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Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady
aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive
performance of oscillating aerofoils. In this paper we test the hypothesis that the central
shortcoming of linear small-amplitude models, such as the Garrick function, is the
failure to account for the flow acceleration caused by aerofoil thrust. A new analytical
model is developed by coupling the Garrick function to a cycle-averaged actuator disc
model, in a manner analogous to the blade-element momentum theory for wind turbines
and propellers. This amounts to assuming the Garrick function to be locally valid and,
in combination with a global control volume analysis, enables the prediction of flow
acceleration at the aerofoil. The new model is demonstrated to substantially improve the
agreement with large-eddy simulations of an aerofoil in combined heave and pitch motion.
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1. Introduction

The Theodorsen function has been successfully used over the last century for the prediction
of unsteady harmonic aerofoil lift in applications requiring analytical solutions, low
computational cost or fast computations. An extension to the Theodorsen function was
derived by Garrick (1937) to also include the propulsive thrust of a foil oscillating in heave
and/or pitch. The function is derived based on the same underlying assumptions as those of
Theodorsen: potential flow, the aerofoil represented by a flat plate, small-amplitude motion
and the wake assumed to be co-planar with the aerofoil and moving with the free-stream
velocity. However, the Garrick function has been demonstrated to severely over-predict
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the propulsive efficiencies of oscillating foils relative to experiments and simulations
(e.g. Fernandez-Feria 2016; Faure et al. 2022), leading to the supposition that the inviscid
small-amplitude assumptions are inappropriate for the propulsive foil problem.

In this paper we hypothesise that the shortcomings of small-amplitude linear aerofoil
theory are largely explained by the neglecting of the axial flow acceleration that results
from the aerofoil thrust – a well-known phenomenon that can be modelled using actuator
disc (AD) theory. Coupling the Garrick function to an AD model is analogous to
blade-element momentum (BEM) theory used for e.g. wind turbines. This amounts to
assuming the Garrick function to be locally valid, and coupled to a global control volume
analysis through an AD (representing the frontal area swept by the oscillating foil) via the
axial induction factor. We develop a cycle-averaged unsteady AD model and demonstrate,
by comparing with large-eddy simulations (LES), that both steady and cycle-averaged AD
coupling give substantial improvements to the Garrick function. The results suggest that
linear small-amplitude models are able to make reliable predictions for foil propulsion
trends, as long as the local flow acceleration is taken into account. The outcome of this
study is a simple and fully analytical model for oscillating foil propulsion.

2. Theoretical model

2.1. Introduction to modelling framework
Figure 1 shows the control volumes (CVs) that will be used for the unsteady AD analysis;
figure 1(a) (CV1) will be used for the momentum balance, figure 1(b) (CV2) for the
energy balance and figure 1(c) (CV3) for the mass balance. Figure 1(c) also illustrates
the definition of the flow acceleration parameters α2 and α4, such that the mean velocity at
the aerofoil is given by α2U∞ and at the exit face by α4U∞, where U∞ is the free-stream
velocity. These are analogous to the induction factors of conventional AD theory. Based
on these we define a ‘global’, ‘foil’ and an ‘exit’ reduced frequency (kg, kf and ke) given
by

kg = ωb
U∞

= α2kf = α4ke, (2.1)

where ω is the foil oscillation frequency in rad s−1 and b is the half-chord. Following AD
theory convention, we assume the flow to be inviscid and the mean pressure to be fully
recovered (p̄ = p∞) at the exit boundaries.

2.2. Small-amplitude linear aerofoil theory: the Garrick function
The full form of the Garrick function will not be presented here; readers are referred to the
original paper. For the purpose of this paper we present only an expression for the wake
circulation distribution. For an aerofoil oscillating in a combination of pitch and heave in
a fluid of density ρ, the wake circulation at downstream location x and time t is given by

γ (x, t) = A0(t) cos
(

kex
b

)
+ B0(t) sin

(
kex
b

)
, (2.2)

where the exit reduced frequency ke is used by assuming a location far downstream of the
aerofoil. The time-dependent variables A0(t) and B0(t) are given by

A0 = 4[ζ1 sin(ωt)− ζ2 cos(ωt)], (2.3)

B0 = 4[ζ1 cos(ωt)+ ζ2 sin(ωt)], (2.4)
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Figure 1. Control volumes used; (a) CV1, with mass-permeable side boundaries far from aerofoil, (b) CV2,
with side boundaries far from aerofoil following the mean streamlines, (c) CV3, with side boundaries
encompassing the AD following the mean streamlines.

where ζ1 and ζ2 are functions of the aerofoil kinematics, and can be found in the original
paper (also provided in a supplementary data sheet; see the Data availability statement
below). They are also functions of the foil frequency kf and the local velocity α2U∞.
In Garrick’s original paper kf and ke were taken as equal to kg (that is, α2 = α4 = 1).
In the following section we will introduce the flow acceleration parameters through a
cycle-averaged unsteady AD theory framework, which is subsequently coupled to the
Garrick function to obtain the values of kf , ke, α2 and α4.

2.3. Cycle-averaged unsteady actuator disc theory
The principles of steady-flow AD theory are well known and can be found in textbooks
such as Hansen (2015). In this paper we will conduct an unsteady CV analysis assuming
potential flow, and applying cycle averaging to predict the effect of unsteady flow on
the mean thrust and propulsive efficiency. The unsteadiness is assumed to be generated
entirely by aerofoil and wake vorticity, meaning that the unsteady components of bulk
flow acceleration terms α2 and α4 are assumed negligible. Based on the results of Yu et al.
(2019), who used an unsteady AD model to estimate bulk flow oscillations in the wake of a
wind turbine, this assumption is most likely to hold at high reduced frequencies. We retain
the assumptions of linear aerofoil theory that the wake is planar and moving at the local
mean velocity.

Similarly to Young et al. (2020) but omitting the viscous terms, we begin with the
integral equations for momentum and energy balance on a fluid CV with a control surface
(CS)

fi =
∫

CS
pni dA +

∫
CS
ρuiujnj dA + ∂

∂t

∫
CV
ρui dV (2.5)

W =
∫

CS

(
p + ρ

uiui

2

)
ujnj dA + ∂

∂t

∫
CV
ρ

uiui

2
dV, (2.6)
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with vector quantities given in tensor form. Here, fi is the force acting on the fluid and W is
the power input to the fluid by the aerofoil. Because we assume potential flow conditions,
we can use the unsteady Bernoulli equation (neglecting gravity) given by

p
ρ

+ uiui

2
+ ∂Φ

∂t
= χ(t) =

[
p
ρ

+ uiui

2
+ ∂Φ

∂t

]
ref
. (2.7)

We introduce the time-dependent parameter χ(t) which denotes the reference value for
the Bernoulli equation taken from a single point in the flow field, usually far from the
aerofoil. The term ∂Φ/∂t is the time derivative of the velocity potential, and ρ∂Φ/∂t is
the added mass pressure of potential flows (see e.g. Katz & Plotkin (2001), chapter 13.7).
Substituting for the pressure p in (2.5) and (2.6)

fi =
∫

CS
ρ

(
χ(t)− ujuj

2
− ∂Φ

∂t

)
ni dA +

∫
CS
ρuiujnj dA + ∂

∂t

∫
CV
ρui dV (2.8)

W =
∫

CS
ρ

(
χ(t)− uiui

2
− ∂Φ

∂t
+ uiui

2

)
ujnj dA + ∂

∂t

∫
CV
ρ

uiui

2
dV. (2.9)

It is immediately clear that the velocity terms in the first integral of (2.9) cancel. We
now divide the variables into mean and fluctuating components, such as u = U + u′
where the capital letter implies the mean value and a dash implies the fluctuating
component. Alternatively, time averages are also denoted with overbars. Cycle averaging
the momentum and energy balance equations, we simplify to

Fi = ρ

∫
CS

[(
χ −

UjUj + u′
ju

′
j

2

)
ni + (UiUj + u′

iu
′
j)nj

]
dA (2.10)

W = ρ

∫
CS

(
χUj + χ ′u′

j − ∂Φ

∂t
u′

j

)
nj dA. (2.11)

We can now solve (2.10) and (2.11) for CV1 and CV2, respectively, noting that only the
exit faces of CV1 and CV2 will be affected by the unsteady terms.

2.4. Fluctuating velocity terms
In order to derive analytical expressions for the fluctuating velocity terms we make the
following assumptions: the wake is planar, it travels at the local free-stream velocity,
the vortex circulation is given by the Garrick function (2.2) and the exit face is far
enough downstream of the aerofoil so that the wake can be approximated as extending
to positive and negative infinity along the horizontal axis. Based on these assumptions,
the fluctuating components of the velocity at a point (x, y) on the exit face, induced by the
wake vortex circulation along the horizontal axis (with vortices located at x′), are given by
the Biot–Savart law (see Katz & Plotkin (2001), chapter 2) as

u′
x = −

∫ ∞

−∞

A0 cos
(

kex′

b

)
+ B0 sin

(
kex′

b

)
2π

y
[(x − x′)2 + y2]

dx′ (2.12)

u′
y =

∫ ∞

−∞

A0 cos
(

kex′

b

)
+ B0 sin

(
kex′

b

)
2π

x − x′

[(x − x′)2 + y2]
dx′. (2.13)
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The evaluation of these integrals for ke > 0 and b > 0 gives

u′
x = −

exp
(

−ke

b
|y|
)

2
|y|
y

[
A0 cos

(
kex
b

)
+ B0 sin

(
kex
b

)]
(2.14)

u′
y =

exp
(

−ke

b
|y|
)

2

[
A0 sin

(
kex
b

)
− B0 cos

(
kex
b

)]
. (2.15)

From (2.10) we know that for the x-component of momentum at the exit face we will
require expressions for u′

xu′
x and u′

yu′
y only. To evaluate these, for simplicity we say x = 0

at the exit face, such that

u′2
x =

exp
(

−2
ke

b
|y|
)

4
A2

0 (2.16)

u′2
y =

exp
(

−2
ke

b
|y|
)

4
B2

0. (2.17)

Based on the definitions of A0 and B0 in (2.3) and (2.4), we see that A2
0 = B2

0, and thus that
u′

xu′
x = u′

yu′
y over the CV exit face. Note that it can be demonstrated that [u′

x]y=0± = ∓γ /2
(Katz & Plotkin 2001, chapter 3), which suggests the equality u′

xu′
x = u′

yu′
y holds also at

y = 0. Since ny = 0 for the exit face, the u′
iu

′
j term in (2.10) is u′

xu′
x for i = x. Thus the

cycle-averaged fluctuating terms in (2.10) cancel on the exit face.

2.5. The Bernoulli equation reference term
We introduced χ(t) to represent the reference parameter used in the unsteady Bernoulli
equation (2.7). This term can be taken as the total far-field pressure χ = p∞/ρ + U2∞/2
at all CV boundaries, except for at the exit boundary of CV3 (figure 1c). Here, the energy
discontinuity created by the AD means that the reference point must be taken downstream
of the AD and between the two mean-flow streamlines that define the CV boundary.
However, by choosing the reference point on the internal face of the CV boundary,
indicated by ‘ref-i’ in figure 1(c), we can simplify further. We define an additional
reference point, marked ‘ref-e’ in figure 1(c), at the same position but on the external
face of the CV boundary. The assumption of fully developed flow at the exit face of the
CV suggests that the pressure at the two reference points must be equal. Applying (2.7)
to obtain the pressure at ref-e, noting that χ = p∞/ρ + U2∞/2 outside the streamtube, we
get

pref -i

ρ
= pref -e

ρ
= p∞

ρ
+ U2∞

2
−
[
(U∞ + u′

x)
2 + u′2

y

2
+ ∂Φ

∂t

]
ref -e

. (2.18)
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Using (2.18) as the pressure term in (2.7), we obtain χ downstream of the AD in CV3 as

χ(t) = p∞
ρ

+ U2∞
2

−
[
(U∞ + u′

x)
2 + u′2

y

2
+ ∂Φ

∂t

]
ref -e

+
[
(α4U∞ + u′

x)
2 + u′2

y

2
+ ∂Φ

∂t

]
ref -i

. (2.19)

Because we assume that the vortex-induced flow is the only source of unsteadiness, and
this has no discontinuity across the CV boundary, the expressions in brackets in (2.19) are
equal except for the α4 terms. Thus (2.19) can be simplified to

χ(t) = p∞
ρ

+ α2
4U2∞
2

+ [u′
x]ref U∞(α4 − 1), (2.20)

where [u′
x]ref indicates the fluctuating axial velocity at the reference location.

2.6. Added mass energy term
Since the time derivative of the potential field is needed, only the unsteady component
of the flow potential will be considered, which is assumed fully determined by the wake
vorticity. Only the added mass on the exit face is needed. The potential of a free vortex
is given by Φ = γ θ/2π (Katz & Plotkin 2001, chapter 3), where θ is the angle between
the point of interest and the horizontal axis intersecting the vortex core. The potential field
induced by the wake circulation (2.2) distributed along x′, at a point (x, y) on the exit face,
is then given by

Φ = 1
2π

∫ ∞

−∞

[
A0 cos

(
kex′

b

)
+ B0 sin

(
kex′

b

)]
tan−1

(
y

x − x′

)
dx′. (2.21)

Evaluating the integral at x = 0, the potential is

Φ(x = 0, y) = −b
|y|
y

[
1 − exp

(
−ke

b
|y|
)]

2ke
B0. (2.22)

Taking the time derivative and noting that ∂B0/∂t = −ωA0, we obtain

∂Φ

∂t
(x = 0, y) = bω

2ke

|y|
y

A0

[
1 − exp

(
−ke

b
|y|
)]
. (2.23)

We then evaluate ∂Φ/∂(tu′
x) for the energy balance in (2.11) using the expression for u′

x
from (2.14)

∂Φ

∂t
u′

x(x = 0, y) = − bω
4ke

A2
0

[
1 − exp

(
−ke

b
|y|
)]

exp
(

−ke

b
|y|
)
. (2.24)

2.7. Momentum balance
To evaluate the cycle-average momentum balance (2.10) we use CV1 (figure 1a). The CV
is rectangular and all boundaries (shown by dashed black lines) are mass permeable. The
upper and lower boundaries are assumed to be far from the aerofoil and wake, such that
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unsteady-flow effects are negligible everywhere except over the central part of the exit
face. We demonstrated in § 2.4 that the fluctuating components of velocity in (2.10) cancel
on the exit face. This removes all unsteady terms from (2.10), reducing to the momentum
balance for steady AD theory. The evaluation procedure is well known (see e.g. Hansen
2015) and we can obtain

Fx
1
2ρU2∞A = CTg = 2α2(α4 − 1). (2.25)

Here, we define the global thrust coefficient CTg using the AD area A, given by the frontal
area swept by the oscillating aerofoil (see figure 1c).

2.8. Energy balance
We use CV2 (figure 1b) to evaluate (2.11). The upper and lower boundaries follow the
mean-flow streamlines, such that the exit area can be found (through mean-flow mass
conservation) to be A2 − A(α2/α4)(α4 − 1), where A2 is the inlet area. Again, the upper
and lower boundaries are assumed far enough from the aerofoil so that unsteady effects are
negligible everywhere except at the central part of the exit face. There are two unsteady
terms in (2.11), one related to χ ′ and the other to the added mass. At the exit face, as
shown in § 2.5, χ ′ = [u′

x]ref U∞(α4 − 1), which is constant in y. From (2.14) we see that
u′

x is anti-symmetric in y. Thus the integral of χ ′u′
x over the exit face is zero. This leaves the

added mass term as the only unsteady-flow contribution to the energy balance. Evaluating
(2.11) for each CV boundary, recalling the expressions for χ inside and outside the wake
streamtube from § 2.5, we obtain

W
ρ

= −A2U∞
[

p∞
ρ

+ U2∞
2

]
+
(
A2 − Aα2

α4
(α4 − 1)− Aα2

α4

)
U∞

[
p∞
ρ

+ U2∞
2

]

+ Aα2

α4
α4U∞

[
p∞
ρ

+ α2
4U2∞
2

]
−
∫ ∞

−∞
∂Φ

∂t
u′

xdy. (2.26)

We can integrate the added mass term over ±∞ without loss of generality since there are
no unsteady wake effects at the upper and lower CV boundaries. Cancelling terms and
normalising to obtain the global power coefficient CPg gives

�W
1
2ρU3∞A = CPg = α2(α

2
4 − 1)− 1

1
2ρU3∞A

∫ ∞

−∞
ρ
∂Φ

∂t
u′

xdy. (2.27)

Evaluating the added mass integral from (2.24), noting that it is symmetric in y

2
∫ ∞

0
ρ
∂Φ

∂t
u′

xdy = −ρ bω
2ke

A2
0

∫ ∞

0

[
1 − exp

(
−ke

b
y
)]

exp
(

−ke

b
y
)

dy = −ρωb2

4k2
e

A2
0.

(2.28)

In steady AD theory the energy input W to the CV is the energy required for generating the
thrust of an ideal disc propulsor, that is W = α2U∞Fx. However, for the present non-ideal
case the total oscillation energy of the aerofoil Wf must be considered, which is equal
to the thrust energy plus the energy required to generate the wake (Garrick 1937), i.e.
W = Wf ≥ α2U∞Fx. Here, Wf is obtained from the chordwise integration of lift force
times the vertical aerofoil velocity, and is evaluated analytically by Garrick. Note that for
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α2 = α4 = 1, (2.28) is equivalent to the Garrick wake energy. To account for Wf we define
the ‘local’ efficiency ηl in relation to the ‘global’ efficiency ηg

ηl = α2U∞Fx

Wf
= α2ηg. (2.29)

Incorporating the expressions from (2.28)–(2.29) into (2.27), and noting that ke = kg/α4,
we obtain

Fx
1
2ρU2∞A = CTg = ηl[α2

4ηam − 1], (2.30)

where we have introduced the parameter ηam to represent the added mass term

ηam = 1 + 1
2α2kg

A2
0b

U2∞A . (2.31)

Equations (2.25) and (2.30) thus define the cycle-averaged inviscid AD equations for this
system. As mentioned, (2.25) is equivalent to the steady formulation, but (2.30) differs
through the ηl and ηam terms. The standard steady AD theory result for an ‘ideal’ propulsor
(that is when W = α2U∞Fx) is recovered by setting ηl = ηam = 1.

3. Numerical procedure and results

3.1. Numerical procedure
Equations (2.25), (2.29), (2.30) and (2.31), and the Garrick function expressions for
thrust Fx and power Wf , are solved iteratively using the MATLAB function fsolve until
convergence of all variables, adjusting the Garrick function for the local flow acceleration
α2 and reduced frequency kf . The cycle-averaged AD model is only evaluated for CTg > 0.
To validate the new model we evaluate the case of an aerofoil flapping in combined heave
and pitch, and compare the results with LES.

We use an immersed-boundary implicit-LES solver called the boundary data immersion
method (BDIM) to solve the three-dimensional incompressible Navier–Stokes equations.
The solver has been validated in several previous studies of flapping foils with
chord-based Reynolds numbers (Re) up to Re = 50 000 (Maertens & Weymouth 2015;
Zurman-Nasution, Ganapathisubramani & Weymouth 2020). The foil is a NACA0016,
and the kinematics consist of a combination of heave H(t) and pitch θ(t) motions, with
functional form

H(t) = h0 sin(ωt), (3.1)

θ(t) = α0 sin(ωt + ψ), (3.2)

α0 = sin−1
(

0.7h0

1.5b

)
, (3.3)

where h0 is heave amplitude and α0 is pitch amplitude in radians, and the heave–pitch
phase difference isψ = 90◦. The pitch axis is located at the quarter-chord from the leading
edge. For a given heave amplitude in the range of 0.4b < h0 < b, we vary the Strouhal
number St = ωh0/(πU∞) in the range 0.15 < St < 0.80 to vary the frequency ω. The AD
area is found from the heave amplitude as A = 2h0.

The simulations were performed at Re = 10 000, which was deemed sufficiently high
since the thrust coefficient of a flapping foil is almost invariant at Re > 10 000 (Senturk
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& Smits 2019). The domain extends horizontally from −6b to 24b and vertically from
−8b to 8b. To ensure domain height independence, two representative cases were re-run
at double domain height; the resulting propulsive efficiencies changed by less than 1 %.
The foil has a spanwise width of 2b and periodic boundary conditions applied to both
sides. The foil and its near wake are simulated within a sub-domain using a uniform
Cartesian grid with a resolution of
Y = 2b/128 to reach (on average) y+ = ynuτ /ν ≈ 5,

X = 2
Y and 
Z = 2
Y . Here, yn is the wall-normal distance, uτ is friction velocity,
ν is kinematic viscosity and X, Y, Z are global coordinates for horizontal, vertical and
spanwise directions, respectively.

3.2. Results
Figure 2(a–c) compares results for the global propulsive efficiency (ηg, (2.29)) and the
foil power and thrust coefficients (CPf = Wf /ρU3∞b and CTf = Fx/ρU2∞b) normalised by
k2

ga2 = St2π2/4, where a = h0/2b is the non-dimensional heave amplitude. Figure 2(d–g)
shows the acceleration parameters (α2 and α4), local foil efficiency (ηl) and added mass
parameter (ηam), all for the same set of cases and plotted against the global reduced
frequency kg. The original Garrick predictions (black lines) have significant errors in both
global efficiency (figure 2a) and power (figure 2b) relative to the LES (circles), while the
AD-coupled models substantially improve the agreement of both. The AD coupling also
improves the thrust prediction (figure 2c), although it is marginal compared with its effect
on the power.

The steady AD (ηam = ηl = 1, dashed lines) and the cycle-averaged AD (solid coloured
lines) give similar trends in foil performance, the latter agreeing better with the LES,
especially at high frequencies. The similarity between steady and cycle-averaged AD
predictions is due to the non-ideal energy input by the foil (ηl < 1) being largely balanced
by the wake energy exiting the CV (ηam > 1). Figure 2(d,e) indicates the significance of
local flow accelerations; the velocity at the foil is up to approximately 4 times U∞, and
velocity at the CV exit even higher. The steady AD under-predicts α2 and over-predicts α4
compared with the cycle-averaged AD.

Figure 2( f ) shows that ηl approaches ≈ 0.58 to 0.6 with increasing kg, suggesting that
the local efficiency in the AD model is close but not equal to the unmodified Garrick
efficiency (black line in figure 2a). Figure 2(g) shows that ηam increases with kg, and the
added mass energy becomes larger than the mean-flow energy (that is, ηam > 2) at kg > 4
to 4.5. There are small increases in ηl and ηam with increasing amplitude h0.

The remaining discrepancies in foil performance between the AD models and LES
are likely due to the factors not accounted for in the former, such as viscous effects
and bulk flow oscillations. The LES results also capture strong vortex instabilities in
the near wake when the Strouhal number is above the optimum range of 0.2 < St < 0.5
(Zurman-Nasution et al. 2020) as shown in the flow field insets in figure 2(b), which may
partly explain the discrepancies at higher frequencies. Furthermore, in all LES cases the
aerofoil motion was found to result in the generation of leading-edge vortices (LEVs),
which increased in strength with the oscillation amplitude. In a recent comparative study of
low-order models for flapping foil propulsion by Faure et al. (2022), models implementing
dynamic stall or LEV corrections are shown to give improved agreement with experiments
and high-order simulations over inviscid models. Considering their results, it is likely that
the remaining discrepancies in figures 2(a–c) are largely due to the absence of stall effects
in the Garrick-AD models. The form drag induced by trailing-edge vortex rollup is also
not included, which may affect the prediction of both lift and thrust (Ayancik et al. 2019).
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Figure 2. (a) Global propulsive efficiency. (b) Power coefficient with visualisations of LES results (aerofoil in
green and isosurfaces of λ2-criterion coloured by spanwise vorticity). (c) Thrust coefficient. (d) Acceleration
parameter at the foil. (e) Acceleration parameter at the exit face. ( f ) Local foil efficiency. (g) Added mass
parameter.

Despite these discrepancies, the coupled Garrick-AD theory provides a fully analytical
solution for inviscid foil propulsors that correctly represents efficiency trends, and is
a substantial improvement on the original Garrick theory. The trends of the coupled
models are similar to those of the numerical inviscid panel method evaluated by Faure
et al. (2022): figure 5 in their paper shows the panel method giving an error in ηg
of approximately 50 % at kg = 3 (the Garrick theory error is about 200 %) relative to
high-order simulations of heaving foils. The present method has similar accuracy but
at a fraction of the computational time, without requiring a numerical panel solver.
More generally, the AD coupling method also opens the possibility for further analytical
modelling of unsteady foils, and for using small-amplitude inviscid models to evaluate
finite-amplitude viscous problems to first-order accuracy.
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4. Conclusions

We have developed a method for coupling a linear unsteady aerofoil theory (Garrick 1937)
and an inviscid AD theory, analogous to the BEM theory for wind turbines and propellers,
to improve analytical prediction of the propulsive performance of oscillating foils. By cycle
averaging the integral forms of the inviscid momentum and energy conservation equations
for three different CVs, we have derived concise analytical expressions linking the mean
foil thrust and power to the local flow acceleration at the foil. The cycle-averaged AD
model deviates from steady AD theory through only two additional parameters, ηl and
ηam. The former accounts for the ‘non-ideal’ energy input by the foil, and the latter for
the added mass energy in the wake, both of which are obtained from the Garrick theory.
Both the steady and cycle-averaged AD models coupled to the Garrick theory were shown
to substantially improve agreements with LES, although some discrepancies remained,
especially in the thrust prediction. It is likely that these discrepancies are largely due
to the effects of LEV formation, which is not accounted for in the present model. The
results demonstrate the applicability of small-amplitude inviscid unsteady aerofoil theory
to finite-amplitude foil propulsion problems, as long as the local flow acceleration at the
foil is taken into account.
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