
A SIMPLE BOUNDING FORMULA FOR INTEGRALS 

J. L. SYNGE 

1. Introduction and summary. In this paper I establish the following 
bounding formula for the integral of a function of n variables: 

(1.1) \ FdD^^~ TtWiFi + Ei + E*, 

the "error terms" E\ and E2 being bounded by 

(1.2) JEi| < F(D - T), \E2\ < kMT. 

Here F is the function, D the domain of integration in Euclidean «-space (and 
also the «-volume of that domain), and F an upper bound of \F\ in D. D is 
divided up into congruent cells with n + 1 vertices (segments on a line, triangles 
in a plane, tetrahedra in space), the total «-volume occupied by these cells being 
T, so that D — T is the «-volume of that part of D not covered by the 
cells. À is the «-volume of a cell. The summation runs over all the vertices of the 
cells, Ft being the value of F at the vertex i, and mt the number of cells meeting 
at this vertex. M is an upper bound to \d2F/ds2\, for differentiation in all directions 
and at all positions in D, ds being an element of length in the direction of differen­
tiation. The quantity k is a parameter with the dimensions [length]2, depending 
only on the shape and size of the cell, and given by 

(1.3) k = \(r<? - P/A), P = J V dDy 

where r0 is the radius of the circumscribed sphere of a cell and P the polar 
moment of inertia of a cell relative to its circumcentre. In particular 

(1.4) 

for « = 1, k = -rzh2 (h = length of segment-cell); 
for n = 2, k — A(s i 2 + S22 + S32) (si, s2, s3

 = sides of triangular 
cell); 

for n = 3, k = |(r0
2 - R2) 

(r0 = radius of circumscribed sphere, 
R = distance between circumcentre and centroid of the cell). 

For n = 1 we would naturally divide D into equal segments, these segments 
being the cells. Then D — T, Ex = 0, and (1.1), (1.2) may be written 

(1.5) f Fdx = \h(F» + 2Fi + . . . + 2Fr_x + FT) + £2f 

I £2 I <T2h2M(b - a ) ; 
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here h is the length of a segment and Fo, Fi,... the values of F at the end points 
and points of division. This simple formula is very easy to prove, being in fact 
a by-product in the proof of the Euler-Maclaurin formula [3, p. 142 (6)]. Its 
significance here is as the prototype of the general multi-dimensional formula 
( i . i ) . 

If we like we can write (1.1) in a more general form applicable to the case 
where the cells are not all the same. Or we can improve the bounds by using 
different upper bounds M in different parts of D. But these considerations 
complicate the formula and we shall confine ourselves to establishing (1.1). 

Geometrical intuition is a great help and the plan we shall adopt is to prove 
(1.1) for n = 2 and then recognize that the same method is available for n = 3 
and indeed for all values of n. 

2. Bounds for a function and its integral when the function vanishes 
at the vertices of a triangle. Generalization to n dimensions. As a first 
step towards the proof of (1.1), we consider a triangle ABC and a function <£, 
continuous and with continuous first and second derivatives. We impose on <t> 
the condition 

(2.1) <j> = 0 at A,B and C, 

and we write as bound for the second derivative 

(2.2) \d2<f>/ds2\ < M, 

this inequality holding for differentiation in all directions and at all positions in 
the triangle. 

Let G be the circumcentre of ABC and r0 the radius of its circumscribed 
circle. Consider the two functions 

(2.3) $! = i M(r<? - r2), 3>2 = J M(r2 - r0
2), 

where r is distance from G. Note that in ABC, $1 is positive and <f>2 negative, 
both functions vanishing at A> B, and C. If we draw three-dimensional graphs 
of these two functions, they enclose a paraboloidal lens, with A, B, and C lying 
on its edge. We note that for all directions and positions 

(2.4) d2$!/ds2 = - M, d2$2/ds2 = M. 

The essential theorem we require is this: By virtue of (2.1) and (2.2), the three-
dimensional graph of <f> within the triangle ABC cannot pass outside the paraboloidal 
lens formed from $1 and <£2 ; equivalently, 

(2.5) $2 < 0 < *! 

in the triangle ABC. 
To prove this, consider first the side AB. On it 

d2 

(2 .6) - -2 ($1 - « ) < 0, $1 - <t> = 0 a t A and B. 
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Hence $1 — $ is positive (or zero) on AB. Similarly <t> — $2 is positive (or zero). 
Thus on AB, and similarly on BC and CA, the inequalities (2.5) hold. 

Now take any point E on AB and join it to C. On EC we have the inequality 
(2.6) and the boundary conditions 

(2.7) $! - <j> = 0 at C, $ i - ( ^ > 0 a t E . 

Hence $1 — <t> is positive (or zero) on CE. Similarly <f> — $2 is positive (or zero). 
Since lines such as CE traverse the whole triangle, the inequalities (2.5) are 
established. 

It follows then that, for integration over the triangle, 

(2.8) f <t>dD < f $ K « ? = W(r0
2A - P ) , 

I «/A I «/A 

- X r dD, 

where dD is an element of area, A the area of ABC and P the polar moment of 
inertia with respect to the circumcentre. We may also write this as 

(2.9) I f , 
I • /A 

<t>dD <kMA, k = i^o 2 - - P / A ) . 

The extension of the above reasoning to three dimensions is very easy. We 
now take a tetrahedron ABCD, with tf> = 0 at the vertices and the bounding 
condition (2.2) as before. The functions $1 and 3>2 are defined as in (2.3), G 
being now the centre of the circumscribed sphere and r0 its radius. The in­
equalities (2.5) are established in the same manner as above, and we get again 
the formula (2.9), wherein dD is now an element of volume and A the volume 
of the tetrahedron. 

We can carry the same type of reasoning on into space of higher dimensionality 
or back to n = 1. In fact, (2.9) holds for n = 1, 2, 3, . . . . 

The factor k in (2.9) agrees with (1.3), and the special values shown in (1.4) 
are easily obtained from the following equimomental properties [2, pp. 23, 27]: 

(i) A straight segment of mass m is equimomental to particles each of mass 
m/6 at its ends and a particle of mass 2m/3 at its centre. 

(ii) A triangle of mass m is equimomental to three particles each of mass m/3 
at the middle points of its sides. 

(iii) A tetrahedron of mass m is equimomental to four particles each of mass 
w/20 at its vertices and a particle of mass 4m/5 at its centroid. 

3. Proof of the bounding formulae (1.1), (1.2). Consider a domain D in the 
plane and a function F in D with the bounds 

(3.1) \F\ < F, \d*F/ds*\ < M. 

Divide up D into triangles covering an area T, and so leaving an area D — T 
between the triangulation and the boundary of D. Then 
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(3.2) 

where 

(3.3) 

L FdD f FdD + Elt 
•J T 

|Ei| <F(D- T). 

Now define a function F' throughout T by the conditions that F' — F at 
every vertex and Ff is a linear function of the coordinates in each triangle. 
Thus, in the triangle (xi, 3/1), (x2, 3̂ 2), (xz, yz), Ff is given by the determinantal 
equation 

F' x y 1 
^1 xi yi 1 
F2 x2 y2 1 
^3 xz yz 1 

(3.4) 0, 

where Fx, F2j Fd are the values of F at the vertices. 
Write 0 = F — F'. Then <j> = 0 at the vertices, and 

(3.5) <P4>/ds2 = d2F/ds\ 

since F r is linear. Hence, by (3.1), 

(3.6) \d2<t>/ds2\ < M. 

Application of (2.9) gives, for integration over a triangle, 

(3.7) f 4>dD\ < &MA, 

where à is the area of the triangle and k as in (2.9). 
So far we have not assumed the triangles to be congruent with one another. 

Let us now make this assumption, so that k and A are the same for all triangles. 
Then, for integration over the whole triangulation, we have from (3.7) 

«/ T 
dD < kMT. (3.8) 

Now 

(3.9) f F dD = ( F'dD+ f <j>dD, 

and so, by (3.2) and (3.8), 

(3.10) ( FdD = ( F'dD + El + Et, 

where Ei is bounded as in (3.3) and 

(3.11) \E2\ < kMT. 

To complete the derivation of (1.1) from (3.10), we have to evaluate JT F'dD. 
To do this, we integrate (3.4) over the triangle, obtaining 
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(3.12) 

X F'dD xA y A A 

0, 
Fi xi yi 1 

F2 x2 y2 1 

^3 xz yz 1 

where (x, y) is the centroid of the triangle. This gives at once 

(3.13) J V dD = JA(FX + F2 + F8). 

Summing for all the triangles, we get 

(3.14) [ F'dD^lA^miFu 
«/ T i 

where i runs over all the vertices and tnt is the number of triangles meeting at 
the vertex i. When we substitute in (3.10), we get 

(3.15) {FdD = i^mtFt + E1 + E», 
*)D i 

which is (1.1) for n = 2. 
For w ^ 2 , the initial factor must be changed from 1/3 to l / (n + 1), because 

in using the analogue of (3.12) in n dimensions the centroid of the cell has 
coordinates x, y, . . . , where 

1 
r(xi + x2 + . . . + xn+i). (3.16) * L . s + 1 , 

But otherwise the reasoning is the same, and so we may regard the bounding 
formulae (1.1), (1.2) as established for all values of n. 

4. Two special triangulations. In dealing with an integral over a plane 
domain, two triangulations are particularly simple: (i) equilateral triangles, 
(ii) isosceles right-angled triangles. For them we have : 

(4.1) Equilateral triangle of side 2a: A = 32a2 

(4.2) Isosceles right-angled triangle with hypotenuse 2a: A = a2, 

If we use N triangles (all of one type or the other), (1.1) gives 

(4.3) Equilateral triangles: 

f FdD = 3"*a2X w< Fi + El + E2t 
J D i 

| E2 | < \ 3è a" NM. 

\a\ 

(4.4) Isosceles right-angled triangles: 
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f FdD = | a 2 £ m, Fi + El + E,, 
J D i 

\E2 | <%a4NM. 

At each vertex inside the triangulation, m< = 6 in (4.3) and mt — 4 or 8 in (4.4). 
On the boundary these values are reduced. If the domain D is such that it can 
be broken up into equal equilateral triangles or into equal isosceles right-angled 
triangles, then for such triangulations we have E\ = 0. 

5. The method of von Mises. Professor W. Prager has drawn my attention 
to a paper in which von Mises [1] develops a powerful method of approximating 
an integral over a plane domain by a weighted sum of the values of the integrand 
at selected stations. The error term depends on derivatives d^F/ds* and by 
taking sufficient stations we can make \x as large as we like. Thus the method of 
von Mises is more elastic than that of the present paper, for which only /x = 2 
occurs. Moreover his method does not use triangulation. 

Let us compare the results given by the two methods in the simple case where 
the domain of integration is a triangle with sides Si, s2, S3. Then (1.1), (1.2), 
(1.4) of the present paper give for the approximation and the error 

(5.1) 
f FdD = \D{FX + F* + Ft) + E2, 

\E2\ <àMD(Sl
2 + s2

2 + s3
2). 

To apply the method of von Mises, let us take the stations at the vertices of 
the triangle. By formula (3) of his paper, weighting factors Alf A2, Az are to be 
found to satisfy 

A, +A2 +Az =D, 
(5.2) Ai xi + A2x2 + Az x3 = Dx, 

Ax yx + A2y2 + Az ys = Dy, 

where (xi, ^i), . . . are the vertices and (x, y) the centroid. The solution is 

(5.3) Ax = A2 = Az = \D, 

and formulae (I), (II) of his paper give for the approximation and the error 

FdD = ±D(Fx + F2 + Fs)+E'2, L 
(5.4) 

E2 | < J M [Po + J D(n2 + r2
2 + r3

2)], 

where Po is the polar moment of inertia of the triangle with respect to the origin 
0 and rxj r2, r% the distances of the vertices from 0. This bound for the error 
is minimized by choosing 0 at the centroid, and then we have 

(5.5) E'2 | < àMD(Sl
2 + s2

2 + s3
2) + MPC, 

where Pc is the polar moment of inertia with respect to the centroid. 
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Comparison with (5.1) shows that the method of the present paper gives 
closer bounds than the method of von Mises. But of course it must be remembered 
that this particular example favours the method of the present paper, and that 
in applying the method of von Mises the stations need not be taken at the 
vertices, nor need there be only three of them. 
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