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The Asymptotic Expansions of the Spherical Harmonics

By Dr T. M. MACROBKBT.

(Read 8th December 1922. Received 24th July 1928.)

§ 1. Associated Legendre Functions as Integrals involving Bessel
Functions. Let

= f (X Jitt)

where C denotes a contour which begins at - co on the real axis,
passes positively round the origin, and returns to - oo , amp A.= - TT
initially, and R(z)>0, z being finite and # 1 . [If R(z)>0 and
z is finite, then R(z± Jz2-l)>0.] Then if /_„ ( X ^ - l ) be
expanded in ascending powers of A, and if the resulting
expression be integrated term by term, it is found that

2'"zm+n(z2-1)-J"' F(-m-n I-m-n 1
[m + n) 11 y — m) \ •* -* z

J= 2-i

H(m + n)'

From the equation

it follows that

2sin rrvK
1

n (m + n)

* Gf. Barnes, Quart. Journ. of Math., Vol. 39, p. 120. The notatioD
employed for the Associated Legendre Functions is that of Hobson, Phil.
Trans., Vol. 187, A.
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Therefore, since K_m — Km,

x Km (A . / F T ! ) * — 1 d\ , (i)J
where a is finite and =t= 1, and R (z) >0.

If z passes once round the point z = 1 in the negative direction,
we denote the resulting value of Q% (z) by Q% (z, + 1 - ) ; then

Q: (a, +1-) = - L ««»« n (n + TO) f ^KJke ~iT -Jz^-V) A-^'dA (ii)

Again, if in the integral

where B(z)>1, 7n+j(A) be expanded in ascending powers of A, and
if the resulting expression be integrated term by term; it is found
that

/»» + n + l m + n + 2 l
{—2—' — 2 — ' w + i > p"

Therefore

eXzEn+i(X)X-m-idX =27rt
x cos n ir

{sin ( - m + n) TT Q^" (Z) - sin (m + n) tr Qr^ (%)}

Thus

where .R(z)>l.

§ 2. The Asymptotic Expansions for « large. Now deform C
into the contour A"" (Fig. 1), which has initial and final directions
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making angles - ir + <f> and ir - <£ with the positive real axis, where
0 < <p < JJT. Then if in (i) we expand Km (A Jz* - 1) by means of
its asymptotic expansion

Fig. 1

(4m2 - I2) (4m2 - 32)...{Am- - (2s-3)2}

where

f
J o

2 A v V - 1

m - J - »
dt,

and integrate term by term, we find * that Q™ (z) is equal to the
first A1 terms in

II (n + m)
5n

.(iv)

* The existence of a relation between the asymptotic expansions of the
Bessel Functions and those of the Spherical Harmonics was suggested by
Dr John Dougall, Proc. of the. Edin. Math. Soc, Vol. 18, p. 52.
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plus a remainder

s ! T (m + £ -

Jo Jo
. . . (v)

where we assume that - \ ir < amp v s2 - 1 < \ir and make
amp f= amp Vz2- 1 so that

amp = 0 ;

thus the singularity of the A-integrand in (v) lies on the negative
real axis.
Note.—If m is half an odd integer, series (iv) terminates.

In (v) change the order of integration ; thus we obtain

Jo Jo
where

X (vii)

Now for any finite value of { we can deform the contour K
so that

2A Jz* - 1

if then the last term of the integrand in (vii) be expanded in
descending powers of X, and if the resulting expression be integrated
term by term, we have

/= (z-
v
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, z - Jin. ,
where v ^ = ^ and

j

If s be taken so large that R(-m + ^ + s)> - 1 and R (n) so
large that R (n + m)> - 1, then

/ - <. - ^ T I ^ H - . 3«

Jo

as can easily be seen by expanding the exponential term in powers
of X and integrating term by term. For the sake of clearness we
may assume for the time being that z is real and. >1 and that
amp Jz2— 1=0. Then, substituting this value of / in (vi), and
changing the order of integration, we find that

where

TI In 4- m\ V lm 4- X 4- *}
.V"

is the (« + 1 )*" term in the expansion (iv) of Q% (z) and

Jo
Thus

'•I
Jo

From this value of /o, we see that the expansion (iv) and (viii)
for Qa(z) is valid in every part of the z-plane to which z can
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approach by a path at no point of which 1 + ktv has the value zero.
Bat this expression can only be zero (since 0 ~ kt =1) when v is real

and Sj - 1; i.e. when

Let u = —===• : then z = —- Thus if u is real and
V«2 - 1 Ju? - 1

> 1 or < - 1, z is real, while if u is real and - 1 < w < 1, z is purely
imaginary. Conversely, if z is real and \z\ > 1 , u is real,
while if z is real and | z | < 1 , M is purely imaginary. I t follows
that, when z is complex, u must be complex, and vice versa.
Therefore the expression for <2™(z) is valid at any point to
which z can approach without passing the real axis to the right
of z = \ or to the left of z = - 1 with values of z and Vz2 - 1

which make z\ Vz2 - 1 negative. In particular, if a cross-cut is
taken along the real axis from - 1 to - oo, the expression is valid
for — 2ir<amp (z-1) <2?r, z=l=l. The corresponding expression
for Qn(z, +1 - ) will be valid for 0<amp(z - l)<4ir.

Now let M be the maximum value of | (1 + ktv)-m-l~' | for
0 = \t = 1, then if n = a. +1/3, TO = o- + IT,

f. dk

I B(n + m+\, -

But, if | amp K | <ir and | amp (K + S) | <7r,

r (*+8)/r(K)->KS

as K -> oo . Hence, if x — a m P n>

as n -> oo, provided that | amp n \ = | x | < i""- But | n | /a. = sec x
is then finite; therefore p, = Tt+1 x a quantity which remains finite
at n->», provided that | amp n | < $ir.
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It follows that, in those parts of the z-plane in which the
expression for Q™(z) is valid, but where p, does not —> 0 as s —> oo ,
the series in (iv) is asymptotic for large values of n, since the
(«+l) t h term in the series can be made arbitrarily small by
increasing n, provided | amp n | < \TT.

If m, n, and z are real, z positive, z/ Jz2 — 1 positive, and
0<v< 1, {i.e. if »>3/(2 J2)}, then 1 + Xtv= 1, so that, from (viii),

f
P. Jo

f ( )
P. Jo Jo = 1

2" ^ ( n + jw+l w + l + s)

Since I><1 , T,+1 and therefore /a, can be made arbitrarily small
by increasing s, so that the series (iv) converges to the value Q™ (z).
By the theory of analytical continuation it follows that this is
always true when the expression for Q™(z) is valid, provided that
| v | < 1 . For other parts of the region of validity the series,

while not convergent, is asymptotic in n.
In the corresponding region of validity the asymptotic series

for QZ(z, + 1 - ) is

Finally, from the formmla

IT

it follows that the expansion

_*-«•_ •*y* . n(n+«)

z+
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holds asymptotically at those parts of the z-plane in which the
expressions for Q™ (z) and Q™ (z, + 1 - ) are both valid, and where
both series are not convergent. In particular, if i2(z)>0, the
series (x) holds asymptotically if 0<amp(z - l)<2ir.

The expansion (x) was obtained by Hobson * for 2, m, and n
real: asymptotic expansions in terms of descending powers of n
when z, m, n, are complex have been obtained by Barnes f and
Watson. %

"When R(n) is negative, an asymptotic expansion can be
obtained by means of the formula P% (z) = i^M_, (z).

To distinguish between those regions of the z-plane in which the
series (iv) is convergent and those in which it is asymptotic we can
proceed as follows. At the boundary of the two regions

where 6 is real: thus

so that 8(x2-y2)
I6xy = -

The elimination of 6 between these two equations leads to
the equation

128 (x2 - y2) (a? + y8)2 - 320^ y"- - 336 (x2 - y*f + 288 (sc2 - f) - 81 = 0,

from which it follows that the lines x = ± y are asymptotes.

If y = 0, then x = + ^3/2, ± ^3/2, ± 3 ^2/4. At each of the
points (+ J3/'2, 0) there are two tangents which make angles
+ 60° with the real axis. The curve is shown in Fig. 2.

The quantities z ± remain either < 1 or > 1 unless e

crosses the curve. In the region between the two branches of the

* Phil. Trans., 187 A. (1896), 1 p. 485-489.
t Quart. Journ. of Maths., XXXIX (1908), pp. 143-174.
tProc. Camb. Phil. Soc, XXII (1918), pp. 277-308.
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curve they are both < 1 . In the regions on the right and left

- 1 < 1 and 2 + s /z ' - l
> 1 . Within the loops both

quantities are > 1.

Pig. 2

§ 3. The Asymptotic Expansions for m large. In (iii) expand
^»+i W asymptotically and integrate term by term : thus we find
that i V (as) is equal to the first « terms in

- l \ im

)
plus a remainder p, which can, as in the previous section, be put
in the form

f «(1 - t)-1 dt P V—1 (1 - k)m+" (l + Xt ^ i
m JO Jo \ 2

1, 8 - «) '
where T,+1 is the («+ 1)°" term in (xi). This expression is valid so
long as (« - l)/2 is not real and < - 1; i.e. provided that z is not
real aDd < - 1.

As in §2 we can show that, if | z - 1 | < 2, the series (xi) is a
convergent expansion for P^m («), while for points outside the circle
the expansion is asymptotic in tn, provided that | ampm | <|«r.

The corresponding expansion for (fc™ (z) can be deduced from
this.
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§ 4. Asymptotic Expansions of the Hypergeometric Function. In
the integral

2 dk, (xii)

where k - (1 - a. - /3)/2, m = (a. - j3)/2, expand the confluent Hyper-
geometric Function W^ m (A.) in terms of its asymptotic expansion,*
and integrate term by term. It is found that the integral is equal
to the first s terms in the expansion of

S-iF^frvz) (xiii)

plus a remainder which can be put in the form

s(l-t)>-idt\ T T - H - ^ dk

Jo Jo (l-Ate)a+«

where T,+1 is the (8+ I)"1 term of (xiii)

It can then be shown that, if | z | < 1 , the integral (xii) is
equal to the expression (xiii), while, for any other point in the
region bounded by the real axis ftorn +1 to + oo, the integral,
and therefore the hypergeometric series, is asymptotic in y, provided
that | amp y | <^ir.

Elementary Proof of the Asymptotic Expansion of the Hyper-
geometric Function. These results can also be obtained from the
formula

The expression (1 -«£) " i s expanded by the Binomial Theorem
in the form f

o. <x.(a+l) o.(o.+1)...(«. + « -2)

a.(a.+ l) (a + s - l ) P _
«! Jo

• Of. Wbittaker and Watson's Analysis, Chap. XVI.
t Of. Prof. G. A. Gibson, Proc. Edin. Math. Soc., Vol. XXXVIII.
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and integrated term by term. The proof that the series so obtained
is asymptotic is exactly the same as above. The expansions for the
Spherical Harmonics are particular cases of this expansion.

By employing the alternative forms of the hypergeometric
function and the expressions for the analytical continuations of
the hypergeometric function it is possible to deduce various other
asymptotic expansions for the hypergeometric function.

§ 5. Expansion of a function in a series of Legendre Polynomials.
Laurent* gave the following proof of the validity of the expansion

1 C1

(xv)

e>n+ 1 C1

where An = ^ - \ f (rf Pn {fi) dp.

Let 2n denote the first n + 1 terms of the series; then, by
Christoffel's Formula,

2 J -i

In this expression substitute the asymptotic expansions for the
Legendre Polynomials, and put x — cos 6, p, = cos <j>. It can then be
shown that

1 |"T P
2,, = —I /(cos<£) Vn sin <j>d<f> + —, (xvi)

TT jo n

•where

sin {(n + 1) (<f>-0)} sin j (<j> + fl)-sin | (</>-<?) cos { (n+ 1) (<f> + 6)}
"~ J (sin 0 sin <£). 2 sin \ (<j> - 6) sin J (<£ + 0)

and P remains finite when n -» oo . Hence, by the theory of
Dirichlet Integrals, when n —> oo , the series (xv) is equal to

J {/(cos 61 + 0) +/cos 6 - 0)} or \{f(x + 0) + / (* - 0)},

provided - 1 <x< 1.
I t has been pointed out that this proof, as it stands, is invalid,

because the asymptotic expansions do not bold when </> = 0 or ir.
This difficulty can, however, be removed as follows.

* Jour, de Math. (3) 1. 1875, p. 394.
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From (xiv) we have, when n is zero or a positive integer,

But | l - f
therefore | {1 - f (£ + iy)} -* | S ^2,
so that | /-(J, | , n + f, | + iy) | < J2.

For real values of z between - 1 and + 1 the arguments of the
hypergeometric functions in (x) are of the form \ + iy; therefore,
since Pn (cos <$>) J (2w sin <f>) is continuous at <f> = 0 and <J> = TT

| Pn (cos 4) J{^ sin 4) | 5 i j " - " ^ x 2 v/2, 0 ̂  ^ ^ *.

If now € be chosen sc small that e<9<tr - e, it follows that,
with suitable restrictions on fix) between - 1 and + 1,

cos 6 - cos <
remains finite for 0 = <f> = e and for r - e S ^ = i r a s n - » x : thus the
integrals between these limits can be made arbitrarily small by
decreasing «, and, when n —> oo , the remaining part of (xvi) gives
the required result.
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