An application of a theorem of Gaschütz

H. Lausch

A theorem of Gaschutz is used to prove:

Let τ be a homomorphism of the distributively generated near-ring R with identity element and descending chain condition for left modules, τ have finite kernel, and U(R) be the group of units of R; then $U(R\tau) = U(R)\tau$.

Furthermore it is shown that the finiteness condition for ker τ can be dropped in the case of R being a ring.

Gaschütz [3] has proved the following theorem:

(*) Let G be an n-generator group, and N a finite normal subgroup of G. Then in each generating set $\overline{e_1}N$, $\overline{e_2}N$, ..., $\overline{e_n}N$ for G/N, there exists a generating set e_1 , e_2 , ..., e_n for G such that $e_i \in \overline{e_i}N$.

There is an obvious generalization to Ω -groups, Ω being a set of operators. The theorem has then the following shape:

(**) Let G be an Ω -group with an Ω -generating set of n elements, and N a finite Ω -admissible normal subgroup of G. Then in each Ω -generating set $\overline{e_1}N$, $\overline{e_2}N$, ..., $\overline{e_n}N$ for G/N, there exists an Ω -generating set e_1 , e_2 , ..., e_n for G such that $e_i \in \overline{e_i}N$.

This version of the theorem will enable us to obtain a result on distributively generated near-rings with identity element and descending chain condition for left modules by viewing these near-rings as operator groups the operators being the left-multiplications by distributive elements. We start with a few definitions.

Received 9 July 1969.

381

A near-ring R with identity is an algebra with two binary operations + and • called addition and multiplication such that R is a (not necessarily abelian) group under addition and a monoid under multiplication, satisfying one distributive law

(a+b)c = ac + bc for all $a, b, c \in \mathbb{R}$.

0 will denote the zero-element of the additive group, 1 the identity element of the multiplicative monoid of R .

We say that R is distributively generated if there exists a set Sof elements in R such that S generates R additively and s(a+b) = sa + sb for all $s \in X$, $a, b \in R$. By this definition since $a \rightarrow sa$, $a \in R$, $s \in S$, is an endomorphism of the additive group R^+ of R, we may consider R^+ as an S-group which is S-generated by a single element, namely 1. Any S-admissible subgroup of R^+ is called a left module of R. A unit of R is an element $e \in R$ such that there exists $e' \in R$ with ee' = e'e = 1. If R satisfies the descending chain condition for left modules then an element $e \in R$ is a unit if and only if there exists $e' \in R$ such that e'e = 1. For assume e'e = 1 and consider the descending chain of left modules of R: $Re' \supseteq Re'^2 \supseteq \ldots \supseteq Re'^n \supseteq \ldots$. Then there exists n such that $Re'^n = Re'^{n+1}$, hence $R = Re'^n e^n = Re'^{n+1} e^n = Re'$. Thus 1 = re' for

some $r \in R$ and so e = re'e = r whence ee' = 1.

THEOREM. Let R be a distributively generated near-ring with identity element, satisfying the descending chain condition for left modules. Let τ be a near-ring homomorphism of R such that ker τ is finite and let U(R), $U(R\tau)$ be the groups of units of R and $R\tau$ respectively. Then

$$U(R)\tau = U(R\tau)$$

Proof. Let S be a set of additive, distributive generators and consider R as an S-group. Since $S\tau$ is a set of distributive generators, $R\tau$ can be regarded as an $S\tau$ -group. By $sr = (s\tau)r$, $s \in S$, $r \in R\tau$, $R\tau$ becomes an S-group and $(sr)\tau = (s\tau)(r\tau) = s(r\tau)$, $r \in R$, $s \in S$ proves τ to be an S-homomorphism as well. Let $e \in U(R\tau)$, then e is an S-generator for $R\tau$, for if $e' \in R\tau$ such that $e'e = 1\tau$, then

https://doi.org/10.1017/S0004972700042283 Published online by Cambridge University Press

 $\overline{e'} = \sum_{i} \varepsilon_i(s_i\tau) , \varepsilon_i = \pm 1 , s_i \in S \text{ and so } 1\tau = \sum_{i} \varepsilon_i(s_i\tau)\overline{e} = \sum_{i} \varepsilon_i s_i \overline{e} .$ Hence, by the version (**) of Gaschütz's theorem, there exists an S-generator e of R such that $e\tau = \overline{e}$. But this means that $1 = \sum_{j} \varepsilon_j s_j e , \varepsilon_j = \pm 1 , s_j \in S ,$ thus $e' = \sum_{j} \varepsilon_j s_j$ satisfies e'e = 1proving $e \in U(R)$ since R satisfies the descending chain condition for left modules. Q.E.D.

COROLLARY. If R is a finite distributively generated near-ring with identity element, and τ is a near-ring homomorphism of R then

$$U(R)\tau = U(R\tau)$$

REMARK. The finiteness condition for ker τ is not indispensable as the following simple example shows:

Let R be a ring with descending chain condition for left ideals. Then, with the notation of the theorem, $U(R)\tau = U(R\tau)$. For let $I = \ker \tau$, J the Jacobson radical of R and e + I a unit in R/I. Then e + I + J is a unit in R/I + J, and since R/J is semisimple there exists a unit $e_1 + J$ of R/J such that $e_1 + I + J = e + I + J$. But then e_1 is a unit in R, for there exists $\overline{e_1} \in R$ such that $\overline{e_1}e_1 = 1 - j$, for some $j \in J$. Since J is nilpotent, $J^n = 0$ for some n. Thus $(1+j+j^2+\ldots+j^{n-1})\overline{e_1}e_1 = 1$. Moreover $e + I = e_1 - j_1 + I$, $j_1 \in J$, and $e_1 - j_1$ is a unit in R, for if $e_1'e_1 = 1$, then $e_1'(e_1-j_1) = 1 - j_1'$, for some $j_1' \in J$ whence $(1+j_1'+j_1'^2+\ldots+j_1'^{n-1})e_1'(e_1-j_1) = 1$. Q.E.D.

More generally, if a distributively generated near-ring R with identity element and descending chain condition satisfies [xy-x,y] = 0, the brackets denoting a commutator in R^+ , then, with the notation of the theorem, $U(R)\tau = U(R\tau)$. The proof is almost the same as for rings using results by Blackett [2], and Betsch [1].

H. Lausch

References

- [1] Gerhard Betsch, "Ein Radikal für Fastringe", Math. Z. 78 (1962), 86-90.
- [2] D.W. Blackett, "Simple and semi-simple near-rings", Proc. Amer. Math. Soc. 4 (1953), 772-785.
- [3] Wolfgang Gaschütz, "Zu einem von B.H. und H. Neumann gestellten Problem", Math. Nachr. 14 (1955), 249-252.

Department of Mathematics, IAS, Australian National University, Canberra, ACT.