time point
when the longevity trend begins. Milevsky (2020) provides a table of Gompertz-Makeham parameters
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around the world, which implies the smaller the value of β, the longer the lifespan of people. The initial
value β0 of cohort t0 is set to 14, which is similar with that of Belarus (β = 14.5). If d = 0.05 (the
maximum value of d in the following numerical analysis), after 80 years from h = t0, we have β(0) = 10
(the value of β is 9.73 for Japan), which means the lifespan increases with the cohort h. Thus, we
establish a way to reflect the change of the mortality rate with cohorts.

The survival function S(x, h) has the following form:

S(x, h) = exp

(
−

∫ x

0

q(s, h)ds

)
.

And the equation can be calculated as follows by (5.1):

S(x, h) =

⎧⎪⎨
⎪⎩

ρx + e− α(h)
β(h) (e

x
β(h) − 1), x ∈ [0, x∗],

ρx∗ + e− α(h)
β(h) (e

x∗
β(h) − 1) + (ρ + eL)(x − x∗), x ∈ (x∗, ω].

The assumed survival function S̄(x, h) has the same expression with S(x, h) and the longevity speed
is relatively d̄.

We also make the following assumptions for our numerical illustration.

• The time horizon is 20 years, that is, T = 20.
• Members enter the TBP at age 25 and retire at age 55 initially, that is, a = 25, r0 = 55.
• The maximum age for all cohorts considered in this model is 130, that is, ω = 130.
• The initial pension entry rate N at time t = t0 is 10.
• The Makeham constant ρ is set to 2.66 × 10−4, which is an average constant from Milevsky

(2020).
• The parameters in the two asset models (2.2) and (2.3) are m(t) = m = 0.01, μ(t) = μ = 0.05,

σ (t) = σ = 0.15 (thus the Sharpe ratio of the risky asset is about 0.27).
• The salary rate Y (x, h) increases in accordance with the risk-free interest in order to account

for inflation, that is, Y(x, h) = e0.01(x+h).
• The penalty weight λ1 given to the benefit shortfall risk is chosen to be 8, and the weight λ2

given to the risk at the terminal time is chosen to be 0.1. The estimation is given in Section 5.6.
• The initial fund wealth F(0) is set to 100, and the contribution rate c of each active member is

set to 0.1.
• The reserved preparation time τ is 5 years.

5.2. Demographic transition
The dependency ratio D(t) is the quotient of the number of retirees R(t) and the number of workers
A(t), which can reflect the degree of the social pension burden. Figure 1(a) shows that the longevity
trend continuously increases D(t) with time t and D(t) grows faster with a larger longevity speed d.
Figure 1(b) shows that the fertility decline also increases D(t) with time t and when the decline speed w
gets larger, D(t) will rise.

5.3. Intergenerational equity
Figure 2 shows the impact of the assumed longevity speed d̄ and the deferred retirement age r1 on the
individual target annuity b̄(h). In Figure 2(a), before t0 = −80 (the time point when the longevity trend
begins), b̄(h) increases with Y (x, h) and stays the same for all d̄ because the longevity trend has not started
yet. After t0 = −80, people’s life expectancy has increased and thus b̄(h) decreases with h according to
actuarial equity. Besides, if we delay the retirement age, then people will work longer years and their
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(a) (b)

Figure 1. Factors affecting D(t).

(a) (b)

Figure 2. Factors affecting b̄(h).

remaining life expectancy will also be reduced, so according to (2.4), their annuity b̄(h) will increase.
In Figure 2(b), it can be found that if we delay retirement for a longer time, the target annuity b̄(h) will
also increase.

Figure 3 shows the impact of the longevity speed d, the deferred retirement age r1, and the fertility
decline speed w on aggregate target benefit B̄(t). In Figure 3(a), we assume d̄ = 0, r1 = r0, and w = 0
and find that as the longevity trend becomes serious, B̄(t) increases, which is consistent with common
sense. Figure 3(b) focuses on the change of new retirement age r1 with d = 0.03 and w = 0. We find that
delaying retirement can significantly reduce B̄(t) within r1 − r0 years. This is because if we set the new
retirement age be r1 at time t = 0, then there will be no new retirees in the next r1 − r0 years. Meanwhile
the number of original retirees will decrease with age. So the number of retirees R(t) decreases which
lowers B̄(t). In addition, we also find that the later the delayed retirement, the faster the growth rate of B̄(t)
after r1 − r0. This is because the delay in retirement increases the personal annuity b̄(h) (for h ≥ −r0), and
the cohorts affected by delaying retirement will begin to receive the pension at time r1 − r0. Figure 3(c)
shows that the decline in fertility will reduce the target payment B̄(t) because fewer people enter the
pension plan.
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(a) (b)

(c)

Figure 3. Factors affecting B̄(t).

5.4. Intergenerational risk sharing
In Figure 4, we study the value of risk sharing θ (t) at time T with different levels of overpayment
B(T) − B̄(T). We assume that d̄ = d, w = 0, r1 = r0. When B − B̄ < 0, which means the actual pay-
ment does not reach the target payment, we have θ < 0 according to (2.5) and the loss will be borne
by all retirees. As d increases, θ increases, which implies the loss shared by everyone decreases with
the trend of longevity. When B − B̄ > 0, which means the adjustment θ is positive and in addition
to the target annuity b̄, each retiree also receives the income from the insurer’s investment. Under
this condition, θ decreases as d increases, implying that the longevity trend also thins everyone’s
extra benefit. The phenomena reflected in these two figures verify the effectiveness of the risk-sharing
mechanism.

We next study the behaviors of the optimal investment and benefit strategies π ∗(t) and B∗(t) by Monte
Carlo methods. Figure 5 shows three investment paths π ∗(t) and three benefit paths B∗(t) with r1 = 60,
w = 0.003, d̄ = 0.02, and d = 0.05. The interval between adjacent time points is 0.1. The paths are the
25th, 50th, and 75th percentiles of the investment and the benefit payment at each date in time (calculated
from the 10,000 simulations). Note that π ∗(t) shows a downward trend on the whole. This is because in
the early investment, the discounted future income is much higher than the current pension fund which
implies a high leverage strategy. Besides, it can be found that the actual payment B∗(t) fluctuates up and
down around B̄(t) + λ1

2
, and it can be explained by (4.14).
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(a) (b)

Figure 4. The value of risk sharing θ for different longevity speeds d.

(a) (b)

Figure 5. The 25th, 50th, and 75th percentiles of investment and benefit strategies.

5.5. Effects of postponing retirement
In Figure 6, we compare V(0, f0) under different r1 and d with d̄ = 0 and w = 0.006. By definition, a
smaller V implies that the pension fund gets closer to the targets and can afford more benefit payments.
We find that all functions of V experience a decline and an increase w.r.t. r1 and the minimum point
is the optimal deferred retirement age r∗. The decline is because the pension burden is reduced for at
least r1 − r0 years, and this period gives an opportunity to try more risky and profitable investments. The
increase is because the loss of the pension fund in the trend of longevity is caused by the underestimation
of the survival function, while due to actuarial fairness, deferred retirement does not really reduce the
amount of benefits, but delays the time of benefits. Therefore, appropriately delaying the retirement age
is good for the pension fund, but too much delay will bring losses. Note that the value of V is smaller
with a larger d. This does not mean that a larger d will be better, because when changing d, the scale
of the pension fund has changed, and more benefits B∗(t) are brought by more retirees, which will not
be better for individuals. (Note that the adjustment θ (t) will be diluted by the number of retirees R(t).)
For example, even if θ (t) is the same, the total value V of the pension scheme with more retirees will be
larger than that with fewer retirees, which does not mean that the former is better than the latter. Besides,
we find that the distribution of the optimal retirement age r∗ with respect to the speed of longevity d is
relatively concentrated (r∗ = 61 or 62).
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Figure 6. The total value V for different retirement ages r1 and longevity speeds d.

Figure 7. The total value V for different retirement ages r1 and fertility decline rates w.

Figure 7 shows the values of V(0, f0) under different r1 and w with d̄ = 0 and d = 0.05. We find that the
optimal deferred retirement age r∗ (the minimum point of each curve) increases with the fertility decline
rate w. Note that fertility is essentially the rate of expansion of the pension plan. This may explain the
importance of scale for the pension plan. A pension plan that expands faster will have less demand for
delaying retirement.

5.6. The sensitivity of λ1 and λ2

We first estimate the values of λ1 and λ2. Basically, we have λ1 > 0 and λ2 > 0 by definition. Besides,
we assume that the overpayment B∗(t) − B̄(t) is bounded, that is, B∗(t) − B̄(t) ∈ [Imin, Imax], where Imin
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(a) (b)

Figure 8. Strategies response to λ1 and λ2 at t = 10.

and Imax are lower and upper bounds determined by the plan trustees. Note that P(t) ∈ [0, λ2]. To avoid
borrowing and short selling, the risky investment π ∗(t) should be larger than 0 and smaller than F(t),
although this is not considered in the solution (see Remark 3.1). Since we set the terminal wealth target
F(T ) to M (abbreviated as M), π ∗(t) can be assumed to be smaller than M. By (4.14) and assuming that
π ∗(t) ∈ [0, M], we can roughly estimate the range of B∗(t) − B̄(t) as [ λ1

2
+ σ 2

m−μ
Mλ2, λ1

2
]. Therefore, we

rearrange the restrictions of λ1 and λ2 as the following linear programming problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 > 0,

λ1 < 2Imax

λ2 > 0,

λ1

2
+ σ 2

m − μ
Mλ2 > Imin.

The values of Imin and Imax are set to −6 and 6, respectively. Then we take (λ1, λ2) ∈ [8, 12] ×
[0.06, 0.1] satisfying above restrictions for the numerical analysis.

Figure 8 shows the values of the optimal investment π ∗(t) and the optimal benefit B∗(t) at time t = 10
with different λ1 and λ2, where F(10) = 100, w = 0.003, d̄ = 0.02, and d = 0.05. We find that when λ1

and λ2 increase, the optimal investment π ∗(10) also increases. This is because the rising λ1 and λ2 bring
more pressure on the pension fund to pay and to accumulate terminal wealth, and the investment strategy
tends to be more risky. It can be found in Figure 8(b) that the optimal benefit B∗(10) increases with λ1

and decreases with λ2. This is because the pension fund tends to overpay with a large λ1, and a large λ2

means the pension fund reduces benefits to ensure sufficient terminal wealth.

6. Conclusion
We have studied a model of optimal investment and payment strategies in the target benefit pension
plans under the condition of longevity risks and fertility decline. Through this model, we establish a
target benefit pension plan that can take into account intergenerational equity and intergenerational risk
sharing. Equity is reflected in three aspects: actuarial fairness of contributions and benefits, the change of
terminal target M with the population structure, and the refund of the contributions of members who die
before retirement. An intergenerational risk sharing mechanism shares longevity risks and investment
risks among retirees. In addition, we find an optimal new retirement age to maximize the interests of the
pension fund and individuals.
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Appendix A. Theorem 3.1
Proof. First, differentiating expression in bracket of (4.1) w.r.t. π and B, setting to zero and solving

them give immediately

π ∗(t, f ) = Vf (m(t) − μ(t))

Vff σ (t)2
, (A1)

B∗(t, f ) = B̄(t) + λ1

2
+ Vf

2
. (A2)

Obviously, there is one sufficient condition for π to be minimum, which is

Vff > 0. (A3)

We verify this condition once we obtain the expression of V .
Next we find an explicit expression for V (t, f ). By the terminal condition (4.2), we postulate that

V (t, f ) is of the form

V(t, f ) = P(t)f 2 + Q(t)f + K(t), (A4)

where P(t), Q(t), K(t) are functions of t to be determined. The boundary condition (4.2) implies that

P(T) = λ2, Q(T) = −2λ2M, K(T) = λ2M
2. (A5)

From (A4), we obtain

Vt = Pt f 2 + Qt f + Kt,

Vf = 2P(t)f + Q(t), Vff = 2P(t). (A6)

Substituting (A6) into (A1) and (A2), the optimal policies (control variables) can be expressed in
terms of the functions P(t) and Q(t).
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Substituting (A6), (A1), and (A2) into the HJB Equation (4.1) and grouping terms with f 2, f , and 1,
we get

[Pt − P2 + (2m(t) − (μ(t) − m(t))2

σ (t)2
)P] f 2

+ [Qt + [ − (μ(t) − m(t))2

σ (t)2
+ m(t) − P(t)]Q + 2P(t)J(t)] f

+ Kt − (μ(t) − m(t))2

4σ (t)2

Q(t)2

P(t)
+ Q(t)J(t) − 1

4
Q(t)2 − λ2

1

4
= 0,

where

J(t) = C(t) − B̄(t) − λ1

2
.

The coefficients of f 2, f , and 1 are all zeros, which leads to the following system of differential
equations:

Pt − P2 + (2m(t) − (μ(t) − m(t))2

σ (t)2
)P = 0, (A7)

Qt + [ − (μ(t) − m(t))2

σ (t)2
+ m(t) − P(t)]Q + 2P(t)J(t) = 0, (A8)

Kt − (μ(t) − m(t))2

4σ (t)2

Q(t)2

P(t)
+ Q(t)J(t) − 1

4
Q(t)2 − λ2

1

4
= 0, (A9)

with boundary conditions (A5).
The three ordinary differential equations are easy to solve, the solutions of which are given by

(4.6)–(4.10).
We now verify the constraint condition (A3), which is

Vff = 2P(t) > 0,

where P(t) is given by (4.6), which is always positive by Corollary 4.2 and Remark 4.3. �
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