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1. The purpose of this paper is to obtain a set of sufficient
conditions for '"global asymptotic stability' of the trivial solution
x = 0 of the differential equation

(1.1) %+ afi(x, x)x + fz(x, x)x + bf3(x) =0,

using a Lyapunov function which is substantially different from
similar functions used in [2], [3] and [4], for similar differential

equations. The functions f'l’f and f3 are real-valued and are

2
smooth enough to ensure the existence of the solutions of (1.1)
on [0,®). The dot indicates differentiation with respect to t.

We are taking a and b to be some positive parameters. We

2 2
2(:x:, y)/@x, o fi(x, y)/0x

and f'3(x) to ensure the existence of the integrals appearing in

also assume smoothness properties for 9f

our work.

Our main result appears in Section 2. In Section 3 we have
generalized a result of Simanov [4]. And in the same section is
obtained a result for the boundedness of the solutions of the

differential equation

(1.2) '5<'+f1(x, X)X +f2(x, x)x +bx = p(t),

in which p(t) is an integrable function.

2. We use the following notations:
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y
Glx,y) = [, £, bom)dnly (y #0),

X y
Wee,y) = ab [ £(6)dE +bE(x)y + [ melx n)dn

I

y
0
_ —— d
g(x, v) fz(x, y) - a fo 0 fi(xrﬂ)d”ﬂ (o ), an

ox

]

v
I(x, y) y fom@ gbomdn .

It is convenient to consider, instead of (1.1), an equivalent
system:

Yy
(24) X =y, ¥ = z-a [ fGun)dn, 2 = -yg(xy) - bi(x)

We have the following:

THEOREM 2.1. Let there exist positive constants §,vy, W,
and c¢ such that

(i) g(x,y)>p, and f3(X)/X_>_y, x# 0.

(i1) ap - chpz, and fé(x) < C

(iii) yaxg(x,y)io and 1< G(x,y)<1+2p /'I(x,y)l/ablf3|,
x#0, y#0,

then every solution x(t) of (1.41) has the property that
x(t) >0, as t=o0.

Proof. Consider the function

2

Vix,y,2) = Tz + W(x,vy)

N |~

Differentiating V with respect to t and using the values of
x, y and z from (2.1), we get
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Vo= y’lagbe y)Glx, y) - by ()]
-abf3(X)[G(x, y)-1ly + IUx, v).

Obviously V =0 for y = 0. However, if y # O,. then the second
part of (iii) implies that fi(x, y)>1. We write V as:

vV = —yz[ag(x, y)G(x, y)—bf'3(x)] - abf3(x)[G(x, y)-1ly

- i—azbzfz(x)[(}(x, y)- 1] /[aB-bc] + I(x, )

+ 7 a B2 ([Glx y)-11° /ap-be]

= -U(x,y) + E(x, y).

Since ag(x, v)G(x, y)-bfé(x) > af - bc> 0, itis easy to check that

Ulsy) = v lagls y)Gs y)-bEL(x)] + ab, (x)[Glx y)-1]y

+ i szfz(x)[G(x, )- '1] /[ap-bc]> 0, v # 0.

If we could show that

E(x,y) = Ix,vy) +— azbzfz(x)[G(x, y)- 1] /[aB-bc]< 0, y#0

then \./'<O for y # 0.

Now E(x,y) < I(x,y) +—1—E azb f (X)[G(x, ]2, y # 0 and

4p
therefore E(x,y) < 0 provided that
1 2 2 2 2 2
u -1]

ive. if G(x,y)<1+2p \/II(X, /ablf l which is true by the

second part of (iii).
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Our next step is to show that V is positive~-definite. For
this it suffices to show that W(x,y)> 0 and W(0,0) = 0.

y

X
2W(x,y) = 2ab [ f.(E)dE +2byf (x) +2 [ mg(x, m)dn

1

xX
2ab fo f3(§)d§ + 2byf3(><) + BYZ

Y

2

X
= 2ab fo £.(£)dg + —é—{ﬁy + bi, (%)) 2. % fg(x)

b [ 1 )
= 25 S, (2B - bELEN £,(€) dE + 5 By + b, ()}

> %{By + bf3(x)} 2 + %;i (aﬁ-bc)x2

> 0 for x#0, y+#0.

Observe that W(x,y) = o as |x| + |y| = o, which
implies that V - o as ]x! + ly’ + |z| —- o . The remainder of
the proof follows the method described by Ezeilo [2].

REMARK 1, We observe that our hypotheses reduce to the
Routh- Hurwicz criteria for ¥ + aX + x +bx = 0, since (iii)
is trivially satisfied.

REMARK 2.

(a) If fi(x,y) and fz(x, y) are both functions of x alone
then hypothesis iii of Theorem 2.1 implies that f1 =1 and fz is
constant. This case then reduces to one considered in ([1], [2],
[3] and [4]).

(b) If f2 is a function of y alone or of x alone then this

reduces to the problem of Ezeilo.
3. The differential equation.

vee

(3.1) x+f1(x,)'<)'>'<+f2(x,>°<)}.{+bx =0
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is a special case of (1.1). However we will construct a different
Lyapunov function for (3.4) in order to establish a claim made in
Section 1. For (3.1) we have the following:

THEOREM 3.1. If f1(x, y) and fz(x, y) are continuously

differentiable for all values of x, and

(i) fi(x, y)>b>0, fz(x, y) > 1 for all x and y, (with

strict inequality in at least one of the above conditions).

(ii) y ax(fi(x, y) + b fz(x, y)) < 0, for all x and y, then

every solution x(t) of (3.1) satisfies
(3.2) x(t) = 0, x(t) > 0, X(t) >~ 0 as t=—>
Proof. Reduce (3.1) to the equivalent system

(3.3) X =vy,y =z, 2z = —fi(x,y)z—fz(x,y)y-bx.

Our result follows if we consider the function

(3.4) 2V(x,vy,z) = (z+by)2 + (bx+y)2
+2fy (bf, (,m) + £ (x, ))dn - (b> + 1)y
o N 1 XM 2 X, m))dan - y -

This result is a generalisation of a result of Simanov [4].

If p(t) # 0 the result (3.2) does not, in general, hold for
the solutions of (1 2), but we shall show that

THEOREM 3.2. If along a solution curve x = x(t) of (1.2)
we have .
(@ f,0oy)2b+ [p(®)]

(i) £,06y) 21+ [p(t)]
(iii) yax(fi(x, y) +% fz(x, y)) <0, for all x,y

and if further
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t
(iv) folp(fr)]dr <A<

then given any finite xo, yo, z there is a finite constant
o
B(xo, Y 2 ) such that the (unique) solution x(t) of (1.2), which
o

is determined by the initial conditions

(3.5) x(0) = x x(0) = Yy x(0) = z
satisfies
(3.6) Ix(t)] < B, |x(t)] <B, |x(t)] <B

for all t> 0.

Proof. Our treatment of this theorem is again indirect.
We consider the equivalent system

(3.7) x = vy, y =z, z = —fi(x,y)z-fz(x,y)y—bx+p(t)

and the function (3.4). Let (x(t),y(t), z(t)) be a solution of (3.7)
2
satisfying the initial conditions (3.5). Since V = o as x +y

+ 2z = 0, in order to prove (3.6) it suffices to show that there is
a constant C> 0, depending only on x Yo and z such that
o

(3.8) V(x(t), y(t), z(t)) < C, t> 0.

By virtue of (3.7) we have

2V

1

~222(8, (5 y)-b) - 25708, y)- )b

+

Yy
2y fo n ax(bfi(x,n) + f (X,T]))d‘r‘

2
+ 2p(t)z + 2bp(t)y

or
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2V < ~22%(8, (x, y)-b) - 2by” (£, (%, y)-1)

+2]p®llz] +2b[p]ly]

< -225(1, (%, y)-b) - 2by’(6, (%, y)-1)

F2]p(0)] (1 +2°) + 25| p(t)| (14y7)

= 22501, 60 )b [p(0]) - 2by%(E, G y)-1- [p(0)])

+ 2|p(t) ] (1 +b).
Thus we have
\75(1 +b)|p(t)| for all t> 0
or

t
V(t) < V(0) + (1 +Db) fo Ip(T)|d 7

<V(0)+(1+b)A = C.

This proves (3.8) and Theorem 3.2 follows.
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