ON STABILITY OF SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF THE THIRD ORDER

B.S. Lalli

(received June 7, 1967)

1. The purpose of this paper is to obtain a set of sufficient conditions for "global asymptotic stability" of the trivial solution x = 0 of the differential equation

(1.1)
$$\ddot{x} + af_1(x, \dot{x})\ddot{x} + f_2(x, \dot{x})\dot{x} + bf_3(x) = 0,$$

using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f_1, f_2 and f_3 are real-valued and are smooth enough to ensure the existence of the solutions of (1.1) on $[0, \infty)$. The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters. We also assume smoothness properties for $\partial f_2(x,y)/\partial x$, $\partial^2 f_1(x,y)/\partial x^2$ and $f_3'(x)$ to ensure the existence of the integrals appearing in our work.

Our main result appears in Section 2. In Section 3 we have generalized a result of Simanov [4]. And in the same section is obtained a result for the boundedness of the solutions of the differential equation

(1.2)
$$\ddot{x} + f_1(x, \dot{x})\ddot{x} + f_2(x, \dot{x})\dot{x} + bx = p(t),$$

in which p(t) is an integrable function.

2. We use the following notations:

Canad. Math. Bull. vol. 10, no. 5, 1967

$$G(\mathbf{x}, \mathbf{y}) = \int_{0}^{\mathbf{y}} f_{1}(\mathbf{x}, \eta) d\eta / \mathbf{y} \qquad (\mathbf{y} \neq 0) ,$$

$$W(\mathbf{x}, \mathbf{y}) = ab \int_{0}^{\mathbf{x}} f_{3}(\xi) d\xi + bf_{3}(\mathbf{x}) \mathbf{y} + \int_{0}^{\mathbf{y}} \eta g(\mathbf{x}, \eta) d\eta$$

$$g(\mathbf{x}, \mathbf{y}) = f_{2}(\mathbf{x}, \mathbf{y}) - a \int_{0}^{\mathbf{y}} \partial_{\mathbf{x}} f_{1}(\mathbf{x}, \eta) d\eta \quad (\partial_{\mathbf{x}} = \frac{\partial}{\partial \mathbf{x}}), \text{ and}$$

$$I(\mathbf{x}, \mathbf{y}) = \mathbf{y} \int_{0}^{\mathbf{y}} \eta \partial_{\mathbf{x}} g(\mathbf{x}, \eta) d\eta .$$

It is convenient to consider, instead of (1.1), an equivalent system:

(2.1)
$$\dot{x} = y$$
, $\dot{y} = z - a \int_{0}^{y} f_{1}(x, \eta) d\eta$, $\dot{z} = -yg(x, y) - bf_{3}(x)$

We have the following:

THEOREM 2.1. Let there exist positive constants β, γ, μ , and c such that

(i)
$$g(x, y) \ge \beta$$
, and $f_3(x)/x \ge \gamma$, $x \ne 0$.

(ii)
$$a\beta - bc \ge \mu^2$$
, and $f'_3(x) < C$

(iii)
$$y \underset{\mathbf{x}}{\partial}_{\mathbf{g}}(\mathbf{x}, \mathbf{y}) \leq 0$$
 and $1 \leq G(\mathbf{x}, \mathbf{y}) \leq 1 + 2\mu \sqrt{|\mathbf{I}(\mathbf{x}, \mathbf{y})|} / ab |f_3|$, $\mathbf{x} \neq 0$, $\mathbf{y} \neq 0$,

then every solution x(t) of (1.1) has the property that $x(t) \rightarrow 0$, as $t \rightarrow \infty$.

Proof. Consider the function

$$V(x, y, z) = \frac{1}{2}z^2 + W(x, y)$$

Differentiating V with respect to t and using the values of \dot{x} , \dot{y} and \dot{z} from (2.1), we get

$$\dot{V} = -y^{2}[ag(x, y)G(x, y) - bf'_{3}(x)]$$
$$-abf_{3}(x)[G(x, y)-1]y + I(x, y).$$

Obviously $\overset{\bullet}{V}=0$ for y=0. However, if $y\neq 0$, then the second part of (iii) implies that $f_{\downarrow}(x,y)\geq 1$. We write $\overset{\bullet}{V}$ as:

$$\dot{V} = -y^2 [ag(x, y)G(x, y) - bf'_3(x)] - abf_3(x)[G(x, y) - 1]y$$

$$- \frac{1}{4} a^2 b^2 f_3^2(x)[G(x, y) - 1]^2 / [a\beta - bc] + I(x, y)$$

$$+ \frac{1}{4} a^2 b^2 f_3^2(x)[G(x, y) - 1]^2 / [a\beta - bc]$$

$$= -U(x, y) + E(x, y).$$

Since $ag(x, y)G(x, y)-bf_3'(x) > a\beta - bc > 0$, it is easy to check that

$$U(x, y) = y^{2}[ag(x, y)G(x, y)-bf_{3}'(x)] + abf_{3}(x)[G(x, y)-1]y$$
$$+ \frac{1}{4}a^{2}b^{2}f_{3}^{2}(x)[G(x, y)-1]^{2}/[a\beta-bc] > 0, \quad y \neq 0.$$

If we could show that

$$E(x,y) = I(x,y) + \frac{1}{4} a^2 b^2 f_3^2(x) [G(x,y)-1]^2 / [a\beta-bc] \le 0, y \ne 0$$
then $\dot{V} < 0$ for $y \ne 0$.

Now $E(x,y) \le I(x,y) + \frac{1}{4\mu} a^2 b^2 f_3^2(x) [G(x,y)-1]^2$, $y \ne 0$ and therefore $E(x,y) \le 0$ provided that

$$\frac{1}{4} \mu^2 a^2 b^2 f_3^2(x) [G(x, y) - 1]^2 \le -I(x, y), \quad y \ne 0$$

i.e. if $G(x, y) \le 1 + 2 \mu \sqrt{|I(x, y)|/ab|f_3|}$, which is true by the second part of (iii).

Our next step is to show that V is positive-definite. For this it suffices to show that W(x, y) > 0 and W(0, 0) = 0.

$$2W(x,y) = 2ab \int_{0}^{x} f_{3}(\xi)d\xi + 2byf_{3}(x) + 2 \int_{0}^{y} \eta g(x,\eta)d\eta$$

$$\geq 2ab \int_{0}^{x} f_{3}(\xi)d\xi + 2byf_{3}(x) + \beta y^{2}$$

$$= 2ab \int_{0}^{x} f_{3}(\xi)d\xi + \frac{1}{\beta}\{\beta y + bf_{3}(x)\}^{2} - \frac{b^{2}}{\beta}f_{3}^{2}(x)$$

$$= 2\frac{b}{\beta} \int_{0}^{x} \{a\beta - bf_{3}^{*}(\xi)\} f_{3}(\xi) d\xi + \frac{1}{\beta}\{\beta y + bf_{3}(x)\}^{2}$$

$$> \frac{1}{\beta}\{\beta y + bf_{3}(x)\}^{2} + \frac{by}{\beta} (a\beta - bc)x^{2}$$

$$> 0 \text{ for } x \neq 0, y \neq 0.$$

Observe that $W(x, y) \to \infty$ as $|x| + |y| \to \infty$, which implies that $V \to \infty$ as $|x| + |y| + |z| \to \infty$. The remainder of the proof follows the method described by Ezeilo [2].

REMARK 1. We observe that our hypotheses reduce to the Routh-Hurwicz criteria for $\ddot{x} + a\ddot{x} + \dot{x} + bx = 0$, since (iii) is trivially satisfied.

REMARK 2.

- (a) If $f_1(x, y)$ and $f_2(x, y)$ are both functions of x alone then hypothesis iii of Theorem 2.1 implies that $f_1 = 1$ and f_2 is constant. This case then reduces to one considered in ([1], [2], [3] and [4]).
- (b) If f_2 is a function of y alone or of x alone then this reduces to the problem of Ezeilo.
 - 3. The differential equation.

(3.1)
$$\dot{x} + f_1(x, \dot{x})\dot{x} + f_2(x, \dot{x})\dot{x} + bx = 0$$

is a special case of (1.1). However we will construct a different Lyapunov function for (3.1) in order to establish a claim made in Section 1. For (3.1) we have the following:

THEOREM 3.1. If $f_1(x, y)$ and $f_2(x, y)$ are continuously differentiable for all values of x, and

- (i) $f_1(x, y) \ge b > 0$, $f_2(x, y) \ge 1$ for all x and y, (with strict inequality in at least one of the above conditions).
- (ii) $y \partial_x(f_1(x, y) + \frac{1}{b}f_2(x, y)) \le 0$, for all x and y, there every solution x(t) of (3.1) satisfies

(3.2)
$$x(t) \rightarrow 0$$
, $\dot{x}(t) \rightarrow 0$, $\ddot{x}(t) \rightarrow 0$ as $t \rightarrow \infty$

Proof. Reduce (3.1) to the equivalent system

(3.3)
$$\dot{x} = y, \dot{y} = z, \dot{z} = -f_1(x, y)z - f_2(x, y)y - bx.$$

Our result follows if we consider the function

(3.4)
$$2V(x, y, z) = (z+by)^2 + (bx+y)^2$$

 $+ 2 \int_0^y \eta(bf_1(x,\eta) + f_2(x,\eta))d\eta - (b^2 + 1)y^2.$

This result is a generalisation of a result of Simanov [4].

If $p(t) \neq 0$ the result (3.2) does not, in general, hold for the solutions of (1.2), but we shall show that

THEOREM 3.2. If along a solution curve x = x(t) of (1.2) we have (i) $f_{\lambda}(x, y) \ge b + |p(t)|$

(ii)
$$f_2(x, y) \ge 1 + |p(t)|$$

(iii)
$$y \frac{\partial}{\partial x} (f_1(x, y) + \frac{1}{h} f_2(x, y)) \le 0$$
, for all x, y

and if further

(iv)
$$\int_{\Omega}^{t} |p(\tau)| d\tau \leq A < \infty$$

then given any finite x_0, y_0, z_0 there is a finite constant $B(x_0, y_0, z_0)$ such that the (unique) solution x(t) of (1.2), which is determined by the initial conditions

(3.5)
$$x(0) = x, \dot{x}(0) = y, \ddot{x}(0) = z_0$$

satisfies

$$|\mathbf{x}(t)| < \mathbf{B}, \quad |\dot{\mathbf{x}}(t)| < \mathbf{B}, \quad |\dot{\mathbf{x}}(t)| \le \mathbf{B}$$

for all t > 0.

 $\underline{\text{Proof}}$. Our treatment of this theorem is again indirect. We consider the equivalent system

(3.7)
$$\dot{x} = y$$
, $\dot{y} = z$, $\dot{z} = -f_1(x, y)z - f_2(x, y)y - bx + p(t)$

and the function (3.4). Let (x(t), y(t), z(t)) be a solution of (3.7) satisfying the initial conditions (3.5). Since $V \rightarrow \infty$ as $x^2 + y^2 + z^2 \rightarrow \infty$, in order to prove (3.6) it suffices to show that there is a constant C > 0, depending only on x_0, y_0 and z_0 such that

(3.8)
$$V(x(t), y(t), z(t)) \leq C, \quad t \geq 0.$$

By virtue of (3.7) we have

$$2\dot{V} = -2z^{2}(f_{1}(x, y)-b) - 2y^{2}(f_{2}(x, y)-1)b$$

$$+ 2y \int_{0}^{y} \eta \frac{\partial}{x}(bf_{1}(x, \eta) + f_{2}(x, \eta))d\eta$$

$$+ 2p(t)z + 2bp(t)y$$

or

$$\begin{aligned} 2\dot{V} &\leq -2z^2 (f_1(x, y) - b) - 2by^2 (f_2(x, y) - 1) \\ &\qquad + 2 |p(t)| |z| + 2b |p(t)| |y| \\ &\leq -2z^2 (f_1(x, y) - b) - 2by^2 (f_2(x, y) - 1) \\ &\qquad + 2 |p(t)| (1 + z^2) + 2b |p(t)| (1 + y^2) \\ &= -2z^2 (f_1(x, y) - b - |p(t)|) - 2by^2 (f_2(x, y) - 1 - |p(t)|) \\ &\qquad + 2 |p(t)| (1 + b). \end{aligned}$$

Thus we have

$$\dot{V} < (1 + b)|p(t)|$$
 for all $t > 0$

or

$$V(t) \le V(0) + (1 + b) \int_{0}^{t} |p(\tau)| d\tau$$
 $< V(0) + (1 + b)A = C.$

This proves (3.8) and Theorem 3.2 follows.

Acknowledgment. The author wishes to record appreciation for very helpful comments made by Dr. A.A. Kayande.

REFERENCES

- E.A. Barbasin, On the stability of certain nonlinear equations of the third order. Priklad. Mat. Mech. 16, 629-632 (1952).
- 2. J.O.C. Ezeiolo, On the stability of solutions of certain differential equations of the third order. Quart. J. Math. Oxford (2), 11 (1960), 64-69.

- 3. V. Haas, A stability result for a third order nonlinear differential equation. J. London Math. Soc. 40 (1965), 31-33.
- 4. S.N. Simanov, On stability of solutions of a nonlinear differential equation of third order. Priklad. Mat. Mech., 17 (1953), 369-372.

University of Saskatchewan, Saskatoon and Canadian Mathematical Congress Summer Research Institute