
Bull. Aust. Math. Soc. 99 (2019), 327–337
doi:10.1017/S0004972718001053

THE DOMINATION GAME ON SPLIT GRAPHS
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Abstract

We investigate the domination game and the game domination number γg in the class of split graphs.
We prove that γg(G) ≤ n/2 for any isolate-free n-vertex split graph G, thus strengthening the conjectured
3n/5 general bound and supporting Rall’s dn/2e-conjecture. We also characterise split graphs of even
order with γg(G) = n/2.
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1. Introduction

If u and v are vertices of a graph G = (V(G), E(G)), then u dominates v if u = v or u is
adjacent to v. The domination game is played on G by Dominator and Staller who take
turns choosing a vertex from G such that at least one previously undominated vertex
becomes dominated. The game is over when no such move is possible. The score
of the game is the number of vertices chosen by the two players. Dominator wants
to minimise the score and Staller wants to maximise it. A game is called a D-game
(respectively S-game) if Dominator (respectively Staller) has the first move. The game
domination number γg(G) of G is the score of a D-game played on G assuming that
both players play optimally; the Staller-start game domination number γ′g(G) is the
score of an optimal S-game. This game was introduced in [3] and has been thoroughly
investigated. A vertex u totally dominates v if u is adjacent to v. The total domination
game is defined just as the domination game, except that everywhere ‘domination’ is
replaced with ‘total domination’. This version of the domination game was introduced
in [14].

Kinnersley et al. [18] posed a celebrated 3/5-conjecture asserting that if G is an
isolate-free forest of order n or an isolate-free graph of order n, then γg(G) ≤ 3n/5.
A parallel 3/4-conjecture for the total domination game was later posed in [15].
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For accounts of the progress on these two conjectures, see [5, 13, 16] and [6, 7],
respectively.

To determine the game domination number can be a challenge even on simple
families of graphs such as paths and cycles. The problem for the latter two families
was first solved in the unpublished manuscript [17], where the result for the cycle on
n vertices Cn reads as follows:

γg(Cn) =

{
dn/2e − 1 if n ≡ 3 (mod 4),
dn/2e otherwise.

The first published proof for the game domination number of paths and cycles appeared
only recently in [19]. Because of these results and having in mind that paths and cycles
are the simplest graphs with a Hamiltonian path and a Hamiltonian cycle, several years
ago Rall proposed the following conjecture that strengthens the 3/5-conjecture for
graphs containing Hamiltonian paths. Here and in the rest of the paper, n(G) denotes
the order of G, that is, n(G) = |V(G)|.

Conjecture 1.1. If a graph G contains a Hamiltonian path, then γg(G) ≤ dn(G)/2e.

Although the conjecture has been around for a while, as far as we know it has never
been stated explicitly in a publication.

In this paper we consider the domination game on split graphs, a class of graphs
of wide interest in graph theory (cf. [4, 10]). The class of split graphs might appear
quite restrictive; however, even with nested split graphs (a subclass of split graphs)
one can approximate real complex graphs [21]. The paper is organised as follows.
In the next section, we give definitions and notation and recall known results needed
later. In Section 3, we prove that if G is an isolate-free n-vertex split graph G, then
γg(G) ≤ n(G)/2 and γ′g(G) ≤ b(n(G) + 1)/2c. Then, in Section 4, split graphs of even
order with γg(G) = n/2 are characterised.

2. Preliminaries

The open neighbourhood NG(x) = {y : xy ∈ E(G)} and the closed neighbourhood
NG[x] = NG(x) ∪ {x} will be abbreviated to N(x) and N[x] when G is clear from
the context. If x ∈ V(G) and S ⊆ V(G), then let NS (x) = NG(x) ∩ S and degS (x) =

|NG(x) ∩ S |. For m ∈ N we use the notation [m] = {1, . . . ,m}. A chordal graph is one
in which every cycle of length four has a chord, that is, an edge that connects two
nonconsecutive vertices of the cycle. The disjoint union of two copies of a graph G is
denoted by 2G; in particular, 2K2 is the disjoint union of two complete graphs on two
vertices.

A graph G = (V(G), E(G)) is a split graph if V(G) can be partitioned into (possibly
empty) sets K and I, where K is a clique and I is an independent set [12]. The pair (K, I)
is called a split partition of G. Split graphs can be characterised in several different
ways. For example, they are the graphs that contain no induced subgraphs isomorphic
to a graph in {2K2,C4,C5} [12]. If G is a split graph with a split partition (K, I), then a
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maximal clique of G is either K or it is induced with the closed neighbourhood of a
vertex from I. Hence, a maximal clique of G is easy to detect. Throughout the paper
we may and will thus assume that if (K, I) is a split partition of a (split) graph G, then
|K| = ω(G), that is, K is a largest clique of G. We will also set k = |K| and i = |I| and
write K = {x1, . . . , xk} and I = {y1, . . . , yi}.

The sequence of moves is a D-game will be denoted with d1, s1, d2, s2, . . . and the
sequence of moves is an S-game with s′1, d

′
1, s′2, d

′
2, . . . . A partially dominated graph

is a graph together with a declaration that some vertices are already dominated, that
is, they need not be dominated in the rest of the game. If S ⊆ V(G), then let G|S
denote the partially dominated graph in which vertices from S are already dominated.
If S = {x}, we will abbreviate G|{x} to G|x. If G|S is a partially dominated graph, then
γg(G|S ) and γ′g(G|S ) denote the optimal numbers of moves in the D-game and the S-
game, respectively, played on G|S . A vertex u of a partially dominated graph G|S is
saturated if each vertex in N[u] is dominated. Clearly, as soon as a vertex becomes
saturated, it is not a legal move in the rest of the game.

Lemma 2.1 (Continuation principle [18]). Let G be a graph with A, B ⊆ V(G). If B ⊆ A,
then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

The next theorem is a very important consequence of the continuation principle.

Theorem 2.2 [3, 18]. If G is a partially dominated graph, then |γg(G) − γ′g(G)| ≤ 1.

A graph G is said to be a no-minus graph if γg(G|A) ≤ γ′g(G|A) for every A ⊆ V(G).
We will need the following result due to Dorbec et al.

Theorem 2.3 [11, Theorem 2.7]. Connected split graphs are no-minus graphs.

This theorem was actually proved in [11] for the so-called (connected) tri-split
graphs, which form a generalisation of split graphs.

3. The 1/2 upper bound

In this section, we first prove the 1/2 upper bound for the D-game and then the
corresponding bound for the S-game. At the end, the sharpness of both bounds is
demonstrated. In the corresponding arguments we need to show that Dominator has
a strategy which ensures that at most a prescribed number of moves will be played,
no matter how Staller is playing. But this means that we may assume that Staller is
playing optimally, because otherwise the game could only be finished faster.

Theorem 3.1. If G is a connected split graph with n(G) ≥ 2, then γg(G) ≤ bn(G)/2c.

Proof. The proof is by induction on n(G). We first check the cases when 2 ≤ n(G) ≤ 5.
If n(G) = 2, then G = K2 and, if n(G) = 3, then G ∈ {K3, P3}. For all these three (split)
graphs the assertion clearly holds. From [18, Proposition 5.3] we recall that if G is
a (partially dominated, isolate-free) chordal graph, then γg(G) ≤ 2n(G)/3. As split
graphs are chordal, the same conclusion holds for split graphs. Hence, if n(G) = 4,

https://doi.org/10.1017/S0004972718001053 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001053
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then γg(G) ≤ 2n(G)/3 = 8/3, that is, γg(G) ≤ 2. Suppose finally that n(G) = 5. If k = 2,
then, since G is connected, at least one of the vertices, say x1, of K has at least two
neighbours in I. Then the move d1 = x1 yields γg(G) ≤ 2. If k = 3, then Dominator
starts the game with d1 = x1, where x1 is a vertex of K having at least one neighbour
in I. If the game is not finished yet, then Staller must finish the game in her first move
by dominating the only undominated vertex in I. Hence, again, γg(G) ≤ 2. Finally, if
k ∈ {4, 5}, then γg(G) = 1. This proves the basis of the induction.

Assume now that the result is true for all split graphs up to and including n − 1
vertices, where n ≥ 6. We distinguish two cases.

Case 1. degI(xr) ≤ 1, r ∈ [k]. In this case we clearly have |I| ≤ |K|. If i = 0, then G = Kk

and the assertion is clear. Otherwise, let Dominator start the game by playing a vertex
of K with a neighbour in I. Then, in every subsequent move (either by Staller or by
Dominator), exactly one new vertex (in I) will be dominated. It follows that γg(G) = |I|.
Consequently,

γg(G) = |I| =
|I| + |I|

2
≤
|K| + |I|

2
=

n(G)
2

.

Case 2. degI(xr) ≥ 2 for some r ∈ [k]. We may without loss of generality assume
that x1y1, x1y2 ∈ E(G). The initial strategy of Dominator is to play d1 = x1. After
that Staller selects a vertex optimally, which means that she plays ys, where s < [2],
unless, of course, the game is over after the move d1 = x1. (We note that because of
the continuation principle if N[x] ⊆ N[w] and both x and w are legal moves, we may
assume that Staller will play x over w.) Set Z = {x1, y1, y2, ys}. Then, since Staller has
played optimally (and Dominator maybe not), after the first two moves we reach

γg(G) ≤ 2 + γg

(
G
∣∣∣∣∣⋃

z∈Z

N[z]
)
.

Set G′ = G \ {x1, y1, y2, ys}. After x1 and ys have been played, the vertices x1, y1, y2 and
ys are saturated. Therefore, by the continuation principle,

γg

(
G
∣∣∣∣∣⋃

z∈Z

N[z]
)
≤ γg(G′).

Since n(G′) = n(G) − 4, we can combine the above two inequalities with the induction
hypothesis into

γg(G) ≤ 2 + γg

(
G
∣∣∣∣∣⋃

z∈Z

N[z]
)
≤ 2 + γg(G′) ≤ 2 +

⌊n(G) − 4
2

⌋
=

⌊n(G)
2

⌋
and we are done. �

The assumption of Theorem 3.1 that G is connected is essential. For instance, for
the complement Kn of Kn (both of these graphs being split graphs) we have γg(Kn) = n.
Note also that Theorem 3.3 supports Conjecture 1.1. In this respect, we mention a very
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interesting dichotomy that detecting Hamiltonicity is difficult on K1,5-free split graphs
but polynomial on K1,4-free split graphs [20].

Combining Theorem 3.1 with Theorem 2.2, we see that if G is a connected split
graph with n(G) ≥ 2, then

γg
′(G) ≤ γg(G) + 1 ≤

⌊n(G)
2

⌋
+ 1 =

⌊n(G) + 2
2

⌋
. (3.1)

To slightly improve this bound, we first prove the following lemma.

Lemma 3.2. Let G be a connected split graph. If there exists a vertex xr ∈ K with
degI(xr) = 0, then xr is an optimal first move of Staller in the S-game.

Proof. Suppose that s′1 = xr. Then Dominator has an optimal reply in K, say d′1 = xs,
s , r. Indeed, the continuation principle implies that if d′1 = yt ∈ I, then any neighbour
of yt is at least as good for Dominator as yt. After the moves s′1 = xr and d′1 = xs
are played, the set of vertices dominated is X = K ∪ NG(xs). Hence, if Staller had
played some other vertex, Dominator can still play xs, unless Staller played xs. In any
case, if Y is the set of vertices dominated after two such moves, then X ⊆ Y . By the
continuation principle, it follows that s′1 = xr is an optimal move. �

Now we can improve (3.1) as follows.

Theorem 3.3. Suppose that G is a connected split graph such that n(G) ≥ 2. Then
γ′g(G) ≤ b(n(G) + 1)/2c.

Proof. The assertion is clearly true for K2 and hence we may assume in the rest of the
proof that n(G) ≥ 3. By Lemma 3.2 and the continuation principle, Staller’s first move
s′1 is either a vertex of I or a vertex from K with no neighbour in I. Let G′ = G \ s′1.
Clearly, G′ is a connected split graph with n(G′) = n(G) − 1 ≥ 2 and hence from
Theorem 3.1 we have γg(G′) ≤ b(n(G) − 1)/2c. Therefore, applying the continuation
principle again,

γ′g(G) = 1 + γg(G|N[s′1]) ≤ 1 + γg(G′) ≤ 1 +

⌊n(G) − 1
2

⌋
=

⌊n(G) + 1
2

⌋
,

as claimed. �

In view of Theorem 3.1, we say that G is a 1/2-split graph if γg(G) = bn(G)/2c. To
conclude the section, we present two families of 1/2-split graphs.

Let Gk, k ≥ 2, be the split graph with split partition (K, I), where K = {x1, . . . , xk}

and I = {y1, . . . , yk} (that is, i = k) and where xryr, r ∈ [k], are the only edges between
K and I. Then it is straightforward to see that γg(Gk) = γg

′(Gk) = k, that is, Gk is a 1/2-
split graph and the bounds of Theorems 3.1 and 3.3 cannot be improved in general.

The above graphs Gk are of even order and hence the bounds of Theorems 3.1
and 3.3 are the same. Next let Hk, k ≥ 2, be a split graph obtained from Gk by adding
one more vertex yk+1 to I and the edge xkyk+1. Then degI(xk) = 2. From Dominator’s
first move d1 = xk in the D-game and Staller’s first move s′1 = yk+1 in the S-game, we
respectively infer that γg(Hk) = k and γg

′(Hk) = k + 1. These values again achieve the
upper bounds in the respective theorems.
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4. 1/2-split graphs of even order

We now characterise the 1/2-split graphs that have even order. In the following two
lemmas we first exclude split graphs that are not of this type.

Lemma 4.1. Let G be a connected split graph of even order and suppose that at least
one of the following conditions is fulfilled:

(i) i < k;
(ii) i > 2k;
(iii) there exists a vertex xr ∈ K with degI(xr) = 0;
(iv) there exists a vertex xr ∈ K with degI(xr) ≥ 3;
(v) there exist xr, xs ∈ K with degI(xs) = 2 and NI(xr) ⊆ NI(xs).

Then G is not a 1/2-split graph.

Proof. In view of Theorem 3.3, we need to show that if one of the conditions (i)–(v)
holds, then γg(G) < bn(G)/2c.

(i) Suppose that i < k. Let Dominator start the game by playing a vertex xr ∈ K
with at least one neighbour in I. After this move the vertices left undominated are
X = I \ NI(xr). Clearly, |X| ≤ i − 1. Since in the rest of the game at least one new vertex
is dominated on each move, γg(G) ≤ 1 + (i − 1) = i < (k + i)/2 = n(G)/2 = bn(G)/2c.

(ii) Assume that i > 2k. Then there exists a vertex xr ∈ K with degI(xr) ≥ 3. Let
Dominator start a D-game with d1 = xr and let Staller reply with an optimal move.
After these two moves the graph G′ obtained from G by removing all saturated vertices
is again a connected partially dominated split graph with at most n(G) − 5 vertices.
Indeed, G′ does not contain d1 = xr, the neighbours of xr in I (at least three of them)
and s1. Therefore,

γg(G) ≤ 2 + γg(G′) ≤ 2 + (n(G) − 5)/2 = (n(G) − 1)/2 < n(G)/2 = bn(G)/2c,

where the second inequality holds by Theorem 3.1.
(iii) Suppose that there exists a vertex xr ∈ K with degI(xr) = 0. Because of (i), we

can assume that k ≤ i. Therefore, since degI(xr) = 0, there exists a vertex xs ∈ K with
degI(xs) ≥ 2. Let Dominator start the game by playing d1 = xs. Then, after the first
move of Staller, the graph G′ obtained from G by removing all saturated vertices is
a connected partially dominated split graph with at most n(G) − 5 vertices because it
does not contain d1 = xs, the neighbours of xs in I (at least two of them), the first move
of Staller, s1 and xr. The conclusion now follows by the same argument as in (ii).

(iv) If there exists a vertex xr ∈ K with degI(xr) ≥ 3, then after Dominator plays xr

and Staller an arbitrary (optimal) move, we again have a connected partially dominated
split graph with at most n(G) − 5 vertices after removing all saturated vertices.

(v) Let Dominator start the game by playing d1 = xs. Then xr, xs and the two
neighbours of xs in I have no role in the continuation of the game. So, again, after
the first move of Staller, removing all saturated vertices from G we have a partially
dominated connected split graph of order at most n(G) − 5. �
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Lemma 4.2. If G is a connected split graph of even order and there exists a vertex in K
which is not adjacent to a leaf in I, then γg(G) < bn(G)/2c.

Proof. Let x1 ∈ K be a vertex that is not adjacent to a leaf in I. If degI(x1) ≥ 3, then
we are done by Lemma 4.1(iv).

Suppose next that degI(x1) = 1. Let y1 be the vertex of I adjacent to x1. Since y1 is
not a leaf, we may assume that x2 ∈ K is another neighbour of y1. If degI(x2) ≥ 2,
then we are done by Lemma 4.1(iv) and (v). Suppose therefore that degI(x2) = 1.
Then N[x1] = N[x2] and hence by [1, Proposition 1.4] we have γg(G) = γg(G|x1) =

γg(G − x1). Therefore, having in mind Theorem 3.1 and the fact that n is even,

γg(G) = γg(G − x1) ≤ b(n(G) − 1)/2c < bn(G)/2c.

The remaining case to consider is that degI(x1) = 2. Let y1, y2 ∈ I be the neighbours
of x1 in I. Recall that by our assumption y1 and y2 are not pendant vertices. If y1 and
y2 have a common neighbour xr in K, r , 1, then in view of Lemma 4.1(iv) we may
assume that degI(xr) = 2. But then NI(x1) ⊆ NI(xr) and we are done by Lemma 4.1(v).
It follows that there exist vertices x2, x3 ∈ K such that x2 is adjacent to y2 and x3 is
adjacent to y1. Using Lemma 4.1(v) again, degI(x2) = degI(x3) = 2. Let y3 and y4 be
the other neighbours in I of x3 and x2, respectively. Let Z = {x1, x2, x3, y1, y2, y3, y4}

and let G1 and G2 be the subgraphs of G induced by Z and V(G) \ Z, respectively.
Clearly, G1 is a connected split graph. The same holds for G2, unless it is the empty
graph. It can be easily verified that γg(G1) = γ′g(G1) = 3. Hence, by Theorem 2.3, there
are no-minus graphs with γg(G1) = γ′g(G1) and hence by [11, Theorem 2.11] we have
γg(G1 ∪G2) = γg(G1) + γg(G2). Moreover, by Theorem 3.1 and because n is even,

γg(G2) ≤ b(n(G) − 7)/2c = (n(G) − 8)/2

and consequently

γg(G1 ∪G2) ≤ 3 + (n(G) − 8)/2 = (n(G) − 2)/2 < bn(G)/2c.

The argument will be completed by proving that γg(G) ≤ γg(G1 ∪G2). We proceed
by the imagination strategy as follows. Consider a real D-game played on G and at
the same time Dominator imagines a D-game played on G1 ∪G2. Dominator plays
optimally in the game on G1 ∪G2 and copies his moves from there to the real game
on G. On the other hand, Staller plays optimally in the real game on G (this is the
only game being played by Staller) and Dominator copies each move of Staller to the
imagined game. Since a D-game is played in both games, Dominator will first play a
vertex of K in the real game which is played on G. Hence, every move of Staller will
be a vertex from I and thus newly dominating only this vertex. It follows that every
move of Staller in the real game is a legal move in the imagined game. On the other
hand, a legal move of Dominator in the imagined game may not be legal in the real
game. If this happens, Dominator cannot copy this move to the real game; instead,
he selects an arbitrary legal move in the real game (if there is such a move available,
otherwise the game is over). Under this strategy, the set of vertices dominated in the
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imagined game is always a subset of the set of vertices dominated in the real game.
Hence, if s is the number of moves played in the real game and t the number of moves
in the imagined game, then s ≤ t. Moreover, since Dominator may not play optimally
on G (but Staller does), we have γg(G) ≤ s. Similarly, as Dominator plays optimally
on G1 ∪G2, we infer that γg(G1 ∪G2) ≥ t. Therefore, γg(G) ≤ s ≤ t ≤ γg(G1 ∪G2),
which completes the argument. �

Theorem 4.3. A connected split graph of even order is a 1/2-split graph if and only if
every vertex in K is adjacent to at least one leaf in I and degI(xi) ∈ [2] for i ∈ [k].

Proof. Suppose that γg(G) = bn(G)/2c. Then, by Lemma 4.2, every vertex of K is
adjacent to at least one leaf in I and, by Lemma 4.1(iii) and (iv), degI(xi) ∈ [2] for
every vertex xi ∈ K.

Conversely, suppose that G is a connected split graph of even order in which every
vertex in K is adjacent to at least one leaf in I and degI(xi) ∈ [2] for i ∈ [k]. By
Theorem 3.1, we need only prove that Staller has a strategy that guarantees that a D-
game will last at least bn(G)/2c moves. After each move we consider that the resulting
graph is a partially dominated graph without saturated vertices. The corresponding
strategy of Staller is the following.

First, in Phase 1, she selects vertices which are not pendant vertices in I. After
this is no longer possible for Staller, Phase 1 is over and Phase 2 begins. At that time
the vertices from I that are not yet dominated are pendant vertices. In Phase 2 Staller
selects pendant vertices which are neighbours of degree-two vertices from K as long
as this is possible. Phase 3 starts when the only not yet dominated vertices from I are
those that are adjacent to vertices of K with exactly one neighbour in I.

Consider the number of saturated vertices during this game. Since degI(xi) ∈ [2],
i ∈ [k], after each move of Dominator in Phases 1 and 2 the number of newly saturated
vertices is at most three. By the strategy of Staller, after each of her moves in these
two phases the number of saturated vertices increases by exactly one. Suppose that
Phase 2 is finished with the kth move of Staller. Then the number of saturated vertices
is at most 3k + k = 4k. If there are l vertices in Phase 3 yet to be dominated, then the
game is finished by the next l moves. After each such move, no matter whether it was
done either by Dominator or by Staller, two newly saturated vertices are created and
therefore n(G) ≤ 4k + 2l. The described strategy of Staller may not be optimal and
hence

γg(G) ≥ 2k + l =
2(2k + l)

2
≥

n(G)
2

=

⌊n(G)
2

⌋
.

Suppose next that Phase 2 is finished with the kth move of Dominator. In this case
the number of saturated vertices at this stage of the game is at most 3k + k − 1 = 4k − 1.
Again, let l be the number of vertices yet to be dominated in Phase 3. Then the number
of not yet saturated vertices is exactly 2l. Since G is of even order, the number of
vertices already saturated is at most 4k − 2. Hence, n(G) ≤ 4k − 2 + 2l and therefore

γg(G) ≥ (2k − 1) + l =
2(2k − 1 + l)

2
=

4k − 2 + 2l
2

≥
n(G)

2
=

⌊n(G)
2

⌋
and we are done. �
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5. Concluding remarks

In [3] it was proved that the game domination number of a graph G is bounded by
the domination number γ(G) of G as follows:

γ(G) ≤ γg(G) ≤ 2γ(G) − 1.

Consequently, to prove Conjecture 1.1, it suffices to consider ‘only’ graphs G with the
property γ(G) > (n(G) + 2)/4. Moreover, since for a graph G with a Hamiltonian path
we clearly have γ(G) ≤ dn(G)/3e, it suffices to concentrate just on graphs G with the
domination number roughly between n(G)/4 and n(G)/3.

In Section 4, we have characterised 1/2-split graphs of even order. It would likewise
be of interest to characterise 1/2-split graphs of odd order. It seems possible to proceed
along similar lines to Section 4; however, the consideration turned out to be more
lengthy and technical.

Split graphs have different important generalisations. Chordal graphs form one
of them. Since trees are chordal graphs and there exist infinite families of the so-
called 3/5-trees (see [2, 16]), Theorem 3.1 does not extend to chordal graphs. Another
important generalisation of split graphs are 2K2-free graphs, that is, graphs that do not
contain two independent edges as an induced subgraph (cf. [8, 9]). Now C5 belongs
to this class and γg(C5) = 3 and hence Theorem 3.1 also does not extend to 2K2-free
graphs. Let us therefore ask whether there is some natural superclass of split graphs
to which Theorem 3.1 extends. Actually, we know of one such class (tri-split graphs);
see below. But this extension is rather straightforward and hence let us rephrase the
question as follows.

Problem 5.1. Is there a natural superclass of split graphs to which Theorem 3.1 extends
‘nontrivially’?

At the end of Section 2, we have mentioned tri-split graphs that were introduced
in [11]. They are defined as follows. A graph G is a tri-split graph if V(G) can be
partitioned into three disjoint sets A , ∅, B and C with the following properties: the
set A induces a clique, B induces an independent set and C is an arbitrary graph. Each
vertex from A is adjacent to each vertex from C (that is, there is a join between A
and C) and no vertex of B is adjacent to a vertex in C. So, the only neighbours of the
vertices from C are in A. Now, if a D-game is played on a tri-split graph G, then the
first move of Dominator will be on A and after this move all vertices in C and in A are
dominated. This means that every vertex of C is saturated and the game continues as
it would be played on the split graph induced by A ∪ B. But then Theorem 3.1 extends
to tri-split graphs.
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SANDI KLAVŽAR, Faculty of Mathematics and Physics,
University of Ljubljana, Slovenia
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
and
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
e-mail: sandi.klavzar@fmf.uni-lj.si

AMBAT VIJAYAKUMAR, Department of Mathematics,
Cochin University of Science and Technology, India
e-mail: vambat@gmail.com

https://doi.org/10.1017/S0004972718001053 Published online by Cambridge University Press

https://orcid.org/0000-0002-1556-4744
mailto:sandi.klavzar@fmf.uni-lj.si
mailto:vambat@gmail.com
https://doi.org/10.1017/S0004972718001053

	Introduction
	Preliminaries
	The 1/2 upper bound
	1/2-split graphs of even order
	Concluding remarks
	References

