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Abstract

Spherical radial basis functions are used to define approximate solutions to pseudodifferential equations
of negative order on the unit sphere. These equations arise from geodesy. The approximate solutions are
found by the collocation method. A salient feature of our approach in this paper is a simple error analysis
for the collocation method using the same argument as that for the Galerkin method.
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1. Introduction

Pseudodifferential equations on the sphere have important applications in geodesy,
oceanography, and meteorology [3, 10]. Demands for efficient solutions to these
equations are increasing as more and more global data are collected by satellites. In
this paper, we study the use of spherical radial basis functions to find approximate
solutions to pseudodifferential equations of negative order.

The use of spherical radial basis functions results in meshless methods which, in
recent years, have grown in popularity [12, 13]. These methods are an alternative to
finite-element methods. The advantage of spherical radial basis functions is in the
construction of the finite-dimensional subspace; it is independent of the dimension of
the geometry. In particular, when scattered data are given, they can be used as centres
to define the spherical radial basis functions without resorting to interpolation.

Collocation solutions to pseudodifferential equations on the sphere by using
spherical radial basis functions have been studied by Morton and Neamtu [5]. Error
bounds were later improved by Morton [4]. These papers emphasize operators of
positive orders, and the crux of the analysis therein is the transformation of the
collocation problem to a Lagrange or Hermite interpolation problem.

In this paper, we shall consider the collocation method for solving pseudodifferen-
tial equations of negative order. These equations arise, for example, when one solves,
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in the exterior of the sphere, the Dirichlet problem with the Laplacian; see [3, 10].
The novelty of our work compared to [4, 5] lies not only in the negativity of the
orders of the operators, but also in the analysis of the error of the approximation.
It is well known that in general the collocation method is easier to implement but
elicits a more complicated analysis than the Galerkin method. Since the spherical
radial basis functions to be used in the approximation are defined from a reproducing
kernel, we can view the collocation method as the Galerkin method applied to another
pseudodifferential operator. Therefore, we can use the same error analysis for the
Galerkin method to study errors in the collocation approximation.

In Section 2 we introduce the definition of pseudodifferential operators in terms
of spherical harmonics and describe in detail the problem to be solved. Section 3 is
devoted to the introduction of spherical radial basis functions and their approximation
properties. The main result of the paper is presented in Section 4.

Throughout this paper, C denotes a generic positive constant which may vary from
instance to instance.

2. The problem

In this paper we denote by S the unit sphere in R3, that is, S := {x ∈ R3
| ‖x‖ = 1}.

For s ∈ R, the Sobolev space H s on S is defined as usual (see, for example, [7]),

H s
:=

{
v ∈ D′(S)

∣∣∣∣ ∞∑
`=0

∑̀
m=−`

(`+ 1)2s
|̂v`,m |

2 <∞

}
,

where D′(S) is the space of distributions on S. The space H s is equipped with the
following norm and inner product:

‖v‖s :=

( ∞∑
`=0

∑̀
m=−`

(`+ 1)2s
|̂v`,m |

2
)1/2

,

〈v, w〉s :=

∞∑
`=0

∑̀
m=−`

(`+ 1)2s v̂`,mŵ`,m .

(2.1)

When s = 0 we write 〈·, ·〉 instead of 〈·, ·〉0, which is in fact the L2-inner product on S.
We note that

|〈v, w〉s | ≤ ‖v‖s‖w‖s ∀v, w ∈ H s, ∀s ∈ R, (2.2)

and

‖v‖s = sup
w∈Ht
w 6=0

〈v, w〉(s+t)/2

‖w‖t
∀v ∈ H s, ∀s, t ∈ R. (2.3)

A pseudodifferential operator L on the sphere is defined by

Lv =
∞∑
`=0

∑̀
m=−`

L̂(`)̂v`,mY`,m (2.4)
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for all v ∈ D′(S) where, for `= 0, 1, 2, . . . and m =−`, . . . , `, the functions Y`,m
are spherical harmonics of degree ` (see, for example, [6]), and

v̂`,m =

∫
S
v(x) Y`,m(x) ds

are the Fourier coefficients of v with respect to spherical harmonics. The sequence
(L̂(`))`≥0 is referred to as the spherical symbol of L .

Let K(L) := {` | L̂(`)= 0}. Then

ker L = span{Y`,m | ` ∈ K(L), m =−`, . . . , `}.

Denoting M := dim ker L , we assume that 0< M <∞.
The operator L is said to be of order 2α for some α ∈ R if there exist positive

constants C1 and C2 such that

C1(`+ 1)2α ≤ L̂(`)≤ C2(`+ 1)2α ∀` /∈ K(L). (2.5)

Under this assumption one can prove that L : H s+α
→ H s−α is a bounded operator

for all s ∈ R.
The following pseudodifferential operators are commonly seen; see [7].

(i) The Laplace–Beltrami operator is an operator of order 2 and has as symbol
L̂(`)= `(`+ 1). This operator is the restriction of the Laplacian on the sphere.

(ii) The hypersingular integral operator (without the minus sign) is an operator of
order 1 and has as symbol L̂(`)= `(`+ 1)/(2`+ 1). This operator arises from
the boundary-integral reformulation of the Neumann problem with the Laplacian
in the interior or exterior of the sphere.

(iii) The weakly-singular integral operator is an operator of order −1 and has as
symbol L̂(`)= 1/(2`+ 1). This operator arises from the boundary-integral
reformulation of the Dirichlet problem with the Laplacian in the interior or
exterior of the sphere.

The problem we are solving in this paper is posed as follows.

PROBLEM. Let L be a pseudodifferential operator of order 2α with α ≤ 0. Given, for
some σ ∈ R, g ∈ Hσ−α satisfying ĝ`,m = 0 for all ` ∈ K(L) and m =−`, . . . , `, find
u ∈ Hσ+α satisfying

Lu = g,
µi (u)= ai , i = 1, . . . , M,

(2.6)

where, for i = 1, . . . , M , ai ∈ R are given numbers and µi ∈ (Hσ+α)∗, that is,
µi are continuous linear functionals on Hσ+α . These functionals are assumed to
be unisolvent with respect to ker L , namely, for every v ∈ ker L , if µi (v)= 0 for
i = 1, . . . , M , then v = 0.

The following lemma which is proved in [5] yields the existence and uniqueness of
the solution to (2.6).
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LEMMA 2.1. There exists a unique solution u ∈ Hσ+α to (2.6), which can be written
as

u = u0 + u1 where u0 ∈ ker L and u1 ∈ (ker L)⊥Hσ+α . (2.7)

Here, (ker L)⊥Hσ+α is the orthogonal complement of ker L as a subspace of the Hilbert
space Hσ+α . Moreover, u1 satisfies Lu1 = g in Hσ−α , and in particular,

〈Lu1, v〉 = 〈g, v〉 ∀v ∈ Hα−σ . (2.8)

In the following we shall find an approximate solution to (2.6) in terms of spherical
radial basis functions using the collocation method.

3. Spherical radial basis functions

Spherical radial basis functions are defined from positive-definite kernels.

3.1. Positive-definite kernels A continuous function 8 : S× S→ C is called a
positive-definite kernel on S if it satisfies:

(i) 8(x, y)=8( y, x) for all x, y ∈ S;
(ii) for every set of distinct points {x1, . . . , xN } on S, the N × N matrix A with

entries Ai, j =8(xi , x j ) is positive-semidefinite.

If the matrix A is positive-definite then 8 is called a strictly positive-definite kernel;
see [9, 14].

We define the kernel 8 in terms of a univariate function φ : [−1, 1] → R:

8(x, y)= φ(x · y) ∀x, y ∈ S.

Assume that φ has a series expansion in terms of Legendre polynomials P`,

φ(t)=
1

4π

∞∑
`=0

(2`+ 1)φ̂(`)P`(t), (3.1)

where

φ̂(`)= 2π
∫ 1

−1
φ(t)P`(t) dt.

By using the well-known addition formula for spherical harmonics [6, 7],

∑̀
m=−`

Y`,m(x) Y`,m( y)=
2`+ 1

4π
P`(x · y) ∀x, y ∈ S, (3.2)

we can write

8(x, y)=
∞∑
`=0

φ̂(`)
∑̀

m=−`

Y`,m(x)Y`,m( y). (3.3)
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REMARK 3.1. The kernel 8 is called a zonal kernel. In [2], a complete
characterization of strictly positive-definite kernels is established: the kernel 8 is
strictly positive-definite if and only if φ̂(`)≥ 0 for all `≥ 0, and φ̂(`) > 0 for infinitely
many even values of ` and infinitely many odd values of `; see also [9, 14].

In the following we shall assume that φ̂(`) > 0 for all `≥ 0, so that the kernel 8 is
strictly positive-definite. The native space associated with φ is defined by

Nφ :=

{
v ∈ D′(S)

∣∣∣∣ ∞∑
`=0

∑̀
m=−`

|̂v`,m |
2

φ̂(`)
<∞

}
.

This space is equipped with an inner product and a norm defined by

〈v, w〉φ =

∞∑
`=0

∑̀
m=−`

v̂`,mŵ`,m

φ̂(`)
and ‖v‖φ =

(
∞∑
`=0

∑̀
m=−`

|̂v`,m |
2

φ̂(`)

)1/2

. (3.4)

If the coefficients φ̂(`) for `= 0, 1, . . . satisfy

c1(`+ 1)−2τ
≤ φ̂(`)≤ c2(`+ 1)−2τ (3.5)

for some positive constants c1 and c2, and some τ ∈ R, then the native space Nφ can
be identified with the Sobolev space H τ , and the corresponding norms are equivalent.
In particular, if τ > 1 then the series (3.1) converges pointwise and Nφ ⊂ C(S), which
is essentially the Sobolev embedding theorem.

It is noted that, for any v ∈ C(S),

v(x)=
∞∑
`=0

∑̀
m=−`

v̂`,m φ̂(`)Y`,m(x)

φ̂(`)
= 〈v, 8(·, x)〉φ ∀x ∈ S. (3.6)

Therefore, 8 is a reproducing kernel of the Hilbert space Nφ .
In the next section we shall use the reproducing kernel 8 to define the spherical

radial basis functions, which in turn define our finite-dimensional subspace for the
approximation.

3.2. Spherical radial basis functions and approximation properties Let X =
{x1, . . . , xN } be a set of data points on S. An important parameter characterizing
the set X is the mesh norm h X defined by

h X := sup
y∈S

min
1≤ j≤N

cos−1(x j · y).

The spherical radial basis functions 8 j , j = 1, . . . , N , associated with X and the
kernel 8 are defined by

8 j (x) :=8(x, x j )=

∞∑
`=0

∑̀
m=−`

φ̂(`)Y`,m(x j )Y`,m(x), (3.7)
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so that

(̂8 j )`,m = φ̂(`) Y`,m(x j ), `= 0, 1, 2, . . . , m =−`, . . . , `.

We note that if (3.5) holds then

8 j ∈ H s
∀s < 2τ − 1. (3.8)

Moreover, for any continuous function v defined on S, it follows from (3.6) that

v(x j )= 〈v, 8 j 〉φ, j = 1, . . . , N . (3.9)

The finite-dimensional subspace to be used in our approximation is now defined by

V φ
X := span{81, . . . , 8N }.

We note that if τ > 1, then V φ
X ⊂ Nφ = H τ

⊂ C(S). We recall here the approximation

property of V φ
X as a subset of Sobolev spaces.

PROPOSITION 3.2. [11, Theorem 3.7] Assume that (3.5) holds for some τ > 1. For
any s, t ∈ R satisfying t ≤ s ≤ 2τ and t ≤ τ , if v ∈ H s then there exists η ∈ V φ

X such
that

‖v − η‖t ≤ ChνX‖v‖s, (3.10)

where ν =min{s − t, 2(τ − t), 2τ + |s|}, and where the constant C is independent of
v and h X .

An approximation to (2.6) will be sought in the space V φ
X , as described in the next

section.

4. Collocation method

4.1. Approximate solutions Recalling (3.8), we assume that

τ >
σ + α + 1

2
, (4.1)

so that V φ
X ⊂ Hσ+α . We shall seek (see Lemma 2.1) an approximate solution ũ ∈

Hσ+α in the form

ũ = ũ0 + ũ1 where ũ0 ∈ ker L and ũ1 ∈ V φ
X . (4.2)

We note that Lũ1 ∈ Hσ−α and recall that g ∈ Hσ−α . If σ > α + 1, then Lũ1 and g
are continuous functions. Therefore, we can find the component ũ1 ∈ V φ

X by solving
the equations

Lũ1(x j )= g(x j ), j = 1, . . . , N . (4.3)
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By writing ũ1 =
∑N

i=1 αi8i we obtain from (4.3) a matrix equation with an N × N
matrix A having entries given by

Ai, j = L8i (x j )=

∞∑
`=0

∑̀
m=−`

L̂(`) φ̂(`) Y`,m(xi ) Y`,m(x j )

=
1

4π

∞∑
`=0

(2`+ 1)L̂(`) φ̂(`)P`(xi · x j ),

where in the final step we used (3.2). The matrix A is positive-definite due to the strict
positive-definiteness of the kernel 9 defined by

9(x, y) :=
∞∑
`=0

L̂(`) φ̂(`)
∑̀

m=−`

Y`,m(x) Y`,m( y);

see Remark 3.1. Therefore, there exists a unique solution ũ1 to (4.3).
Having found ũ1, we find ũ0 ∈ ker L by solving the equations (see (2.6))

µi (̃u0)= ai − µi (̃u1), i = 1, . . . , M, (4.4)

so that µi (̃u)= µi (u) for i = 1, . . . , M . The unisolvency assumption assures the
unique existence of ũ0.

In the remainder, we shall convert the collocation Equation (4.3) into a Galerkin
equation, and use the known error analysis for Galerkin methods to estimate the error
u − ũ.

4.2. Error analysis Recalling (3.9), we can rewrite (4.3) as

〈Lũ1, 8 j 〉φ = 〈g, 8 j 〉φ, j = 1, . . . , N . (4.5)

In order to see that the above equation is a Galerkin equation, we introduce a new
pseudodifferential operator Lφ and a new function gφ ∈ Hσ−α−2τ :

Lφv :=
∞∑
`=0

∑̀
m=−`

L̂(`)

φ̂(`)
v̂`,m Y`,m and gφ :=

∞∑
`=0

∑̀
m=−`

ĝ`,m
φ̂(`)

Y`,m .

The operator Lφ has as symbol L̂(`)/φ̂(`), and is of order 2(τ + α) due to (2.5)
and (3.5). Therefore, Lφ : H τ+α

→ H−τ−α is bounded.
Using Lφ and gφ , we can rewrite Equation (4.5) as

〈Lφ ũ1, 8 j 〉 = 〈gφ, 8 j 〉, j = 1, . . . , N . (4.6)

The exact solution u1 defined in Lemma 2.1 satisfies a similar equation as shown in
the following lemma.
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LEMMA 4.1. Assume that g ∈ Hσ−α with σ ≥ τ . Let u1 be given as in Lemma 2.1.
Then

〈Lφu1, v〉 = 〈gφ, v〉 ∀v ∈ H τ+α. (4.7)

PROOF. First we note that gφ ∈ H−τ−α under the assumption σ ≥ τ . On the other
hand, Lφ maps H τ+α to H−τ−α . Therefore, equation (4.7) is well defined.

Since σ ≥ τ , then Hα−τ
⊂ Hα−σ , which together with (2.8) implies that

〈Lu1, w〉 = 〈g, w〉 ∀w ∈ Hα−τ . (4.8)

For any v ∈ H τ+α , let

V :=
∞∑
`=0

∑̀
m=−`

v̂`,m

φ̂(`)
Y`,m .

Then V ∈ Hα−τ . By using (4.8), we obtain

〈Lφu1, v〉 =

∞∑
`=0

∑̀
m=−`

L̂(`)

φ̂(`)
(̂u1)`,m v̂`,m

=

∞∑
`=0

∑̀
m=−`

L̂(`) (̂u1)`,m V̂`,m

= 〈Lu1, V 〉 = 〈g, V 〉

=

∞∑
`=0

∑̀
m=−`

ĝ`,m v̂`,m
φ̂(`)

= 〈gφ, v〉,

finishing the proof of the lemma. 2

Assumptions (4.1) and σ ≥ τ imply that V φ
X ⊂ Hσ+α

⊂ H τ+α . Due to (4.6)
and (4.7), ũ1 is a Galerkin solution to the equation Lφu1 = gφ , with the energy space
being H τ+α , namely,

〈Lφ(u1 − ũ1), v〉 = 0 ∀v ∈ V φ
X . (4.9)

It is noted that in general V φ
X 6⊆ (ker L)⊥H τ+α . However, ũ can be rewritten in a form

similar to (2.7) as follows. Let

u∗0 := ũ0 +
∑
`∈K(L)

∑̀
m=−`

(̂̃u1)`,mY`,m and u∗1 :=
∑
`/∈K(L)

∑̀
m=−`

(̂̃u1)`,mY`,m . (4.10)

Then
ũ = u∗0 + u∗1 with u∗0 ∈ ker L and u∗1 ∈ (ker L)⊥H τ+α . (4.11)

It should be noted that u∗1 may not belong to V φ
X .

Comparing (2.7) and (4.11) suggests that ‖u − ũ‖τ+α can be estimated by
estimating ‖u0 − u∗0‖τ+α and ‖u1 − u∗1‖τ+α . It turns out that an estimate for the latter
is sufficient, as given in the following two lemmas.
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LEMMA 4.2. Assume that σ ≥ τ . If the functionals µi , i = 1, . . . , M, are bounded
in H τ+α , then

‖u0 − u∗0‖τ+α ≤ C‖u1 − u∗1‖τ+α,

where u0, u1, u∗0 and u∗1 are defined by (2.7) and (4.10).

PROOF. For i = 1, . . . , M , it follows from the linearity of µi and µi (u)= µi (̃u),
see (4.4), that

µi (u0)+ µi (u1)= µi (u
∗

0)+ µi (u
∗

1),

implying that
µi (u0)− µi (u

∗

0)= µi (u
∗

1)− µi (u1).

Therefore,
|µi (u0 − u∗0)| = |µi (u1 − u∗1)| ≤ ‖µi‖‖u1 − u∗1‖τ+α,

where ‖µi‖ is the operator norm of µi with respect to the H τ+α-norm. This result
holds for all i = 1, . . . , M , implying that

‖u0 − u∗0‖µ ≤M ‖u1 − u∗1‖τ+α,

where M :=maxi=1,...,M ‖µi‖, and where, for any v ∈ ker L ,

‖v‖µ := max
i=1,...,M

|µi (v)|.

(The unisolvency assumption assures us that the norm ‖·‖µ is well defined. Indeed,
if ‖v‖µ = 0 for some v ∈ ker L , then the unisolvency of µi confirms that v = 0.) The
subspace ker L being finite-dimensional (so that all norms are equivalent), we deduce
that

‖u0 − u∗0‖τ+α ≤ C ‖u1 − u∗1‖τ+α,

proving the lemma. 2

LEMMA 4.3. Under the assumptions of Lemma 4.2,

‖u − ũ‖τ+α ≤ C‖u1 − u∗1‖τ+α.

PROOF. Noting (2.7) and (4.11), the norm ‖u − ũ‖τ+α can be rewritten as

‖u − ũ‖2τ+α =
∑
`∈K(L)

∑̀
m=−`

(`+ 1)2(τ+α) |̂u`,m − (̂̃u)`,m |
2

+

∑
`/∈K(L)

∑̀
m=−`

(`+ 1)2(τ+α) |̂u`,m − (̂̃u)`,m |
2
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=

∑
`∈K(L)

∑̀
m=−`

(`+ 1)2(τ+α)|(̂u0)`,m − (̂u
∗

0)`,m |
2

+

∑
`/∈K(L)

∑̀
m=−`

(`+ 1)2(τ+α) |(̂u1)`,m − (̂u
∗

1)`,m |
2

= ‖u0 − u∗0‖
2
τ+α + ‖u1 − u∗1‖

2
τ+α.

The required result now follows from Lemma 4.2. 2

In the following, the notation a ' b means

c1a ≤ b ≤ c2a,

where c1 and c2 are positive constants independent of the variables in concern. The
following simple results are often used in the remainder of the paper.

LEMMA 4.4. If v ∈ H τ+α satisfies v̂`,m = 0 for all ` ∈ K(L) and m =−`, . . . , `,
then

〈Lφv, v〉 ' ‖v‖
2
τ+α. (4.12)

Moreover, if v, w ∈ H τ+α , then

|〈Lφv, w〉| ≤ C‖v‖τ+α‖w‖τ+α. (4.13)

PROOF. Let v ∈ H τ+α be such that v̂`,m = 0 for all ` ∈ K(L) and for all m =
−`, . . . , `. Noting (2.5) and (3.5), then

〈Lφv, v〉 =
∑
`/∈K(L)

∑̀
m=−`

L̂(`)

φ̂(`)
|̂v`,m |

2

'

∑
`/∈K(L)

∑̀
m=−`

(`+ 1)2(τ+α) |̂v`,m |2

= ‖v‖2τ+α,

proving (4.12). Inequality (4.13) can be proved similarly by using (2.5), (3.5) and the
Cauchy–Schwarz inequality. 2

The following lemma is technically Céa’s lemma (see, for example, [1]).

LEMMA 4.5. Under the assumptions of Lemma 4.2,

‖u1 − u∗1‖τ+α ≤ C‖u1 − v‖τ+α ∀v ∈ V φ
X .

PROOF. It follows from (4.10) that

〈Lφw, u∗1〉 = 〈Lφw, ũ1〉 ∀w ∈ H τ+α, (4.14)
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and from (4.10) and (4.9) that

〈Lφ(u1 − u∗1), v〉 = 0 ∀v ∈ V φ
X . (4.15)

Due to (4.12),

‖u1 − u∗1‖
2
τ+α ' 〈Lφ(u1 − u∗1), u1 − u∗1〉

= 〈Lφ(u1 − u∗1), u1〉 − 〈Lφ(u1 − u∗1), u∗1〉,

which together with (4.14) implies that

‖u1 − u∗1‖
2
τ+α ' 〈Lφ(u1 − u∗1), u1〉 − 〈Lφ(u1 − u∗1), ũ1〉.

By noting that ũ1 ∈ V φ
X and using (4.15) we deduce, for any v ∈ V φ

X , that

‖u1 − u∗1‖
2
τ+α ' 〈Lφ(u1 − u∗1), u1〉

= 〈Lφ(u1 − u∗1), u1〉 − 〈Lφ(u1 − u∗1), v〉

= 〈Lφ(u1 − u∗1), u1 − v〉.

It follows from (4.13) that

‖u1 − u∗1‖
2
τ+α ≤ C ‖u1 − u∗1‖τ+α‖u1 − v‖τ+α.

The required result now follows by cancelling similar terms. 2

By using Lemmas 4.3 and 4.5 and Proposition 3.2, we can now prove the main
result of this paper.

THEOREM 4.6. Let (3.5) and (4.1) be satisfied. Assume that 1< τ ≤ σ . Assume
further that u ∈ H s for some s ∈ R satisfying τ + α ≤ s ≤ 2τ . If µi ∈ (H τ+α)∗ for
i = 1, . . . , M, then

‖u − ũ‖τ+α ≤ Chν1
X ‖u‖s, (4.16)

where ν1 =min{s − τ − α,−2α, 2τ + |s|}.
Moreover, if µi ∈ (H t )∗, i = 1, . . . , M, for some t ∈ R satisfying 2α ≤ t ≤ τ + α,

then
‖u − ũ‖t ≤ Chν1+ν2

X ‖u‖s, (4.17)

where ν2 =min{τ + α − t,−2α, 2τ + |2τ + 2α − t |}. The constant C is independent
of h X .

PROOF. We first prove (4.16). Since τ + α ≤ τ and τ + α ≤ s ≤ 2τ , Proposition 3.2
assures us that there exists v ∈ V φ

X satisfying

‖u1 − v‖τ+α ≤ Chν1
X ‖u1‖s,

where ν1 =min{s − τ − α,−2α, 2τ + |s|}. It follows from Lemma 4.5 and the above
inequality that

‖u1 − u∗1‖τ+α ≤ Chν1
X ‖u1‖s . (4.18)

This inequality, Lemma 4.3, and the inequality ‖u1‖s ≤ ‖u‖s imply (4.16).
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Estimate (4.17) can be obtained by using the well-known duality argument. We
include the proof here for completeness. Under the assumption µi ∈ (H t )∗ for
i = 1, . . . , M , we can use the same arguments as in the proofs of Lemmas 4.2 and 4.3
to obtain

‖u − ũ‖t ≤ C‖u1 − u∗1‖t .

By using (2.3), and noting that the order of Lφ is 2(τ + α), we deduce from the above
inequality that

‖u − ũ‖t ≤ C sup
v∈H2τ+2α−t

v 6=0

〈u1 − u∗1, v〉τ+α
‖v‖2τ+2α−t

≤ C sup
v∈H2τ+2α−t

v 6=0

〈Lφ(u1 − u∗1), v〉

‖v‖2τ+2α−t
.

It follows from (4.15) and (4.13) that, for any η ∈ V φ
X ,

‖u − ũ‖t ≤ C sup
v∈H2τ+2α−t

v 6=0

〈Lφ(u1 − u∗1), v − η〉

‖v‖2τ+2α−t

≤ C‖u1 − u∗1‖α+τ sup
v∈H2τ+2α−t

v 6=0

‖v − η‖α+τ

‖v‖2τ+2α−t
.

By using Proposition 3.2, noting that 2τ + 2α − t ≤ 2τ due to 2α ≤ t and τ + α ≤
2τ + 2α − t due to t ≤ τ + α, we can choose η ∈ V φ

X such that

sup
v∈H2τ+2α−t

v 6=0

‖v − η‖α+τ

‖v‖2τ+2α−t
≤ Chν2

X .

The desired result now follows from (4.18) and the inequality ‖u1‖s ≤ ‖u‖s . 2

5. Conclusions

We have presented a collocation solution to pseudodifferential equations of negative
order on the sphere, using spherical radial basis functions. The analysis follows that
of the Galerkin method thanks to an observation that the collocation equation can be
rewritten as a Galerkin equation. Numerical results for the case of an operator of
order −1 can be found in a forthcoming paper [8].
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