Effective Actions of the Unitary Group on Complex Manifolds

A. V. Isaev and N. G. Kruzhilin

Abstract. We classify all connected n-dimensional complex manifolds admitting effective actions of the unitary group U_{n} by biholomorphic transformations. One consequence of this classification is a characterization of \mathbb{C}^{n} by its automorphism group.

0 Introduction

We are interested in classifying all connected complex manifolds M of dimension $n \geq 2$ admitting effective actions of the unitary group U_{n} by biholomorphic transformations. It is not hard to show that if $\operatorname{dim} M<n$, then an action of U_{n} by biholomorphic transformations cannot be effective on M, and therefore n is the smallest possible dimension of M for which one may try to obtain such a classification.

One motivation for our study was the following question that we learned from S. Krantz: assume that the group $\operatorname{Aut}(M)$ of all biholomorphic automorphisms of M and the group $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ of all biholomorphic automorphisms of \mathbb{C}^{n} are isomorphic as topological groups equipped with the compact-open topology; does it imply that M is biholomorphically equivalent to \mathbb{C}^{n} ? The group $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ is very large (see, e.g., [AL]), and it is not clear from the start what automorphisms of \mathbb{C}^{n} one can use to approach the problem. The isomorphism between $\operatorname{Aut}(M)$ and $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ induces a continuous effective action on M of any subgroup $G \subset \operatorname{Aut}\left(\mathbb{C}^{n}\right)$. If G is a Lie group, then this action is in fact real-analytic. We consider $G=U_{n}$ which, as it turns out, results in a very short list of manifolds that can occur.

In Section 1 we find all possible dimensions of orbits of a U_{n}-action on M. It turns out (see Proposition 1.1) that an orbit is either a point (hence U_{n} has a fixed point in M), or a real hypersurface in M, or a complex hypersurface in M, or the whole of M (in which case M is homogeneous).

Manifolds admitting actions with fixed point were found in [K] (see Remark 1.2).
In Section 2 we classify manifolds with U_{n}-actions such that all orbits are real hypersurfaces. We show that such a manifold is either a spherical layer in \mathbb{C}^{n}, or a Hopf manifold, or the quotient of one of these manifolds by the action of a discrete subgroup of the center of U_{n} (Theorem 2.7).

In Section 3 we consider the situation when every orbit is a real or a complex hypersurface in M and show that there can exist at most two orbits that are complex hypersurfaces. Moreover, such orbits turn out to be biholomorphically equivalent to

[^0]$\mathbb{C l P}^{n-1}$ and can only arise either as a result of blowing up \mathbb{C}^{n} or a ball in \mathbb{C}^{n} at the origin, or adding the hyperplane $\infty \in \mathbb{C P}^{n}$ to the exterior of a ball in \mathbb{C}^{n}, or blowing $\operatorname{up} \mathbb{C l P}^{n}$ at one point, or taking the quotient of one of these examples by the action of a discrete subgroup of the center of U_{n} (Theorem 3.3).

In Section 4 we consider the homogeneous case. In this case the manifold in question must be equivalent to the quotient of a Hopf manifold by the action of a discrete central subgroup (Theorem 4.5).

Thus, Remark 1.2, Theorem 2.7, Theorem 3.3 and Theorem 4.5 provide a complete list of connected manifolds of dimension $n \geq 2$ admitting effective actions of U_{n} by biholomorphic transformations. An easy consequence of this classification is the following characterization of \mathbb{C}^{n} by its automorphism group that we obtain in Section 5:

Theorem 5.1 Let M be a connected complex manifold of dimension n. Assume that $\operatorname{Aut}(M)$ and $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ are isomorphic as topological groups. Then M is biholomorphically equivalent to \mathbb{C}^{n}.

We acknowledge that this work started while the second author was visiting Centre for Mathematics and its Applications, Australian National University.

1 Dimensions of Orbits

In this section we obtain the following result, which is similar to Satz 1.2 in $[\mathrm{K}]$.

Proposition 1.1 Let M be a connected complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Let $p \in M$ and let $O(p)$ be the U_{n}-orbit of p. Then $O(p)$ is either
(i) the whole of M (hence M is compact), or
(ii) a single point, or
(iii) a complex compact hypersurface in M, or
(iv) a real compact hypersurface in M.

Proof For $p \in M$ let I_{p} be the isotropy subgroup of U_{n} at p, i.e., $I_{p}:=\left\{g \in U_{n}\right.$: $g p=p\}$. We denote by Ψ the continuous homomorphism of U_{n} into $\operatorname{Aut}(M)$ (the group of biholomorphic automorphisms of M) induced by the action of U_{n} on M. Let $L_{p}:=\left\{d_{p}(\Psi(g)): g \in I_{p}\right\}$ be the linear isotropy subgroup, where $d_{p} f$ is the differential of a map f at p. Clearly, L_{p} is a compact subgroup of $\operatorname{GL}\left(T_{p}(M), \mathbb{C}\right)$. Since the action of U_{n} is effective, L_{p} is isomorphic to I_{p}. Let $V \subset T_{p}(M)$ be the tangent space to $O(p)$ at p. Clearly, V is L_{p}-invariant. We assume now that $O(p) \neq$ M (and therefore $V \neq T_{p}(M)$) and consider the following three cases.

Case $1 d:=\operatorname{dim}_{\mathbb{C}}(V+i V)<n$.
Since L_{p} is compact, one can consider coordinates on $T_{p}(M)$ such that $L_{p} \subset U_{n}$. Further, the action of L_{p} on $T_{p}(M)$ is completely reducible and the subspace $V+i V$ is invariant under this action. Hence L_{p} can in fact be embedded in $U_{d} \times U_{n-d}$. Since
$\operatorname{dim} O(p) \leq 2 d$, it follows that

$$
n^{2} \leq d^{2}+(n-d)^{2}+2 d
$$

and therefore either $d=0$ or $d=n-1$. If $d=0$, then we obtain (ii). If $d=n-1$, then we have

$$
n^{2}=\operatorname{dim} L_{p}+\operatorname{dim} O(p) \leq n^{2}-2 n+2+\operatorname{dim} O(p)
$$

Hence $\operatorname{dim} O(p) \geq 2 n-2$ which implies that $\operatorname{dim} O(p)=2 d=2 n-2$, and therefore $i V=V$. This yields (iii).

Case $2 T_{p}(M)=V+i V$ and $r:=\operatorname{dim}_{\mathbb{C}}(V \cap i V)>0$.
As above, L_{p} can be embedded in $U_{r} \times U_{n-r}$ (clearly, we have $r<n$). Moreover, $V \cap i V \neq V$ and since L_{p} preserves V, it follows that $\operatorname{dim} L_{p}<r^{2}+(n-r)^{2}$. We have $\operatorname{dim} O(p) \leq 2 n-1$, and therefore

$$
n^{2}<r^{2}+(n-r)^{2}+2 n-1
$$

which shows that either $r=1$, or $r=n-1$. It then follows that $\operatorname{dim} L_{p}<n^{2}-2 n+2$. Therefore, we have

$$
n^{2}=\operatorname{dim} L_{p}+\operatorname{dim} O(p)<n^{2}-2 n+2+\operatorname{dim} O(p)
$$

Hence $\operatorname{dim} O(p)>2 n-2$ and thus $\operatorname{dim} O(p)=2 n-1$. This yields (iv).
Case $3 T_{p}(M)=V \oplus i V$.
In this case $\operatorname{dim} V=n$ and L_{p} can be embedded in the real orthogonal group $O_{n}(\mathbb{R})$, and therefore

$$
\operatorname{dim} L_{p}+\operatorname{dim} O(p) \leq \frac{n(n-1)}{2}+n<n^{2}
$$

which is a contradiction.
The proof of the proposition is complete.
Remark 1.2 It is shown in [K] (see Folgerung 1.10 there) that if U_{n} has a fixed point in M, then M is biholomorphically equivalent to either
(i) the unit ball $B^{n} \subset \mathbb{C}^{n}$, or
(ii) \mathbb{C}^{n}, or
(iii) $\mathbb{C P}^{n}$.

The biholomorphic equivalence f can be chosen to be an isomorphism of U_{n}-spaces, more precisely,

$$
f(g q)=\gamma(g) f(q)
$$

where either $\gamma(g)=g$ or $\gamma(g)=\bar{g}$ for all $g \in U_{n}$ and $q \in M$ (here B^{n}, \mathbb{C}^{n} and $\mathbb{C P}^{n}$ are considered with the standard actions of $\left.U_{n}\right)$.

2 The Case of Real Hypersurface Orbits

We shall now consider orbits in M that are real hypersurfaces. We require the following algebraic result.

Lemma 2.1 Let G be a connected closed subgroup of U_{n} of dimension $(n-1)^{2}, n \geq 2$. Then either G contains the center of U_{n}, or G is conjugate in U_{n} to the subgroup of all matrices

$$
\left(\begin{array}{cc}
\alpha & 0 \tag{2.1}\\
0 & \beta
\end{array}\right)
$$

where $\alpha \in U_{1}$ and $\beta \in \mathrm{SU}_{n-1}$, or for some $k_{1}, k_{2} \in \mathbb{Z}$, $\left(k_{1}, k_{2}\right)=1, k_{2} \neq 0$, it is conjugate to the subgroup $H_{k_{1}, k_{2}}$ of all matrices

$$
\left(\begin{array}{ll}
a & 0 \tag{2.2}\\
0 & B
\end{array}\right)
$$

where $B \in U_{n-1}$ and $a \in(\operatorname{det} B)^{\frac{k_{1}}{k_{2}}}:=\exp \left(k_{1} / k_{2} \operatorname{Ln}(\operatorname{det} B)\right)$.
Proof Since G is compact, it is completely reducible, i.e., \mathbb{C}^{n} splits into a sum of G-invariant pairwise orthogonal complex subspaces, $\mathbb{C}^{n}=V_{1} \oplus \cdots \oplus V_{m}$, such that the restriction G_{j} of G to each V_{j} is irreducible. Let $n_{j}:=\operatorname{dim}_{\mathbb{C}} V_{j}$ (hence $n_{1}+\cdots+n_{m}=n$) and let $U_{n_{j}}$ be the group of unitary transformations of V_{j}. Clearly, $G_{j} \subset U_{n_{j}}$, and therefore $\operatorname{dim} G \leq n_{1}^{2}+\cdots+n_{m}^{2}$. On the other hand $\operatorname{dim} G=(n-1)^{2}$, which shows that $m \leq 2$.

Let $m=2$. Then there exists a unitary change of coordinates \mathbb{C}^{n} such that in the new variables elements of G are of the form

$$
\left(\begin{array}{ll}
a & 0 \tag{2.3}\\
0 & B
\end{array}\right)
$$

where $a \in U_{1}$ and $B \in U_{n-1}$. We note that the scalars a and the matrices B in (2.3) corresponding to the elements of G form compact connected subgroups of U_{1} and U_{n-1}, respectively; we shall denote them by G_{1} and G_{2} as above.

If $\operatorname{dim} G_{1}=0$, then $G_{1}=\{1\}$, and therefore $G_{2}=U_{n-1}$. Thus we get the form (2.2) with $k_{1}=0$.

Assume that $\operatorname{dim} G_{1}=1$, i.e., $G_{1}=U_{1}$. Then $(n-1)^{2}-1 \leq \operatorname{dim} G_{2} \leq(n-1)^{2}$. Let $\operatorname{dim} G_{2}=(n-1)^{2}-1$ first. The only connected subgroup of U_{n-1} of dimension $(n-1)^{2}-1$ is SU_{n-1}. Hence G is conjugate to the subgroup of matrices of the form (2.1). Now let $\operatorname{dim} G_{2}=(n-1)^{2}$, i.e., $G_{2}=U_{n-1}$. Consider the Lie algebra \mathfrak{g} of G. It consists of matrices of the following form:

$$
\left(\begin{array}{cc}
l(b) & 0 \tag{2.4}\\
0 & b
\end{array}\right)
$$

where b is an arbitrary matrix in \mathfrak{u}_{n-1} and $l(b) \not \equiv 0$ is a linear function of the matrix elements of b ranging in $i \mathbb{R}$. Clearly, $l(b)$ must vanish on the commutant of \mathfrak{u}_{n-1},
which is $\mathfrak{s u}_{n-1}$. Hence matrices (2.4) form a Lie algebra if and only if $l(b)=c \cdot$ trace b, where $c \in \mathbb{R} \backslash\{0\}$. Such an algebra can be the Lie algebra of a subgroup of $U_{1} \times U_{n-1}$ only if $c \in \mathbb{O} \backslash\{0\}$. Hence G is conjugate to the group of matrices (2.2) with some $k_{1}, k_{2} \in \mathbb{Z}, k_{2} \neq 0$, and one can always assume that $\left(k_{1}, k_{2}\right)=1$.

Now let $m=1$. We shall proceed as in the proof of Lemma 2.1 in [IKra]. Let $\mathfrak{g} \subset \mathfrak{u}_{n} \subset \mathfrak{g l}_{n}$ be the Lie algebra of G and $\mathfrak{g}^{\mathrm{C}}:=\mathfrak{g}+i \mathfrak{g} \subset \mathfrak{g l}_{n}$ its complexification. Then $\mathfrak{g}^{\mathbb{C}}$ acts irreducibly on \mathbb{C}^{n} and by a theorem of É. Cartan (see, e.g., [GG]), $\mathfrak{g}^{\mathbb{C}}$ is either semisimple or the direct sum of a semisimple ideal \mathfrak{b} and the center of $\mathfrak{g l}_{n}$ (which is isomorphic to (\mathbb{C}). Clearly, the action of the ideal \mathfrak{h} on \mathbb{C}^{n} must be irreducible.

Assume first that $\mathfrak{g}^{\mathbb{C}}$ is semisimple, and let $\mathfrak{g}^{\mathrm{C}}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{k}$ be its decomposition into the direct sum of simple ideals. Then (see, e.g., [GG]) the irreducible n-dimensional representation of $\mathfrak{g}^{\mathbb{C}}$ given by the embedding of $\mathfrak{g}^{\mathbb{C}}$ in $\mathfrak{g l}_{n}$ is the tensor product of some irreducible faithful representations of the \mathfrak{g}_{j}. Let n_{j} be the dimension of the corresponding representation of $\mathfrak{g}_{j}, j=1, \ldots, k$. Then $n_{j} \geq 2$, $\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{j} \leq n_{j}^{2}-1$, and $n=n_{1} \cdots \cdot n_{k}$. The following observation is simple.

Claim If $n=n_{1} \cdots n_{k}, k \geq 2, n_{j} \geq 2$ for $j=1, \ldots, k$, then $\sum_{j=1}^{k} n_{j}^{2} \leq n^{2}-2 n$.
Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{g}^{\mathbb{C}}=(n-1)^{2}$, it follows from the above claim that $k=1$, i.e., $\mathfrak{g}^{\mathbb{C}}$ is simple. The minimal dimensions of irreducible faithful representations of complex simple Lie algebras are well-known (see, e.g., [VO]). In the table below V denotes representations of minimal dimension.

\mathfrak{g}	$\operatorname{dim} V$	$\operatorname{dim} \mathfrak{g}$
$\mathfrak{s l}_{k}, k \geq 2$	k	$k^{2}-1$
$\mathfrak{o}_{k}, k \geq 7$	k	$\frac{k(k-1)}{2}$
$\mathfrak{s p}_{2 k}, k \geq 2$	$2 k$	$2 k^{2}+k$
\mathfrak{e}_{6}	27	78
\mathfrak{e}_{7}	56	133
\mathfrak{e}_{8}	248	248
\mathfrak{f}_{4}	26	52
\mathfrak{g}_{2}	7	14

Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{g}^{\mathbb{C}}=(n-1)^{2}$, it follows that none of the above possibilities realize. Hence $\mathfrak{g}^{\mathbb{C}}$ contains the center of $\mathfrak{g l}{ }_{n}$, and therefore \mathfrak{g} contains the center of \mathfrak{u}_{n}. Thus G contains the center of U_{n}.

The proof of the lemma is complete.
We can now prove the following proposition.
Proposition 2.2 Let M be a complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Let $p \in M$ and let the orbit $O(p)$ be a real hypersurface in M. Then the isotropy subgroup I_{p} is isomorphic to U_{n-1}.

Proof Since $O(p)$ is a real hypersurface in M, it arises in Case 2 in the proof of Proposition 1.1. We shall use the notation from that proof. Let W be the orthogonal complement to $V \cap i V$ in $T_{p}(M)$. Clearly, $\operatorname{dim}_{\mathbb{C}} V \cap i V=n-1$ and $\operatorname{dim}_{\mathbb{C}} W=1$. The
group L_{p} is a subgroup of U_{n} and preserves $V, V \cap i V$, and W; hence it preserves the line $W \cap V$. Therefore, it can act only as \pm id on W. Since $\operatorname{dim} L_{p}=(n-1)^{2}$, the identity component L_{p}^{c} of L_{p} must in fact be the group of all unitary transformations preserving $V \cap i V$ and acting trivially on W. Thus, L_{p}^{c} is isomorphic to U_{n-1} and acts transitively on directions in $V \cap i V$. Hence $O(p)$ is either Levi-flat or strongly pseudoconvex.

We claim that $O(p)$ cannot be Levi-flat. For assume that $O(p)$ is Levi-flat. Then it is foliated by complex hypersurfaces in M. Let \mathfrak{m} be the Lie algebra of all holomorphic vector fields on $O(p)$ corresponding to the automorphisms of $O(p)$ generated by the action of U_{n}. Clearly, \mathfrak{m} is isomorphic to \mathfrak{u}_{n}. For $q \in O(p)$ we denote by M_{q} the leaf of the foliation passing through q and consider the subspace $\mathrm{I}_{q} \subset \mathfrak{m}$ of all vector fields tangent to M_{q} at q. Since vector fields in I_{q} remain tangent to M_{q} at each point in M_{q}, I_{q} is in fact a Lie subalgebra of m . Clearly, $\operatorname{dim} \mathrm{I}_{q}=n^{2}-1$, and therefore I_{q} is isomorphic to $\mathfrak{s u}_{n}$. Since there exists only one way to embed $\mathfrak{S u}_{n}$ in \mathfrak{u}_{n}, we obtain that the action of $\mathrm{SU}_{n} \subset U_{n}$ preserves each leaf M_{q} for $q \in O(p)$. Hence each leaf M_{q} is a union of $S \mathrm{U}_{n}$-orbits. But such an orbit must be open in M_{q}, and therefore the action of SU_{n} is transitive on each M_{q}.

Let \tilde{I}_{q} be the isotropy subgroup of q in SU_{n}. Clearly, $\operatorname{dim} \tilde{I}_{q}=(n-1)^{2}$. It now follows from Lemma 2.1 that \tilde{I}_{q}^{c}, the connected identity component of \tilde{I}_{q}, is conjugate in U_{n} to the subgroup $H_{k_{1}, k_{2}}$ (see (2.2)) with $k_{1}=-k_{2}=1$. Hence \tilde{I}_{q} contains the center of SU_{n}. The elements of the center act trivially on $\mathrm{SU} / \tilde{I}_{q}$ (which is equivariantly diffeomorphic to M_{q}). Thus, the central elements of $S U_{n}$ act trivially on each M_{q}, and therefore on $O(p)$. Consequently, the action of U_{n} on the real hypersurface $O(p)$, and therefore on M, is not effective, which is a contradiction showing that $O(p)$ is strongly pseudoconvex.

Hence L_{p} can only act identically on W. Thus, L_{p} is isomorphic to U_{n-1} and so is I_{p}.

The proof is complete.
We now classify real hypersurface orbits up to equivariant diffeomorphisms.
Proposition 2.3 Let M be a complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Let $p \in M$ and assume that the orbit $O(p)$ is a real hypersurface in M. Then $O(p)$ is isomorphic as a homogeneous space to a lense manifold $\mathcal{L}_{m}^{2 n-1}:=S^{2 n-1} / \mathbb{Z}_{m}$ obtained by identifying each point $x \in S^{2 n-1}$ with $e^{\frac{2 \pi i}{m}} x$, where $m=|n k+1|, k \in \mathbb{Z}$ (here $\mathcal{L}_{m}^{2 n-1}$ is considered with the standard action of $\left.U_{n} / \mathbb{Z}_{m}\right)$.

Proof By Proposition 2.2, I_{p} is isomorphic to U_{n-1}. Hence it follows from Lemma 2.1 that I_{p} either contains the center of U_{n} or is conjugate to some group $H_{k_{1}, k_{2}}$ of matrices of the form (2.2) with $k_{1}, k_{2} \in \mathbb{Z}$. The first possibility in fact cannot occur, since in that case the action of U_{n} on $O(p)$, and therefore on M, is not effective.

Assume that $K:=k_{1}(n-1)-k_{2} \neq \pm 1,0$. Since $\left(k_{1}, k_{2}\right)=1$, either k_{1} or k_{2} is not a multiple of K. We set $t:=2 \pi k_{1} / K$ in the first case and $t:=2 \pi k_{2} / K$ in the second case. Then $e^{i t}$. id is a nontrivial central element of U_{n} that belongs to $H_{k_{1}, k_{2}}$. Hence the action of U_{n} on $O(p)$ is not effective, which is a contradiction. Further, assuming
that $K=0$ we obtain $k_{1}= \pm 1$ and $k_{2}= \pm(n-1)$. But the center of U_{n} clearly lies in $H_{1, n-1}$, which yields that the action is not effective again. Hence $K= \pm 1$.

Now let $K=-1$. It is not difficult to show that each element of the corresponding group $H_{k_{1}, k_{1}(n-1)+1}$ can be expressed in the following form:

$$
\left(\begin{array}{cc}
(\operatorname{det} B)^{k} & 0 \tag{2.5}\\
0 & (\operatorname{det} B)^{k} B
\end{array}\right)
$$

where $B \in U_{n-1}$ and $k:=k_{1}$. In a similar way, if $K=1$, then each element of the corresponding group $H_{k_{1}, k_{1}(n-1)-1}$ can be expressed in the form (2.5) with $k:=-k_{1}$.

Let $m:=|n k+1|$ and consider the lense manifold $\mathcal{L}_{m}^{2 n-1}$. We claim that $O(p)$ is isomorphic to $\mathcal{L}_{m}^{2 n-1}$. We identify \mathbb{Z}_{m} with the subgroup of U_{n} consisting of the matrices σ. id with $\sigma^{m}=1$ and consider the standard action of U_{n} / \mathbb{Z}_{m} on $\mathcal{L}_{m}^{2 n-1}$. The isotropy subgroup S of the point in $\mathcal{L}_{m}^{2 n-1}$ represented by the point $(1,0, \ldots, 0) \in$ $S^{2 n-1}$ is the standard embedding of U_{n-1} in U_{n} / \mathbb{Z}_{m}, namely, it consists of elements $C \mathbb{Z}_{m}$, where

$$
C=\left(\begin{array}{ll}
1 & 0 \\
0 & B
\end{array}\right)
$$

and $B \in U_{n-1}$. The manifold $\left(U_{n} / \mathbb{Z}_{m}\right) / S$ is equivariantly diffeomorphic to $\mathcal{L}_{m}^{2 n-1}$. We now show that it is also isomorphic to $O(p)$. Indeed, consider the Lie group isomorphism

$$
\begin{equation*}
\phi_{n, m}: U_{n} / \mathbb{Z}_{m} \rightarrow U_{n}, \quad \phi_{n, m}\left(A \mathbb{Z}_{m}\right)=(\operatorname{det} A)^{k} \cdot A \tag{2.6}
\end{equation*}
$$

where $A \in U_{n}$. Clearly, $\phi_{n, m}(S) \subset U_{n}$ is the subgroup of matrices of the form (2.5), that is, $H_{k_{1}, k_{2}}$. Thus, it is conjugate in U_{n} to I_{p}, and therefore $\left(U_{n} / \mathbb{Z}_{m}\right) / S$ is isomorphic to U_{n} / I_{p} and to $O(p)$. More precisely, the isomorphism $f: \mathcal{L}_{m}^{2 n-1} \rightarrow O(p)$ is the following composition of maps:

$$
\begin{equation*}
f=f_{1} \circ \phi_{n, m}^{*} \circ f_{2} \tag{2.7}
\end{equation*}
$$

where $f_{1}: U_{n} / H_{k_{1}, k_{2}} \rightarrow O(p)$ and $f_{2}: \mathcal{L}_{m}^{2 n-1} \rightarrow\left(U_{n} / \mathbb{Z}_{m}\right) / S$ are the standard equivariant equivalences and the isomorphism $\phi_{n, m}^{*}:\left(U_{n} / \mathbb{Z}_{m}\right) / S \rightarrow U_{n} / H_{k_{1}, k_{2}}$ is induced by $\phi_{n, m}$ in the obvious way. Clearly, f satisfies

$$
\begin{equation*}
f(g q)=\phi_{n, m}(g) f(q) \tag{2.8}
\end{equation*}
$$

for all $g \in U_{n} / \mathbb{Z}_{m}$ and $q \in \mathcal{L}_{m}^{2 n-1}$.
Thus, f is an isomorphism between $\mathcal{L}_{m}^{2 n-1}$ and $O(p)$ regarded as homogeneous spaces, as required.

The next result shows that isomorphism (2.7) in Proposition 2.3 is either a CR or an anti-CR diffeomorphism.

Proposition 2.4 Let M be a complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. For $p \in M$ suppose that $O(p)$ is a real hypersurface in M isomorphic as a homogeneous space to a lense manifold $\mathcal{L}_{m}^{2 n-1}$. Then an isomorphism $\mathcal{F}: \mathcal{L}_{m}^{2 n-1} \rightarrow O(p)$ can be chosen to be a CRdiffeomorphism that satisfies either the relation

$$
\begin{equation*}
\mathcal{F}(g q)=\phi_{n, m}(g) \mathcal{F}(q) \tag{2.9}
\end{equation*}
$$

or the relation

$$
\begin{equation*}
\mathcal{F}(g q)=\phi_{n, m}(\bar{g}) \mathcal{F}(q), \tag{2.10}
\end{equation*}
$$

for all $g \in U_{n} / \mathbb{Z}_{m}$ and $q \in \mathcal{L}_{m}^{2 n-1}$ (here $\mathcal{L}_{m}^{2 n-1}$ is considered with the CR-structure inherited from $S^{2 n-1}$).

Proof Consider the standard covering map $\pi: S^{2 n-1} \rightarrow \mathcal{L}_{m}^{2 n-1}$ and the induced map $\tilde{\pi}:=f \circ \pi: S^{2 n-1} \rightarrow O(p)$, where f is defined in (2.7). It follows from (2.8) that the covering map $\tilde{\pi}$ satisfies

$$
\begin{equation*}
\tilde{\pi}(g q)=\tilde{\phi}_{n, m}(g) \tilde{\pi}(q) \tag{2.11}
\end{equation*}
$$

for all $g \in U_{n}$ and $q \in S^{2 n-1}$ where $\tilde{\phi}_{n, m}:=\phi_{n, m} \circ \rho_{n, m}$ and $\rho_{n, m}: U_{n} \rightarrow U_{n} / \mathbb{Z}_{m}$ is the standard projection.

Using $\tilde{\pi}$ we can pull back the CR-structure from $O(p)$ to $S^{2 n-1}$. We denote by $\tilde{S}^{2 n-1}$ the sphere $S^{2 n-1}$ equipped with this new CR-structure. It follows from (2.11) that the CR-structure on $\tilde{S}^{2 n-1}$ is invariant under the standard action of U_{n} on $S^{2 n-1}$.

We now prove the following lemma.
Lemma 2.5 There exist exactly two CR-structures on $S^{2 n-1}$ invariant under the standard action of U_{n}, namely, the standard CR-structure on $S^{2 n-1}$ and the structure obtained by conjugating the standard one.

Proof of Lemma 2.5 For $q_{0}:=(1,0, \ldots, 0) \in S^{2 n-1}$ let $I_{q_{0}}$ be the isotropy subgroup of this point with respect to the standard action of U_{n} on $S^{2 n-1}$. Clearly, $I_{q_{0}}=U_{n-1}$, where U_{n-1} is embedded in U_{n} in the standard way. Let $L_{q_{0}}$ be the corresponding linear isotropy subgroup. Clearly, the only $(2 n-2)$-dimensional subspace of $T_{q_{0}}\left(S^{2 n-1}\right)$ invariant under the action of $L_{q_{0}}$ is $\left\{z_{1}=0\right\}$. Hence there exists a unique contact structure on $S^{2 n-1}$ invariant under the standard action of U_{n}.

On the other hand there exist exactly two ways to introduce in $\mathbb{R}^{2 n-2}$ a $U_{n-1^{-}}$ invariant structure of complex linear space: the standard complex structure and its conjugation (this is obvious for $n=2$, and easy to show for $n \geq 3$, and therefore we shall omit the proof). Let J_{q} be the operator of complex structure in the corresponding subspace of $T_{q}\left(S^{2 n-1}\right), q \in S^{2 n-1}$. Since there exist only two possibilities for J_{q}, and J_{q} depends smoothly on q, the lemma follows.

Proposition 2.4 easily follows from Lemma 2.5. Indeed, if the CR-structure of $\tilde{S}^{2 n-1}$ is identical to that of $S^{2 n-1}$, then we set $\mathcal{F}:=f$. Clearly, \mathcal{F} is a CR-diffeomorphism and satisfies (2.9). On the other hand, if the CR-structure of $\tilde{S}^{2 n-1}$ is obtained
from the structure of $S^{2 n-1}$ by conjugation, then we set $\mathcal{F}(t):=f(\bar{t})$ for $t \in \mathcal{L}_{m}^{2 n-1}$. Clearly, \mathcal{F} is a CR-diffeomorphism and satisfies (2.10).

The proof of the proposition is complete.

We introduce now additional notation.

Definition 2.6 Let $d \in \mathbb{C} \backslash\{0\},|d| \neq 1$, let M_{d}^{n} be the Hopf manifold constructed by identifying $z \in \mathbb{C}^{n} \backslash\{0\}$ with $d \cdot z$, and let [z] be the equivalence class of z. Then we denote by $M_{d}^{n} / \mathbb{Z}_{m}$, with $m \in \mathbb{N}$, the complex manifold obtained from M_{d}^{n} by identifying $[z]$ and $\left[e^{\frac{2 \pi i}{m}} z\right]$.

We are now ready to prove the following theorem.
Theorem 2.7 Let M be a connected complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Suppose that all orbits of this action are real hypersurfaces. Then there exists $k \in \mathbb{Z}$ such that, for $m=|n k+1|$, M is biholomorphically equivalent to either
(i) $S_{r, R}^{n} / \mathbb{Z}_{m}$, where $S_{r, R}^{n}:=\left\{z \in \mathbb{C}^{n}: r<|z|<R\right\}, 0 \leq r<R \leq \infty$, is a spherical layer, or
(ii) $M_{d}^{n} / \mathbb{Z}_{m}$.

The biholomorphic equivalence f can be chosen to satisfy either the relation

$$
\begin{equation*}
f(g q)=\phi_{n, m}^{-1}(g) f(q) \tag{2.12}
\end{equation*}
$$

or the relation

$$
\begin{equation*}
f(g q)=\phi_{n, m}^{-1}(\bar{g}) f(q) \tag{2.13}
\end{equation*}
$$

for all $g \in U_{n}$ and $q \in M$, where $\phi_{n, m}$ is defined in (2.6) (here $S_{r, R}^{n} / \mathbb{Z}_{m}$ and $M_{d}^{n} / \mathbb{Z}_{m}$ are equipped with the standard actions of $\left.U_{n} / \mathbb{Z}_{m}\right)$.

Proof Assume first that M is non-compact. Let $p \in M$. By Propositions 2.3 and 2.4, for some $m=|n k+1|, k \in \mathbb{Z}$, there exists a CR-diffeomorphism $f: O(p) \rightarrow \mathcal{L}_{m}^{2 n-1}$ such that either (2.12) or (2.13) holds for all $q \in O(p)$. Assume first that (2.12) holds. The map f extends to a biholomorphic map of a neighborhood U of $O(p)$ onto a neighborhood of $\mathcal{L}_{m}^{2 n-1}$ in $\left(\mathbb{C}^{n} \backslash\{0\}\right) / \mathbb{Z}_{m}$. We can take U to be a connected union of orbits. Then the extended map satisfies (2.12) on U, and therefore maps U biholomorphically onto the quotient of a spherical layer by the action of \mathbb{Z}_{m}.

Let D be a maximal domain in M such that there exists a biholomorphic map f from D onto the quotient of a spherical layer by the action of \mathbb{Z}_{m} that satisfies a relation of the form (2.12) for all $g \in U_{n}$ and $q \in D$. As was shown above, such a domain D exists. Assume that $D \neq M$ and let x be a boundary point of D. Consider the orbit $O(x)$. Extending a map from $O(x)$ into a lense manifold to a neighborhood of $O(x)$ as above, we see that the orbits of all points close to x have the same type as
$O(x)$. Therefore, $O(x)$ is also equivalent to $\mathcal{L}_{m}^{2 n-1}$. Let $h: O(x) \rightarrow \mathcal{L}_{m}^{2 n-1}$ be a CRisomorphism. It satisfies either relation (2.12) or relation (2.13) for all $g \in U_{n}$ and $q \in O(x)$.

Assume first that (2.12) holds for h. The map h extends to some neighborhood V of $O(x)$ that we can assume to be a connected union of orbits. The extended map satisfies (2.12) on V. For $s \in V \cap D$ we consider the orbit $O(s)$. The maps f and h take $O(s)$ into some surfaces $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ and $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$, respectively, where $r_{1}, r_{2}>0$. Hence $F:=h \circ f^{-1}$ maps $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ onto $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$ and satisfies the relation

$$
\begin{equation*}
F(u t)=u F(t), \tag{2.14}
\end{equation*}
$$

for all $u \in U_{n} / \mathbb{Z}_{m}$ and $t \in r_{1} S^{2 n-1} / \mathbb{Z}_{m}$. Let $\pi_{1}: r_{1} S^{2 n-1} \rightarrow r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ and π_{2} : $r_{2} S^{2 n-1} \rightarrow r_{2} S^{2 n-1} / \mathbb{Z}_{m}$ be the standard projections. Clearly, F can be lifted to a map between $r_{1} S^{2 n-1}$ and $r_{2} S^{2 n-1}$, i.e., there exists a CR-isomorphism $G: r_{1} S^{2 n-1} \rightarrow$ $r_{2} S^{2 n-1}$ such that

$$
\begin{equation*}
F \circ \pi_{1}=\pi_{2} \circ G . \tag{2.15}
\end{equation*}
$$

We see from (2.14) and (2.15) that, for all $g \in U_{n}$ and $y \in r_{1} S^{2 n-1}$,

$$
\begin{aligned}
\pi_{2}(G(g y)) & =F\left(\pi_{1}(g y)\right)=F\left(\rho_{n, m}(g) \pi_{1}(y)\right) \\
& =\rho_{n, m}(g) F\left(\pi_{1}(y)\right)=\rho_{n, m}(g) \pi_{2}(G(y))=\pi_{2}(g G(y))
\end{aligned}
$$

where $\rho_{n, m}: U_{n} \rightarrow U_{n} / \mathbb{Z}_{m}$ is the standard projection. Since the fibers of π_{2} are discrete, this leads to the relation

$$
\begin{equation*}
G(g y)=g G(y) \tag{2.16}
\end{equation*}
$$

for all $g \in U_{n}$ and $y \in r_{1} S^{2 n-1}$.
The map G extends to a biholomorphic map of the corresponding balls $r_{1} B^{n}, r_{2} B^{n}$, and the extended map satisfies (2.16) on $r_{1} B^{n}$. Setting $y=0$ in (2.16) we see that $G(0)$ is a fixed point of the standard action of U_{n} on $r_{2} B^{n}$, and therefore $G(0)=0$. Combined with (2.16) this shows that $G=d \cdot \mathrm{id}$, where $d \in \mathbb{C} \backslash\{0\}$. This means, in particular, that F is biholomorphic on $\left(\mathbb{C}^{n} \backslash\{0\}\right) / \mathbb{Z}_{m}$. Now,

$$
H:= \begin{cases}F \circ f & \text { on } D \\ h & \text { on } V\end{cases}
$$

is a holomorphic map on $D \cup V$, provided that $D \cap V$ is connected.
We now claim that we can choose V such that $D \cap V$ is connected. We assume that V is small enough, hence the strictly pseudoconvex orbit $O(x)$ partitions V into two pieces. Namely, $V=V_{1} \cup V_{2} \cup O(x)$, where $V_{1} \cap V_{2}=\varnothing$ and each intersection $V_{j} \cap D$ is connected. Indeed, there exist holomorphic coordinates on D in which $V_{j} \cap D$ is a union of the quotients of spherical layers by the action of \mathbb{Z}_{m}. If there are several such "factorized" layers, then there exists a layer with closure disjoint from $O(x)$ and
hence D is disconnected, which is impossible. Therefore, $V_{j} \cap D$ is connected and, if V is sufficiently small, then each V_{j} is either a subset of D or is disjoint from D. If $V_{j} \subset D$ for $j=1,2$, then $M=D \cup V$ is compact which contradicts our assumption. Thus, only one set of V_{1}, V_{2} lies in D, and therefore $D \cap V$ is connected. Hence the map H is well-defined. Clearly, it satisfies (2.12) for all $g \in U_{n}$ and $q \in D \cup V$.

We will now show that H is one-to-one on $D \cup V$. Obviously, H is one-to-one on each of V and D. Assume that there exist points $p_{1} \in D$ and $p_{2} \in V$ such that $H\left(p_{1}\right)=H\left(p_{2}\right)$. Since H satisfies (2.12) for all $g \in U_{n}$ and $q \in D \cup V$, it follows that $H\left(O\left(p_{1}\right)\right)=H\left(O\left(p_{2}\right)\right)$. Let $\Gamma(\tau), 0 \leq \tau \leq 1$ be a continuous path in $D \cup V$ joining p_{1} to p_{2}. For each $0 \leq \tau \leq 1$ we set $\rho(\tau)$ to be the radius of the sphere corresponding to the lense manifold $H(O(\Gamma(\tau)))$. Since ρ is continuous and $\rho(0)=\rho(1)$, there exists a point $0<\tau_{0}<1$ at which ρ attains either its maximum or its minimum on $[0,1]$. Then H is not one-to-one in a neighborhood of $O\left(\Gamma\left(\tau_{0}\right)\right)$, which is a contradiction.

We have thus constructed a domain containing D as a proper subset that can be mapped onto the quotient of a spherical layer by the action of \mathbb{Z}_{m} by means of a map satisfying (2.12). This is a contradiction showing that in fact $D=M$.

Assume now that h satisfies (2.13) (rather than (2.12)) for all $g \in U_{n}$ and $q \in$ $O(x)$. Then h extends to a neighborhood V of $O(x)$ and satisfies (2.13) there. For a point $s \in V \cap D$ we consider its orbit $O(s)$. The maps f and h take $O(s)$ into some lense manifolds $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ and $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$, respectively, where $r_{1}, r_{2}>0$. Hence $F:=h \circ f^{-1}$ maps $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ onto $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$ and satisfies the relation

$$
\begin{equation*}
F(u t)=\bar{u} F(t), \tag{2.17}
\end{equation*}
$$

for all $u \in U_{n} / \mathbb{Z}_{m}$ and $t \in r_{1} S^{2 n-1} / \mathbb{Z}_{m}$. As above, F can be lifted to a map G from $r_{1} S^{2 n-1}$ into $r_{2} S^{2 n-1}$. By (2.17) and (2.15), for all $g \in U_{n}$ and $y \in r_{1} S^{2 n-1}$ we obtain

$$
\begin{aligned}
\pi_{2}(G(g y)) & =F\left(\pi_{1}(g y)\right)=F\left(\rho_{n, m}(g) \pi_{1}(y)\right) \\
& =\overline{\rho_{n, m}(g)} F\left(\pi_{1}(y)\right)=\rho_{n, m}(\bar{g}) \pi_{2}(G(y))=\pi_{2}(\bar{g} G(y))
\end{aligned}
$$

As above, this shows that

$$
\begin{equation*}
G(g y)=\bar{g} G(y) \tag{2.18}
\end{equation*}
$$

for all $g \in U_{n}$ and $y \in r_{1} S^{2 n-1}$.
The map G extends to a biholomorphic map between the corresponding balls $r_{1} B^{n}, r_{2} B^{n}$, and the extended map satisfies (2.18) on $r_{1} B^{n}$. By setting $y=0$ in (2.18) we see similarly to the above that $G(0)$ is a fixed point of the standard action of U_{n} on $r_{1} B^{n}$, and thus $G(0)=0$. Hence $G=d \cdot U$, where $d \in \mathbb{C} \backslash\{0\}$ and U is a unitary matrix. This, however, contradicts (2.18), and therefore h cannot satisfy (2.13) on $O(x)$.

The proof in the case when f satisfies (2.13) on $O(p)$ is analogous to the above. In this case we obtain an extension to the whole of M satisfying (2.13). This completes the proof in the case of non-compact M.

Assume now that M is compact. We consider a domain D as above and assume first that the corresponding map f satisfies (2.12). Since M is compact, $D \neq M$. Let x be a boundary point of D, and consider the orbit $O(x)$. We choose a connected neighborhood V of $O(x)$ as above, and let $V=V_{1} \cup V_{2} \cup O(x)$, where $V_{1} \cap V_{2}=\varnothing$ and each V_{j} is either a subset of D or is disjoint from D. If one domain of V_{1}, V_{2} is disjoint from D, then, arguing as above, we arrive at a contradiction with the maximality of D. Hence $V_{j} \subset D, j=1,2$, and $M=D \cup O(x)$.

We can now extend $\left.f\right|_{V_{1}}$ and $\left.f\right|_{V_{2}}$ to biholomorphic maps f_{1} and f_{2}, respectively, that are defined on V, map it onto spherical layers factorized by the action of \mathbb{Z}_{m}, and satisfy (2.12) on V. Then f_{1} and f_{2} map $O(x)$ onto $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ and $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$, respectively, for some $r_{1}, r_{2}>0$. Clearly, $r_{1} \neq r_{2}$. Hence $F:=f_{2} \circ f_{1}^{-1}$ maps $r_{1} S^{2 n-1} / \mathbb{Z}_{m}$ onto $r_{2} S^{2 n-1} / \mathbb{Z}_{m}$ and satisfies (2.14). This shows, similarly to the above, that $F\left(\langle t\rangle_{1}\right)=\langle d \cdot t\rangle_{2}$ for all $\langle t\rangle_{1} \in r_{1} S^{2 n-1} / \mathbb{Z}_{m}$, where $d \in \mathbb{C} \backslash\{0\}$ and $\langle t\rangle_{j} \in$ $r_{j} S^{2 n-1} / \mathbb{Z}_{m}$ is the equivalence class of $t \in r_{j} S^{2 n-1}, j=1,2$. Since $r_{1} \neq r_{2}$, it follows that $|d| \neq 1$. Now, the map

$$
H:= \begin{cases}f & \text { on } D \\ f_{1} & \text { on } O(x)\end{cases}
$$

establishes a biholomorphic equivalence between M and $M_{d}^{n} / \mathbb{Z}_{m}$ and satisfies (2.12).
The proof in the case when f satisfies (2.13) on D is analogous to the above. In this case we obtain an extension H that satisfies (2.13).

The proof of the theorem is complete.

3 The Case of Complex Hypersurface Orbits

We now discuss orbits that are complex hypersurfaces. We start with several examples.

Example 3.1 Let B_{R}^{n} be the ball of radius $0<R \leq \infty$ in \mathbb{C}^{n} and let $\widehat{B_{R}^{n}}$ be its blow-up at the origin, i.e.,

$$
\widehat{B_{R}^{n}}:=\left\{(z, w) \in B_{R}^{n} \times \mathbb{C P}^{n-1}: z_{i} w_{j}=z_{j} w_{i}, \text { for all } i, j\right\},
$$

where $z=\left(z_{1}, \ldots, z_{n}\right)$ are the standard coordinates in \mathbb{C}^{n} and $w=\left(w_{1}: \cdots: w_{n}\right)$ are the homogeneous coordinates in $\mathbb{C P P}^{n-1}$. We define an action of U_{n} on $\widehat{B_{R}^{n}}$ as follows. For $(z, w) \in \widehat{B_{R}^{n}}$ and $g \in U_{n}$ we set

$$
g(z, w):=(g z, g w)
$$

where in the right-hand side we use the standard actions of U_{n} on \mathbb{C}^{n} and $\mathbb{C P}^{n-1}$. The points $(0, w) \in \widehat{B_{R}^{n}}$ form an orbit O, which is a complex hypersurface biholomorphically equivalent to $\mathbb{C P}^{n-1}$. All other orbits are real hypersurfaces that are the boundaries of strongly pseudoconvex neighborhoods of O.

We fix $m \in \mathbb{N}$ and denote by $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ the quotient of $\widehat{B_{R}^{n}}$ by the equivalence relation $(z, w) \sim e^{\frac{2 \pi i}{m}}(z, w)$. Let $\{(z, w)\} \in \widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ be the equivalence class of $(z, w) \in \widehat{B_{R}^{n}}$. We
now define in a natural way an action of U_{n} / \mathbb{Z}_{m} on $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$: for $\{(z, w)\} \in \widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ and $g \in U_{n}$ we set

$$
\left(g \mathbb{Z}_{m}\right)\{(z, w)\}:=\{g(z, w)\}
$$

The points $\{(0, w)\}$ form the unique complex hypersurface orbit O, which is biholomorphically equivalent to $\mathbb{C}^{P^{n-1}}$, and each real hypersurface orbit is the boundary of a strongly pseudoconvex neighborhood of O.

Now let $S_{r, \infty}^{n}=\left\{z \in \mathbb{C}^{n}:|z|>r\right\}, r>0$, be a spherical layer with infinite outer radius and let $\widetilde{S_{r, \infty}^{n}}$ be the union of $S_{r, \infty}^{n}$ and the hypersurface at infinity in $\mathbb{C P P}^{n}$, namely,

$$
\widetilde{S_{r, \infty}^{n}}:=\left\{\left(z_{0}: z_{1}: \cdots: z_{n}\right) \in \mathbb{C P}^{P^{n}}:\left(z_{1}, \ldots, z_{n}\right) \in S_{r, \infty}^{n}, z_{0}=0,1\right\}
$$

We shall equip $\widetilde{S_{r, \infty}^{n}}$ with the standard action of U_{n}. For $\left(z_{0}: z_{1}: \cdots: z_{n}\right) \in \widetilde{S_{r, \infty}^{n}}$ and $g \in U_{n}$ we set

$$
g\left(z_{0}: z_{1}: \cdots: z_{n}\right):=\left(z_{0}: u_{1}: \cdots: u_{n}\right)
$$

where $\left(u_{1}, \ldots, u_{n}\right):=g\left(z_{1}, \ldots, z_{n}\right)$. The points $\left(0: z_{1}: \cdots: z_{n}\right)$ at infinity form an orbit O, which is a complex hypersurface biholomorphically equivalent to $\mathbb{C P}^{n-1}$. All other orbits are real hypersurfaces that are the boundaries of strongly pseudoconcave neighborhoods of O.

We fix $m \in \mathbb{N}$ and denote by $\widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$ the quotient of $\widetilde{S_{r, \infty}^{n}}$ by the equivalence relation $\left(z_{0}: z_{1}: \cdots: z_{n}\right) \sim e^{\frac{2 \pi i}{m}}\left(z_{0}: z_{1}: \cdots: z_{n}\right)$. Let $\left\{\left(z_{0}: z_{1}: \cdots: z_{n}\right)\right\} \in \widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$ be the equivalence class of $\left(z_{0}: z_{1}: \cdots: z_{n}\right) \in \widetilde{S_{r, \infty}^{n}}$. We consider $\widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$ with the standard action of U_{n} / \mathbb{Z}_{m}, namely, for $\left\{\left(z_{0}: z_{1}: \cdots: z_{n}\right)\right\} \in \widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$ and $g \in U_{n}$ we set

$$
\left(g \mathbb{Z}_{m}\right)\left\{\left(z_{0}: z_{1}: \cdots: z_{n}\right)\right\}:=\left\{g\left(z_{0}: z_{1}: \cdots: z_{n}\right)\right\}
$$

The points $\left\{\left(0: z_{1}: \cdots: z_{n}\right)\right\}$ form a unique complex hypersurface orbit O which is biholomorphically equivalent to $\mathbb{C P}^{P^{n-1}}$, and each real hypersurface orbit is the boundary of a strongly pseudoconcave neighborhood of O.

Finally, let $\widehat{\mathbb{C P}^{n}}$ be the blow-up of $\mathbb{C P}^{n}$ at the point $(1: 0: \cdots: 0) \in \mathbb{C P}^{n}$:

$$
\begin{aligned}
\widehat{\mathbb{C P}^{n}}:=\{ & \left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right) \in \mathbb{C P P}^{n} \times \mathbb{C P}^{n-1}: z_{i} w_{j}=z_{j} w_{i} \\
& \text { for all } \left.i, j \neq 0, z_{0}=0,1\right\},
\end{aligned}
$$

where $w=\left(w_{1}: \cdots: w_{n}\right)$ are the homogeneous coordinates in $\mathbb{C P}^{n-1}$. We define an action of U_{n} in $\widehat{\mathbb{C P P}^{n}}$ as follows. For $\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right) \in \widehat{\mathbb{C P P}^{n}}$ and $g \in U_{n}$ we set

$$
g\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right):=\left(\left(z_{0}: u_{1}: \cdots: u_{n}\right), g w\right),
$$

where $\left(u_{1}, \ldots, u_{n}\right):=g\left(z_{1}, \ldots, z_{n}\right)$. This action has exactly two orbits that are complex hypersurfaces: the orbit O_{1} consisting of the points $((1: 0: \cdots: 0), w)$ and the orbit O_{2} consisting of the points $\left(\left(0: z_{1}: \cdots: z_{n}\right), w\right)$. Both O_{1} and O_{2} are biholomorphically equivalent to $\mathbb{C P}^{n-1}$. The real hypersurface orbits are the boundaries of
strongly pseudoconvex neighborhoods of O_{1} and strongly pseudoconcave neighborhoods of O_{2}.

We fix $m \in \mathbb{N}$ and denote by $\widehat{\widehat{C P} n} / \mathbb{Z}_{m}$ the quotient of $\widehat{\mathbb{C P}^{n}}$ by the equivalence relation $\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right) \sim e^{\frac{2 \pi i}{m}}\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right)$. Let $\left\{\left(\left(z_{0}: z_{1}: \cdots:\right.\right.\right.$ $\left.\left.\left.z_{n}\right), w\right)\right\} \in \widehat{\mathbb{C P P}^{n}} / \mathbb{Z}_{m}$ be the equivalence class of $\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right) \in \widehat{\mathbb{C P P}^{n}}$. We shall consider $\widehat{\mathbb{C P P}^{m}} / \mathbb{Z}_{m}$ with the standard action of U_{n} / \mathbb{Z}_{m}, namely, for $\left\{\left(z_{0}: z_{1}\right.\right.$: $\left.\left.\left.\cdots: z_{n}\right), w\right)\right\} \in \widehat{\mathbb{C P P}^{m}} / \mathbb{Z}_{m}$ and $g \in U_{n}$ we set:

$$
\left(g \mathbb{Z}_{m}\right)\left\{\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right)\right\}:=\left\{g\left(\left(z_{0}: z_{1}: \cdots: z_{n}\right), w\right)\right\}
$$

As above, there exist exactly two orbits that are complex hypersurfaces: the orbit O_{1} consisting of the points $\{((1: 0: \cdots: 0), w)\}$ and the orbit O_{2} consisting of the points $\left\{\left(\left(0: z_{1}: \cdots: z_{n}\right), w\right)\right\}$. Both O_{1} and O_{2} are biholomorphically equivalent to $\mathbb{C} \mathbb{P}^{n-1}$. The real hypersurface orbits are the boundaries of strongly pseudoconvex neighborhoods of O_{1} and strongly pseudoconcave neighborhoods of O_{2}.

We show below that the complex hypersurface orbits in Example 3.1 are in fact the only ones that can occur.

Proposition 3.2 Let M be a connected complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Suppose that each orbit is a real or a complex hypersurface in M. Then there exist at most two complex hypersurface orbits.

Proof We fix a smooth U_{n}-invariant distance function ρ on M. Let O be an orbit that is a complex hypersurface. Consider the ϵ-neighborhood of $U_{\epsilon}(O)$ of O in M :

$$
U_{\epsilon}(O):=\left\{p \in M: \inf _{q \in O} \rho(p, q)<\epsilon\right\} .
$$

If ϵ is sufficiently small, then the boundary of $U_{\epsilon}(O)$,

$$
\partial U_{\epsilon}(O)=\left\{p \in M: \inf _{q \in O} \rho(p, q)=\epsilon\right\}
$$

is a smooth connected real hypersurface in M. Clearly, ∂U_{ϵ} is U_{n}-invariant, and therefore it is a union of orbits. If $\partial U_{\epsilon}(O)$ contains an orbit that is a real hypersurface, then $\partial U_{\epsilon}(O)$ obviously coincides with that orbit.

Assume that $\partial U_{\epsilon}(O)$ contains an orbit that is a complex hypersurface. Then $\partial U_{\epsilon}(O)$ is a union of such orbits. It follows from the proof of Proposition 1.1 (see Case 1 there) that if an orbit $O(p)$ is a complex hypersurface, then I_{p} is isomorphic to $U_{1} \times U_{n-1}$. By Lemma 2.1 of [IKra], I_{p} is in fact conjugate to $U_{1} \times U_{n-1}$ embedded in U_{n} in the standard way. Hence the action of the center of U_{n} on $O(p)$ is trivial. Thus, the center of U_{n} acts trivially on each complex hypersurface orbit and hence on the entire $\partial U_{\epsilon}(O)$. Then its action on M is also trivial, which contradicts the assumption of the effectiveness of the action of U_{n} on M.

Hence, if ϵ is sufficiently small, then $U_{\epsilon}(O)$ contains no complex hypersurface orbits other than O itself, and the boundary of $U_{\epsilon}(O)$ is a real hypersurface orbit. Let \tilde{M} be the manifold obtained by removing all complex hypersurface orbits from M. Since such an orbit has a neighborhood containing no other complex hypersurface orbits, \tilde{M} is connected. It is also clear that \tilde{M} is non-compact. Hence, by Theorem 2.7, \tilde{M} can be mapped onto $S_{r, R}^{n} / \mathbb{Z}_{m}$, for some $0 \leq r<R \leq \infty$, by a biholomorphic map f satisfying either (2.12) or (2.13). The manifold $S_{r, R}^{n} / \mathbb{Z}_{m}$ has two ends at infinity, and therefore the number of removed complex hypersurfaces is at most two, which completes the proof.

We can now prove the following theorem.

Theorem 3.3 Let M be a connected complex manifold of dimension $n \geq 2$ endowed with an effective action of U_{n} by biholomorphic transformations. Suppose that each orbit of this action is either a real or complex hypersurface and at least one orbit is a complex hypersurface. Then there exists $k \in \mathbb{Z}$ such that, for $m=|n k+1|, M$ is biholomorphically equivalent to either
(i) $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}, 0<R \leq \infty$, or
(ii) $\widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}, 0 \leq r<\infty$, or
(iii) $\widehat{\mathbb{C P P}^{n}} / \mathbb{Z}_{m}$.

The biholomorphic equivalence f can be chosen to satisfy either (2.12) or (2.13) for all $g \in U_{n}$ and $q \in M$.

Proof Assume first that only one orbit O is a complex hypersurface. Consider $\tilde{M}:=$ $M \backslash O$. Since \tilde{M} is clearly non-compact, by Theorem 2.7 there exists $k \in \mathbb{Z}$ such that for $m=|n k+1|$ and some r and $R, 0 \leq r<R \leq \infty$, the manifold \tilde{M} is biholomorphically equivalent to $S_{r, R}^{n} / \mathbb{Z}_{m}$ by means of a map f satisfying either (2.12) or (2.13) for all $g \in U_{n}$ and $q \in \tilde{M}$. We shall assume that f satisfies (2.12) because the latter case can be dealt with in the same way.

Suppose first that $n \geq 3$. We fix $p \in O$ and consider I_{p}. We denote for the moment by $H \subset U_{n}$ the standard embedding of $U_{1} \times U_{n-1}$ in U_{n}. As mentioned in the proof of Proposition 3.2, there exists $g \in U_{n}$ such that $I_{p}=g^{-1} H g$. For an arbitrary real hypersurface orbit $O(q)$ we set

$$
N_{p, q}:=\left\{s \in O(q): I_{s} \subset I_{p}\right\}
$$

Since I_{s} is conjugate in U_{n} to a subgroup $H_{k_{1}, k_{2}}$, where $k_{1}:=k$ and $k_{2}=k(n-1)+1 \neq$ 0 (see (2.5) in the proof of Proposition 2.3), it follows that

$$
N_{p, q}=\left\{s \in O(q): I_{s}=g^{-1} H_{k_{1}, k_{2}} g\right\}
$$

It is easy to show now that if we fix $t \in N_{p, q}$, then $N_{p, q}=\{h t\}$, where

$$
h=g^{-1}\left(\begin{array}{cc}
\alpha & 0 \\
0 & \text { id }
\end{array}\right) g, \quad \alpha \in U_{1}
$$

Let N_{p} be the union of the $N_{p, q}$'s over all real hypersurface orbits $O(q)$. Also let N_{p}^{\prime} be the set of points in $S_{r, R}^{n} / \mathbb{Z}_{m}$ whose isotropy subgroup with respect to the standard action of U_{n} / \mathbb{Z}_{m} is $\phi_{n, m}^{-1}\left(g^{-1} H_{k_{1}, k_{2}} g\right)$ (see (2.6) for the definition of $\phi_{n, m}$). It is easy to verify that N_{p}^{\prime} is a complex curve in $S_{r, R}^{n} / \mathbb{Z}_{m}$ biholomorphically equivalent to either an annulus of modulus $(R / r)^{m}$ (if $0<r<R<\infty$), or a punctured disk (if $r=0$, $R<\infty$ or $r>0, R=\infty$), or (C $\backslash 0$ (if $r=0$ and $R=\infty$). Clearly, $f^{-1}\left(N_{p}^{\prime}\right)=N_{p}$, and hence N_{p} is a complex curve in \tilde{M}.

Obviously, N_{p} is invariant under the action of I_{p}. By Bochner's theorem there exist local holomorphic coordinates in the neighborhood of p such that the action of I_{p} is linear in these coordinates and coincides with the action of the linear isotropy subgroup L_{p} introduced in the proof of Proposition 1.1 (upon the natural identification of the coordinate neighborhood in question and a neighborhood of the origin in $T_{p}(M)$). Recall that L_{p} has two invariant complex subspaces in $T_{p}(M): T_{p}(O)$ and a one-dimensional subspace, which correspond in our coordinates to O and some holomorphic curve. It can be easily seen that $\overline{N_{p}}$ is precisely this curve. Hence $\overline{N_{p}}$ near p is an analytic disc with center at p, and therefore N_{p}^{\prime} cannot in fact be equivalent to an annulus, and we have either $r=0$ or $R=\infty$.

Assume first that $r=0$ and $R<\infty$. We consider a holomorphic embedding $\nu: S_{0, R}^{n} / \mathbb{Z}_{m} \rightarrow \widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ defined by the formula

$$
\nu(\langle z\rangle):=\{(z, w)\}
$$

where $w=\left(w_{1}: \cdots: w_{n}\right)$ is uniquely determined by the conditions $z_{i} w_{j}=z_{j} w_{i}$ for all i, j, and $\langle z\rangle \in\left(\mathbb{C}^{n} \backslash\{0\}\right) / \mathbb{Z}_{m}$ is the equivalence class of $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \backslash\{0\}$. Clearly, ν is U_{n} / \mathbb{Z}_{m}-equivariant. Now let $f_{\nu}:=\nu \circ f$. We claim that f_{ν} extends to O as a biholomorphic map of M onto $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$.

Let \hat{O} be the orbit in $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ that is a complex hypersurface and let $\hat{p} \in \hat{O}$ be the (unique) point such that its isotropy subgroup $I_{\hat{p}}$ (with respect to the action of U_{n} / \mathbb{Z}_{m} on $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ as described in Example 3.1) is $\phi_{n, m}^{-1}\left(I_{p}\right)$. Then $\{\hat{p}\} \cup \nu\left(N_{p}^{\prime}\right)$ is a smooth complex curve. We define the extension F_{ν} of f_{ν} by setting $F_{\nu}(p):=\hat{p}$ for each $p \in O$.

We must show that F_{ν} is continuous at each point $p \in O$. Let $\left\{q_{j}\right\}$ be a sequence of points in M accumulating to p. Since all accumulation points of the sequence $\left\{F_{\nu}\left(q_{j}\right)\right\}$ lie in \hat{O} and \hat{O} is compact, it suffices to show that each convergent subsequence $\left\{F_{\nu}\left(q_{j_{k}}\right)\right\}$ of $\left\{F_{\nu}\left(q_{j}\right)\right\}$ converges to \hat{p}. For every $q_{j_{k}}$ there exists $g_{j_{k}} \in U_{n}$ such that $g_{j_{k}}^{-1} I_{q_{k}} g_{j_{k}} \subset I_{p}$, i.e., $g_{j_{k}}^{-1} q_{j_{k}} \in \overline{N_{p}}$. We select a convergent subsequence $\left\{g_{j_{k_{l}}}\right\}$ and denote its limit by g. Then $\left\{g_{j_{k_{l}}}^{-1} q_{j_{k_{l}}}\right\}$ converges to $g^{-1} p$. Since $g^{-1} p \in O$ and $g_{j_{k_{l}}}^{-1} q_{j_{k_{l}}} \in \overline{N_{p}}$, it follows that $g^{-1} p=p$, i.e., $g \in I_{p}$. The map F_{ν} satisfies (2.12) for all $g \in U_{n}$ and $q \in M$, hence $F_{\nu}\left(q_{j_{k_{l}}}\right) \in \overline{N_{\phi_{n, m}^{-1}\left(g_{j_{l}}\right) \hat{p}}}$, where $N_{\phi_{n, m}^{-1}\left(g_{j_{k}}\right) \hat{p}} \subset \widehat{B_{R}^{n}} / \mathbb{Z}_{m}$ is constructed similarly to $N_{p} \subset \tilde{M}$. Therefore the limit of $\left\{F_{\nu}\left(q_{j_{k}}\right)\right\}$ (equal to the
limit of $\left.\left\{F_{\nu}\left(q_{j_{k}}\right)\right\}\right)$ is \hat{p}. Hence F_{ν} is continuous, and therefore holomorphic on M. It obviously maps M biholomorphically onto $\widehat{B_{R}^{n}} / \mathbb{Z}_{m}$.

The case when $r>0$ and $R=\infty$ can be treated along the same lines, but one must consider the holomorphic embedding $\sigma: S_{r, \infty}^{n} / \mathbb{Z}_{m} \rightarrow \widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$ such that

$$
\sigma(\langle z\rangle):=\left\{\left(1: z_{1}: \cdots: z_{n}\right)\right\}
$$

the map $f_{\sigma}:=\sigma \circ f$, and prove that f_{σ} extends to O as a biholomorphic map of M onto $\widetilde{S_{r, \infty}^{n}} / \mathbb{Z}_{m}$.

If $r=0$ and $R=\infty$, then precisely one of f_{ν} and f_{σ} extends to O, and the extension defines a biholomorphic map from M to either $\widehat{\mathbb{C}^{n}} / \mathbb{Z}_{m}$, or $\widetilde{S_{0, \infty}^{n}} / \mathbb{Z}_{m}$.

Let now $n=2$. We fix $p \in O$ and consider I_{p}. There exists $g \in U_{2}$ such that $I_{p}=$ $g^{-1} \mathrm{Hg}$. As above, we introduce the sets $N_{p, q}$, i.e., for an arbitrary real hypersurface orbit $O(q)$ we set

$$
N_{p, q}:=\left\{s \in O(q): I_{s} \subset I_{p}\right\}
$$

Since I_{s} is conjugate in U_{2} to a subgroup $H_{k_{1}, k_{2}}$, where $k_{1}:=k$ and $k_{2}=k+1 \neq 0$, it follows that

$$
N_{p, q}=\left\{s \in O(q): I_{s}=g^{-1} H_{k_{1}, k_{2}} g\right\} \cup\left\{s \in O(q): I_{s}=g^{-1} h_{0} H_{k_{1}, k_{2}} h_{0} g\right\}
$$

where

$$
h_{0}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

i.e., for $n=2, N_{p, q}$ has two connected components. We denote them $N_{p, q}^{1}$ and $N_{p, q}^{2}$, respectively. It is easy to show now that if we fix $t \in N_{p, q}$, then $N_{p, q}^{1}=\{h t\}$ and $N_{p, q}^{2}=\left\{g^{-1} h_{0} g h t\right\}$, where

$$
h=g^{-1}\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) g, \quad \alpha \in U_{1}
$$

We now consider the corresponding sets N_{p}^{1} and N_{p}^{2}. The point p is the accumulation point in O for exactly one of these sets. As above, we obtain that either $r=0$, or $R=\infty$. For example, assume that $r=0$ and $R<\infty$. Let \hat{O} be the orbit in $\widehat{B_{R}^{2}} / \mathbb{Z}_{m}$ that is a complex hypersurface. There are precisely two points in \hat{O} whose isotropy subgroups in U_{2} / \mathbb{Z}_{m} coincide with $\phi_{2, m}^{-1}\left(I_{p}\right)$. These points \hat{p}_{1} and \hat{p}_{2} are the accumulation points in \hat{O} of $\nu\left(N_{p}^{\prime 1}\right)$ and $\nu\left(N_{p}^{\prime 2}\right)$, where $N_{p}^{\prime 1}, N_{p}^{\prime 2} \subset S_{0, R}^{2} / \mathbb{Z}_{m}$ are the sets of points with isotropy subgroups equal to $\phi_{2, m}^{-1}\left(g^{-1} H_{k_{1}, k_{2}} g\right)$ and $\phi_{2, m}^{-1}\left(g^{-1} h_{0} H_{k_{1}, k_{2}} h_{0} g\right)$ respectively. We then define the extension F_{ν} of f_{ν} by setting $F_{\nu}(p)=\hat{p}_{1}$ if N_{p}^{1} accumulates to p and $F_{\nu}(p)=\hat{p}_{2}$ if N_{p}^{2} accumulates to p. The proof of the continuity of F_{ν} proceeds as for $n \geq 3$. The arguments in the cases $r>0, R=\infty$ and $r=0$, $R=\infty$ are analogous to the above.

Assume now that two orbits O_{1} and O_{2} in M are complex hypersurfaces. As above, we consider the manifold \tilde{M} obtained from M by removing O_{1} and O_{2}. For
some $k \in \mathbb{Z}, m=|n k+1|$, and some r and $R, 0 \leq r<R \leq \infty$, it is biholomorphically equivalent to $S_{r, R}^{n} / \mathbb{Z}_{m}$ by means of a map f satisfying either (2.12) or (2.13). Arguments very similar to the ones used above show that in this case $r=0$, $R=\infty$, and $f_{\tau}:=\tau \circ f$ extends to a biholomorphic map $M \rightarrow \widehat{\left(\mathbb{C P}^{m}\right.} / \mathbb{Z}_{m}$. Here $\tau:\left(\mathbb{C}^{n} \backslash\{0\}\right) / \mathbb{Z}_{m} \rightarrow \widehat{\mathbb{C P P}}^{n} / \mathbb{Z}_{m}$ is a U_{n} / \mathbb{Z}_{m}-equivariant map defined as

$$
\tau(\langle z\rangle):=\left\{\left(\left(1: z_{1}: \cdots: z_{n}\right), w\right)\right\},
$$

where $w=\left(w_{1}: \cdots: w_{n}\right)$ is uniquely determined from the conditions $z_{i} w_{j}=z_{j} w_{i}$ for all i, j.

The proof is complete.

4 The Homogeneous Case

We consider now the case when the action of U_{n} on M is transitive.
Example 4.1 Examples of manifolds on which U_{n} acts transitively and effectively are the Hopf manifolds M_{d}^{n} (see Definition 2.6). Let λ be a complex number such that $e^{\frac{2 \pi(\lambda-i)}{n K}}=d$ for some $K \in \mathbb{Z} \backslash\{0\}$. We define an action of U_{n} on M_{d}^{n} as follows. Let $A \in U_{n}$. We can represent A in the form $A=e^{i t} \cdot B$, where $t \in \mathbb{R}$ and $B \in \mathrm{SU}_{n}$. Then we set

$$
\begin{equation*}
A[z]:=\left[e^{\lambda t} \cdot B z\right] \tag{4.1}
\end{equation*}
$$

Of course, we must verify that this action is well-defined. Indeed, the same element $A \in U_{n}$ can be also represented in the form $A=e^{i\left(t+\frac{2 \pi k}{n}+2 \pi l\right)} \cdot\left(e^{-\frac{2 \pi i k}{n}} B\right), 0 \leq k \leq n-1$, $l \in \mathbb{Z}$. Then formula (4.1) yields

$$
A[z]=\left[e^{\lambda\left(t+\frac{2 \pi k}{n}+2 \pi l\right)} \cdot e^{-\frac{2 \pi i k}{n}} B z\right]=\left[d^{k K+n K l} e^{\lambda t} \cdot B z\right]=\left[e^{\lambda t} \cdot B z\right] .
$$

It is also clear that (4.1) does not depend on the choice of representative in the class [z].

The action in question is obviously transitive. It is also effective. For let $e^{i t} \cdot B[z]=$ $[z]$ for some $t \in \mathbb{R}, B \in \mathrm{SU}_{n}$, and all $z \in \mathbb{C}^{n} \backslash\{0\}$. Then, for some $k \in \mathbb{Z}, B=e^{\frac{2 \pi i k}{n}}$. id, and some $s \in \mathbb{Z}$ the following holds

$$
e^{\lambda t} \cdot e^{\frac{2 \pi i k}{n}}=d^{s}
$$

Using the definition of λ we obtain

$$
\begin{gathered}
t=\frac{2 \pi s}{n K} \\
e^{\frac{2 \pi i k}{n}}=e^{-\frac{2 \pi i s}{n K}} .
\end{gathered}
$$

Hence $e^{i t} \cdot B=\mathrm{id}$, and thus the action is effective.

The isotropy subgroup of the point $[(1,0, \ldots, 0)]$ is $G_{K, 1} \cdot \mathrm{SU}_{n-1}$, where SU_{n-1} is embedded in U_{n} in the standard way and $G_{K, 1}$ consists of all matrices of the form

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \beta \cdot \mathrm{id}
\end{array}\right)
$$

where $\beta^{(n-1) K}=1$.
Another example is provided by the manifolds $M_{d}^{n} / \mathbb{Z}_{m}$ (see Definition 2.6). Let $\{[z]\} \in M_{d}^{n} / \mathbb{Z}_{m}$ be the equivalence class of $[z]$. We define an action of U_{n} on $M_{d}^{n} / \mathbb{Z}_{m}$ by the formula $g\{[z]\}:=\{g[z]\}$ for $g \in U_{n}$. This action is clearly transitive; it is also effective if, e.g., $(n, m)=1$ and $(K, m)=1$.

The isotropy subgroup of the point $\{[(1,0, \ldots, 0)]\}$ is $G_{K, m} \cdot \mathrm{SU}_{n-1}$, where $G_{K, m}$ consists of all matrices of the form

$$
\left(\begin{array}{cc}
\alpha & 0 \tag{4.2}\\
0 & \beta \cdot \mathrm{id}
\end{array}\right),
$$

with $\alpha^{m}=1$ and $\alpha^{K} \beta^{K(n-1)}=1$. Note that in this case every orbit of the induced action of SU_{n} is equivariantly diffeomorphic to the lense manifold $\mathcal{L}_{m}^{2 n-1}$.

One can consider more general actions by choosing λ such that $e^{\frac{2 \pi(\lambda-i)}{n}}=d^{K}$, but not all such actions are effective.

We shall now describe complex manifolds admitting effective transitive actions of U_{n}. It turns out that such a manifold is always biholomorphically equivalent to one of the manifolds $M_{d}^{n} / \mathbb{Z}_{m}$. To prove this we shall look at orbits of the induced action of SU_{n}. We require the following algebraic lemma first.

Lemma 4.2 Let G be a connected closed subgroup of U_{n} of dimension $n^{2}-2 n, n \geq 2$. Then either
(i) G is irreducible as a subgroup of $\mathrm{GL}_{n}(\mathbb{C})$, or
(ii) G is conjugate to $S \mathrm{U}_{n-1}$ embedded in U_{n} in the standard way, or
(iii) for $n=3$, G is conjugate to $U_{1} \times U_{1} \times U_{1}$ embedded in U_{3} in the standard way, or
(iv) for $n=4, G$ is conjugate to $U_{2} \times U_{2}$ embedded in U_{4} in the standard way.

Proof We start as in the proof of Lemma 2.1. Since G is compact, it is completely reducible, i.e., \mathbb{C}^{n} splits into a sum of G-invariant pairwise orthogonal complex subspaces, $\mathbb{C}^{n}=V_{1} \oplus \cdots \oplus V_{m}$, such that the restriction G_{j} of G to every V_{j} is irreducible. Let $n_{j}:=\operatorname{dim}_{\mathbb{C}} V_{j}$ (hence $\left.n_{1}+\cdots+n_{m}=n\right)$ and let $U_{n_{j}}$ be the unitary transformation group of V_{j}. Clearly, $G_{j} \subset U_{n_{j}}$, and therefore $\operatorname{dim} G \leq n_{1}^{2}+\cdots+n_{m}^{2}$. On the other hand $\operatorname{dim} G=n^{2}-2 n$, which shows that $m \leq 2$ for $n \neq 3$. If $n=3$, then it is also possible that $m=3$, which means that G is conjugate to $U_{1} \times U_{1} \times U_{1}$ embedded in U_{3} in the standard way.

Now let $m=2$. Then either there exists a unitary transformation of \mathbb{C}^{n} such that each element of G has in the new coordinates the form (2.3) with $a \in U_{1}$ and $B \in U_{n-1}$ or, for $n=4, G$ is conjugate to $U_{2} \times U_{2}$. We note that, in the first case,
the scalars a and the matrices B, that arise from elements of G in (2.3) form compact connected subgroups of U_{1} and U_{n-1} respectively; we shall denote them by G_{1} and G_{2} as above.

If $\operatorname{dim} G_{1}=0$, then $G_{1}=\{1\}$, and therefore $G_{2}=\mathrm{SU}_{n-1}$.
Assume that $\operatorname{dim} G_{1}=1$, i.e., $G_{1}=U_{1}$. Therefore, $n \geq 3$. Then $(n-1)^{2}-2 \leq$ $\operatorname{dim} G_{2} \leq(n-1)^{2}-1$. It follows from Lemma 2.1 of [IKra] that, for $n \neq 3$, we have $G_{2}=S U_{n-1}$. For $n=3$ it is also possible that $G_{2}=U_{1} \times U_{1}$, and therefore G is conjugate to $U_{1} \times U_{1} \times U_{1}$ embedded in U_{3} in the standard way. Assume that $G_{2}=S U_{n-1}$ and consider the Lie algebra \mathfrak{g} of G. It consists of all matrices of the form (2.4) with b an arbitrary matrix in $\mathfrak{S u}_{n-1}$ and $l(b)$ a linear function of the matrix elements of b ranging in $i \mathbb{R}$. However, $l(b)$ must vanish on the commutant of $\mathfrak{s u}_{n-1}$ which is $\mathfrak{H u}_{n-1}$ itself. Consequently, $l(b) \equiv 0$, which contradicts our assumption that $G_{1}=U_{1}$.

The proof is complete.
We can now prove the following proposition.
Proposition 4.3 Let M be a complex manifold of dimension $n \geq 2$ endowed with an effective transitive action of U_{n} by biholomorphic transformations. Then there exists $m \in \mathbb{N},(n, m)=1$, such that for each $p \in M$ the orbit $\tilde{O}(p)$ of the induced action of SU_{n} is a real hypersurface in M that is SU_{n}-equivariantly diffeomorphic to the lense manifold $\mathcal{L}_{m}^{2 n-1}$ endowed with the standard action of $\mathrm{SU}_{n} \subset U_{n} / \mathbb{Z}_{m}$.

Proof Since M is homogeneous under the action of U_{n}, for every $p \in M$ we have $\operatorname{dim} I_{p}=n^{2}-2 n$. We now apply Lemma 4.2 to the identity component I_{p}^{c}. Clearly, if I_{p}^{c} contains the center of U_{n}, then the action of U_{n} on M is not effective, and therefore cases (iii) and (iv) cannot occur. We claim that case (i) does not occur either.

Since M is compact, the $\operatorname{group} \operatorname{Aut}(M)$ of all biholomorphic automorphisms of M is a complex Lie group. Hence we can extend the action of U_{n} to a holomorphic transitive action of $\mathrm{GL}_{n}(\mathrm{C})$ on M (see $[\mathrm{H}]$, pp. 204-207). Let J_{p} be the isotropy subgroup of p with respect to this action. Clearly, $\operatorname{dim}_{\mathbb{C}} J_{p}=n^{2}-n$. Consider the normalizer $N\left(J_{p}^{c}\right)$ of J_{p}^{c} in $\mathrm{GL}_{n}(\mathbb{C})$. It is known from results of Borel-Remmert and Tits (see Theorem 4.2 in [A2]) that $N\left(J_{p}^{c}\right)$ is a parabolic subgroup of $\mathrm{GL}_{n}(\mathbb{C})$. We note that $N\left(J_{p}^{c}\right) \neq \mathrm{GL}_{n}(\mathrm{C})$. For otherwise J_{p}^{c} would be a normal subgroup of $\mathrm{GL}_{n}(\mathbb{C})$. But $\mathrm{GL}_{n}(\mathbb{C})$ contains no normal subgroup of dimension $n^{2}-n$. Indeed, considering the intersection of such a subgroup with $\mathrm{SL}_{n}(\mathbb{C})$, we would obtain a normal subgroup of $\mathrm{SL}_{n}(\mathbb{C})$ of positive dimension thus arriving at a contradiction.

All parabolic subgroups of $\mathrm{GL}_{n}(\mathbb{C})$ are well-known. Let $n=n_{1}+\cdots+n_{r}, n_{j} \geq 1$, and let $P\left(n_{1}, \ldots, n_{r}\right)$ be the group of all matrices that have blocks of sizes n_{1}, \ldots, n_{r} on the diagonal, arbitrary entries above the blocks, and zeros below. Then an arbitrary parabolic subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ is conjugate to some subgroup $P\left(n_{1}, \ldots, n_{r}\right)$.

Since the normalizer $N\left(J_{p}^{c}\right)$ does not coincide with $\mathrm{GL}_{n}(\mathbb{C})$, it is conjugate to a subgroup $P\left(n_{1}, \ldots, n_{r}\right)$ with $r \geq 2$. Hence there exists a proper subspace of \mathbb{C}^{n} that is invariant under the action of $N\left(J_{p}^{c}\right)$, and therefore under the action of I_{p}^{c}. Thus, I_{p}^{c} cannot be irreducible.

Hence there exists $g \in U_{n}$ such that $g I_{p}^{c} g^{-1}=\mathrm{SU}_{n-1}$, where SU_{n-1} is embedded in U_{n} in the standard way. Clearly, the element g can be chosen from SU_{n}, and hence I_{p}^{c} is contained in SU_{n} and is conjugate in SU_{n} to SU_{n-1}.

Consider now the orbit $\tilde{O}(p)$ of a point $p \in M$ under the induced action of $S U_{n}$, and let $\tilde{I}_{p} \subset S U_{n}$ be the isotropy subgroup of p with respect to this action. Clearly, $\tilde{I}_{p}=I_{p} \cap \mathrm{SU}_{n}$. Since I_{p}^{c} lies in SU_{n}, it follows that $\tilde{I}_{p}^{c}=I_{p}^{c}$. In particular, $\operatorname{dim} \tilde{I}_{p}=$ $n^{2}-2 n$, and therefore $\tilde{O}(p)$ is a real hypersurface in M.

Assume now that $n \geq 3$. We require the following lemma.
Lemma 4.4 Let G be a closed subgroup of $\mathrm{SU}_{n}, n \geq 3$, such that $G^{c}=\mathrm{SU}_{n-1}$, where SU_{n-1} is embedded in SU_{n} in the standard way. Let m be the number of connected components of G. Then $G=G_{1, m} \cdot \mathrm{SU}_{n-1}$, where the group $G_{1, m}$ is defined in (4.2).

Proof of Lemma 4.4 Let C_{1}, \ldots, C_{m} be the connected components of G with $C_{1}=$ SU_{n-1}. Clearly, there exist $g_{1}=\mathrm{id}, g_{2}, \ldots, g_{m}$ in SU_{n} such that $C_{j}=g_{j} \mathrm{SU}_{n-1}$, $j=1, \ldots, m$. Moreover, for each pair of indices i, j there exists k such that $g_{i} \mathrm{SU}_{n-1}$. $g_{j} \mathrm{SU}_{n-1}=g_{k} \mathrm{SU}_{n-1}$, and therefore

$$
\begin{equation*}
g_{k}^{-1} g_{i} \mathrm{SU}_{n-1} g_{j}=\mathrm{SU}_{n-1} \tag{4.3}
\end{equation*}
$$

Applying (4.3) to the vector $v:=(1,0, \ldots, 0)$, which is preserved by the standard embedding of $S \mathrm{U}_{n-1}$ in SU_{n}, we obtain

$$
g_{k}^{-1} g_{i} \mathrm{SU}_{n-1} g_{j} v=v
$$

i.e.,

$$
\mathrm{SU}_{n-1} g_{j} v=g_{i}^{-1} g_{k} v
$$

which implies that $g_{j} v=\left(\alpha_{j}, 0, \ldots, 0\right),\left|\alpha_{j}\right|=1, j=1, \ldots, m$. Hence g_{j} has the form

$$
g_{j}=\left(\begin{array}{cc}
\alpha_{j} & 0 \\
0 & A_{j}
\end{array}\right)
$$

where $A_{j} \in U_{n-1}$ and $\operatorname{det} A_{j}=1 / \alpha_{j}$. Since A_{j} can be written in the form $A_{j}=\beta_{j} \cdot B_{j}$ with $B_{j} \in \mathrm{SU}_{n-1}$, we can assume without loss of generality that $A_{j}=\beta_{j} \cdot$ id. Clearly, each matrix

$$
g_{j} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & \sigma \cdot \mathrm{id}
\end{array}\right)
$$

where j is arbitrary and $\sigma^{n-1}=1$, also belongs to G. Further, it is clear that the parameters $\alpha_{j}, j=1, \ldots, m$, are all distinct and form a finite subgroup of U_{1}, which is therefore the group of m-th roots of unity.

Thus, $G=G_{1, m} \cdot \mathrm{SU}_{n-1}$, as required.
It now follows from Lemma 4.4 that if $n \geq 3$, then for each $p \in M, \tilde{I}_{p}$ is conjugate in SU_{n} to one of the groups $G_{1, m} \cdot \mathrm{SU}_{n-1}$ with $m \in \mathbb{N}$. Hence $\tilde{O}(p)$ is SU_{n} equivariantly diffeomorphic to $\mathcal{L}_{m}^{2 n-1}$. Clearly, the SU_{n}-action is effective on $\tilde{O}(p)$
only if $(n, m)=1$. The integer m does not depend on p since all isotropy subgroups I_{p} are conjugate in U_{n}. This proves Proposition 4.3 for $n \geq 3$.

Now let $n=2$. Since $\tilde{O}(p)$ is a homogeneous real hypersurface, it is either strongly pseudoconvex or Levi-flat. Assume that $\tilde{O}(p)$ is Levi-flat. Then it is foliated by complex curves. Let m be the Lie algebra of all holomorphic vector fields on $\tilde{O}(p)$ corresponding to the automorphisms of $\tilde{O}(p)$ generated by the action of SU_{2}. Clearly, \mathfrak{m} is isomorphic to $\mathfrak{s u}_{2}$. Let M_{p} be the leaf of the foliation passing through p, and consider the subspace $\mathfrak{I} \subset \mathfrak{m}$ of vector fields tangent to M_{p} at p. The vector fields in \mathfrak{I} remain tangent to M_{p} at each point $q \in M_{p}$, and therefore I is in fact a Lie subalgebra of \mathfrak{m}. However, $\operatorname{dim} \mathfrak{I}=2$ and $\mathfrak{s u}_{2}$ has no 2 -dimensional subalgebras. Hence $\tilde{O}(p)$ must be strongly pseudoconvex.

Similarly to the proof of Proposition 2.2, we can now show that \tilde{I}_{p} is isomorphic to a subgroup of U_{1}. This means that \tilde{I}_{p} is a finite cyclic group, i.e., $\tilde{I}_{p}=\left\{A^{l}, 0 \leq\right.$ $l<m\}$ for some $A \in \mathrm{SU}_{2}$ and $m \in \mathbb{N}$ such that $A^{m}=\mathrm{id}$. Choosing new coordinates in which A is in the diagonal form, we see that \tilde{I}_{p} is conjugate in SU_{2} to the group of matrices

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \quad \alpha^{m}=1
$$

Hence $\tilde{O}(p)$ is SU_{2}-equivariantly diffeomorphic to the lense manifold \mathcal{L}_{m}^{3}. Clearly, the action of $S \mathrm{U}_{2}$ is effective on $\tilde{O}(p)$ only if m is odd. The integer m does not depend on p since all isotropy subgroups I_{p} are conjugate in U_{2}. This proves Proposition 4.3 for $n=2$ and completes the proof in general.

We can now establish the following result.
Theorem 4.5 Let M be a complex manifold of dimension $n \geq 2$ endowed with an effective transitive action of U_{n} by biholomorphic transformations. Then M is biholomorphically equivalent to some manifold $M_{d}^{n} / \mathbb{Z}_{m}$, where $m \in \mathbb{N}$ and $(n, m)=1$. The equivalence $f: M \rightarrow M_{d}^{n} / \mathbb{Z}_{m}$ can be chosen to satisfy either the relation

$$
\begin{equation*}
f(g q)=g f(q) \tag{4.4}
\end{equation*}
$$

or, for $n \geq 3$, the relation

$$
\begin{equation*}
f(g q)=\bar{g} f(q) \tag{4.5}
\end{equation*}
$$

for all $g \in \mathrm{SU}_{n}$ and $q \in M$ (here $M_{d}^{n} / \mathbb{Z}_{m}$ is considered with the standard action of SU_{n}).
Proof We claim first that M is biholomorphically equivalent to some manifold $M_{d}^{n} / \mathbb{Z}_{m}$. For a proof we only need to show that M is diffeomorphic to $S^{1} \times \mathcal{L}_{m}^{2 n-1}$ for some $m \in \mathbb{N}$ such that $(n, m)=1$. Then biholomorphic equivalence will follow from Theorem 3.1 of [A1].

Choose m provided by Proposition 4.3. For $p \in M$ we consider the SU_{n}-orbit $\tilde{O}(p)$. Let $t_{0}:=\min \left\{t>0: e^{i t} p \in \tilde{O}(p)\right\}$. Clearly, $t_{0}>0$. For each point $q \in \tilde{O}(p)$ there exists $B \in \mathrm{SU}_{n}$ such that $q=B p$. Hence

$$
\begin{equation*}
e^{i t_{0}} q=e^{i t_{0}}(B p)=\left(e^{i t_{0}} B\right) p=\left(B e^{i t_{0}}\right) p=B\left(e^{i t_{0}} p\right) \tag{4.6}
\end{equation*}
$$

and $e^{i t_{0}} \tilde{O}(p)=\tilde{O}(p)$. This shows that $M^{\prime}:=\cup_{0 \leq t<t_{0}} e^{i t} \tilde{O}(p)$ is a closed submanifold of M of dimension n. Since M is connected, it follows that $M^{\prime}=M$.

Let $p_{t}:=e^{i t} p, 0 \leq t \leq t_{0}$. We consider a curve $\gamma:\left[0, t_{0}\right] \rightarrow M$ such that $\gamma(0)=\gamma\left(t_{0}\right)=p, \gamma(t) \in \tilde{O}\left(p_{t}\right)$ for each t, and $\gamma\left(\left[0, t_{0}\right]\right)$ is diffeomorphic to S^{1}. We can assume that $\tilde{I}_{p}=G_{1, m} \cdot \mathrm{SU}_{n-1}$, which is also the isotropy subgroup, with respect to the standard action of $S \mathrm{U}_{n}$ on $\mathcal{L}_{m}^{2 n-1}$, of the point $q \in \mathcal{L}_{m}^{2 n-1}$ represented by the point $(1,0, \ldots, 0) \in S^{2 n-1}$. Further, for each $0<t<t_{0}$, there exists $g_{t} \in \mathrm{SU}_{n}$ such that $\tilde{I}_{\gamma(t)}=g_{t} \tilde{I}_{p} g_{t}^{-1}$. Clearly, $\tilde{I}_{\gamma(t)}$ is the isotropy subgroup of the point $q_{t}:=g_{t} q$ in $\mathcal{L}_{m}^{2 n-1}$. Hence the map

$$
\phi_{t}(h \gamma(t))=h q_{t}
$$

where $h \in \mathrm{SU}_{n}$, maps the orbit $\tilde{O}\left(p_{t}\right)$ diffeomorphically (and SU_{n}-equivariantly) onto $\mathcal{L}_{m}^{2 n-1}, 0 \leq t \leq t_{0}$ (here we set $g_{0}:=g_{t_{0}}:=\mathrm{id}, q_{0}:=q_{t_{0}}:=q$).

We define now a map $\Phi: M \rightarrow S^{1} \times \mathcal{L}_{m}^{2 n-1}$. For each $x \in M$ there exists a unique $0 \leq t<t_{0}$, such that $x \in \tilde{O}\left(p_{t}\right)$. We set

$$
\Phi(x)=\left(e^{\frac{2 \pi i t}{t_{0}}}, \phi_{t}(x)\right)
$$

It is clear that g_{t}, and therefore q_{t} can be chosen so that Φ is a diffeomorphism. Hence M is biholomorphically equivalent to one of the manifolds $M_{d}^{n} / \mathbb{Z}_{m}$.

Let $F: M \rightarrow M_{d}^{n} / \mathbb{Z}_{m}$ be a biholomorphic equivalence. Using F, the action of SU_{n} on M can be pushed to an action of SU_{n} by biholomorphic transformations on $M_{d}^{n} / \mathbb{Z}_{m}$. The group $\operatorname{Aut}\left(M_{d}^{n} / \mathbb{Z}_{m}\right)$ of all biholomorphic automorphisms of $M_{d}^{n} / \mathbb{Z}_{m}$ is isomorphic to $Q_{d, m}^{n}:=\left(\mathrm{GL}_{n}(\mathbb{C}) /\left\{d^{k} \cdot \mathrm{id}, k \in \mathbb{Z}\right\}\right) / \mathbb{Z}_{m}$ (this can be seen, for example, by lifting automorphisms of $M_{d}^{n} / \mathbb{Z}_{m}$ to its universal cover $\left.\mathbb{C}^{n} \backslash\{0\}\right)$. Each maximal compact subgroup of this group is conjugate to a subgroup of the form $\left(U_{n} / \mathbb{Z}_{m}\right) \times K$, where U_{n} / \mathbb{Z}_{m} is embedded in $Q_{d, m}^{n}$ in the standard way, and K is isomorphic to S^{1}. The action of SU_{n} on $M_{d}^{n} / \mathbb{Z}_{m}$ induces an embedding $\tau: \mathrm{SU}_{n} \rightarrow Q_{d, m}^{n}$. Since SU_{n} is compact, there exists $s \in Q_{d, m}^{n}$ such that $\tau\left(\mathrm{SU}_{n}\right)$ is contained in $s\left(\left(U_{n} / \mathbb{Z}_{m}\right) \times K\right) s^{-1}$. However, there exists no nontrivial homomorphism from SU_{n} into S^{1}, and therefore $\tau\left(\mathrm{SU}_{n}\right) \subset s\left(U_{n} / \mathbb{Z}_{m}\right) s^{-1}$. Since $(n, m)=1$, it follows that $\tau\left(\mathrm{SU}_{n}\right)=s \mathrm{SU}_{n} s^{-1}$, where SU_{n} in the right-hand side is embedded in $Q_{d, m}^{n}$ in the standard way.

We now set $f:=\hat{s}^{-1} \circ F$, where \hat{s} is the automorphism of $M_{d}^{n} / \mathbb{Z}_{m}$ corresponding to $s \in Q_{d, m}^{n}$. Pushing now the action of SU_{n} on M to an action of SU_{n} on $M_{d}^{n} / \mathbb{Z}_{m}$ by means of f in place of F, for the corresponding embedding τ_{s} : $\mathrm{SU}_{n} \rightarrow Q_{d, m}^{n}$ we obtain the equality $\tau_{s}\left(\mathrm{SU}_{n}\right)=\mathrm{SU}_{n}$, where SU_{n} in the right-hand side is embedded in $Q_{d, m}^{n}$ in the standard way. Thus, there exists an automorphism γ of $S U_{n}$ such that

$$
f(g q)=\gamma(g) f(q)
$$

for all $g \in \mathrm{SU}_{n}$ and $q \in M$.
Assume first that $n \geq 3$. Then each automorphism of $S \mathrm{U}_{n}$ has either the form

$$
\begin{equation*}
g \mapsto h_{0} g h_{0}^{-1} \tag{4.7}
\end{equation*}
$$

or the form

$$
\begin{equation*}
g \mapsto h_{0} \bar{g} h_{0}^{-1} \tag{4.8}
\end{equation*}
$$

for some fixed $h_{0} \in \mathrm{SU}_{n}$ (see, e.g., [VO]). If γ has the form (4.7), then considering in place of f the map $q \mapsto h_{0}^{-1} f(q)$ we obtain a biholomorphic map satisfying (4.4). If γ has the form (4.8), then considering in place of f the map $q \mapsto h_{0}^{-1} f(q)$ we obtain a biholomorphic map satisfying (4.5).

Let $n=2$. Each automorphism of SU_{2} has the form (4.7) and arguing as above we obtain a biholomorphic map satisfying (4.4).

The proof is complete.
Remark 4.6 For $n \geq 3$ Theorem 4.5 can be proved without referring to the results in [A1]. We note first that the SU_{n}-equivariant diffeomorphism between $\mathcal{L}_{m}^{2 n-1}$ and $\tilde{O}(p)$ constructed in Proposition 4.3 is either a CR or an anti-CR map (here we consider $\mathcal{L}_{m}^{2 n-1}$ is with the CR-structure inherited from $S^{2 n-1}$). The corresponding proof is similar to the proof of Proposition 2.4. We must only replace U_{n} and U_{n} / \mathbb{Z}_{m} by SU_{n} and $\phi_{n, m}$ by the identity map. Further we argue as in the second part of the proof of Theorem 2.7 for compact M, replacing there U_{n} by SU_{n}.

Remark 4.7 Ideally, one would like the biholomorphic equivalence in Theorem 4.5 to be U_{n}-equivariant, rather than just SU_{n}-equivariant. However, as Example 4.1 shows, there is no canonical transitive action of U_{n} on $M_{d}^{n} / \mathbb{Z}_{m}$. It is not hard, however, to write a general formula for such actions, but we do not do it here.

5 A Characterization of C^{n}

In this section we apply the results obtained above to prove the following theorem.
Theorem 5.1 Let M be a connected complex manifold of dimension n. Assume that $\operatorname{Aut}(M)$ and $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ are isomorphic as topological groups. Then M is biholomorphically equivalent to \mathbb{C}^{n}.

Proof The theorem is trivial for $n=1$, so we assume that $n \geq 2$. Since M admits an effective action of U_{n} by biholomorphic transformations, M is biholomorphically equivalent to one of the manifolds listed in Remark 1.2, Theorem 2.7, Theorem 3.3 and Theorem 4.5. The automorphism groups of the following manifolds are clearly Lie groups: $B^{n}, \mathbb{C P P}^{n}, S_{r, R}^{n} / \mathbb{Z}_{m}$ for $r>0$ or $R<\infty, M_{d}^{n} / \mathbb{Z}_{m}, \widehat{B_{R}^{n}} / \mathbb{Z}_{m}, \widehat{S_{r, \infty}^{n}} / \mathbb{Z}_{m}, \widehat{\mathbb{C P P}^{m}} / \mathbb{Z}_{m}$. Since $\operatorname{Aut}(M)$ is isomorphic to $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ is not locally compact, $\operatorname{Aut}(M)$ cannot be isomorphic to a Lie group and hence M is not biholomorphically equivalent to any of the above manifolds.

Therefore, M is biholomorphically equivalent to either \mathbb{C}^{n}, or $\mathbb{C}^{n *} / \mathbb{Z}_{m}$, where $\mathbb{C}^{n *}:=\mathbb{C}^{n} \backslash\{0\}$ and $m=|n k+1|$ for some $k \in \mathbb{Z}$. We will now show that the groups $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ are not isomorphic.

Let first $m=1$. The group Aut $\left(\mathbb{C}^{n *}\right)$ consists of exactly those elements of $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ that fix the origin. Suppose that $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n *}\right)$ are isomorphic and let ψ : $\operatorname{Aut}\left(\mathbb{C}^{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n *}\right)$ denote an isomorphism. Clearly, $\psi\left(U_{n}\right)$ induces an action of U_{n} on $\mathbb{C}^{n *}$, and therefore, by our results above, there is $F \in \operatorname{Aut}\left(\mathbb{C}^{n *}\right)$ such that for the isomorphism $\psi_{F}: \operatorname{Aut}\left(\mathbb{C}^{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n *}\right), \psi_{F}(g):=F \circ \psi(g) \circ F^{-1}$, we have: either $\psi_{F}(g)=g$, or $\psi_{F}(g)=\bar{g}$ for all $g \in U_{n}$.

Consider U_{n-1} embedded in U_{n} in the standard way, and consider its centralizer C in $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$, i.e.,

$$
C:=\left\{f \in \operatorname{Aut}\left(\mathbb{C}^{n}\right): f \circ g=g \circ f \text { for all } g \in U_{n-1}\right\}
$$

It is easy to show that C consists of maps $f=\left(f_{1}, \ldots, f_{n}\right)$ such that

$$
\begin{align*}
& f_{1}=a z_{1}+b \\
& f^{\prime}=h\left(z_{1}\right) z^{\prime} \tag{5.1}
\end{align*}
$$

where $z^{\prime}:=\left(z_{2}, \ldots, z_{n}\right), f^{\prime}:=\left(f_{2}, \ldots, f_{n}\right), a, b \in \mathbb{C}, a \neq 0, h\left(z_{1}\right)$ is a nowhere vanishing entire function. Similarly, let C^{*} be the centralizer of U_{n-1} in $\operatorname{Aut}\left(\mathbb{C}^{n *}\right)$. It consists of maps $f=\left(f_{1}, \ldots, f_{n}\right)$ such that

$$
\begin{gather*}
f_{1}=a z_{1} \\
f^{\prime}=h\left(z_{1}\right) z^{\prime} \tag{5.2}
\end{gather*}
$$

where $a \in \mathbb{C}, a \neq 0, h\left(z_{1}\right)$ is entire and nowhere vanishing. Clearly, $\psi_{F}(C)=C^{*}$.
Let C^{\prime} and $C^{*^{\prime}}$ denote the commutants of C and C^{*} respectively. Clearly, $\psi_{F}\left(C^{\prime}\right)=C^{*^{\prime}}$. It is easy to check that $C^{*^{\prime}}$ consists exactly of all maps of the form (5.2) where $a=1$ and $h(0)=1$. In particular, $C^{*^{\prime}}$ is Abelian. We will now show that C^{\prime} is not Abelian. Indeed, consider the following elements of C (see (5.1)):

$$
\begin{gathered}
f\left(z_{1}, z^{\prime}\right):=\left(z_{1}+1, z^{\prime}\right) \\
g\left(z_{1}, z^{\prime}\right):=\left(2 z_{1}, z^{\prime}\right) \\
u\left(z_{1}, z^{\prime}\right):=\left(z_{1}+1, e^{z_{1}} z^{\prime}\right)
\end{gathered}
$$

We now see that

$$
\begin{gathered}
F\left(z_{1}, z^{\prime}\right):=f \circ g \circ f^{-1} \circ g^{-1}=\left(z_{1}-1, z^{\prime}\right), \\
G\left(z_{1}, z^{\prime}\right):=u \circ g \circ u^{-1} \circ g^{-1}=\left(z_{1}-1, e^{\frac{z_{1}-2}{2}} z^{\prime}\right) .
\end{gathered}
$$

Clearly, $F, G \in C^{\prime}$, and we have

$$
\begin{aligned}
& F \circ G=\left(z_{1}-2, e^{\frac{z_{1}-2}{2}} z^{\prime}\right) \\
& G \circ F=\left(z_{1}-2, e^{\frac{z_{1}-3}{2}} z^{\prime}\right)
\end{aligned}
$$

Hence $F \circ G \neq G \circ F$, and thus C^{\prime} is not Abelian. Therefore, C^{\prime} and $C^{*^{\prime}}$ are not isomorphic. This contradiction shows that $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n *}\right)$ are not isomorphic.

Let now $m>1$. For $z \in \mathbb{C}^{n *}$ denote as before by $\langle z\rangle \in \mathbb{C}^{n *} / \mathbb{Z}_{m}$ its equivalence class. Let

$$
H_{m}^{n}:=\left\{f \in \operatorname{Aut}\left(\mathbb{C}^{n *}\right):\langle f(z)\rangle=\langle f(\tilde{z})\rangle, \text { if }\langle z\rangle=\langle\tilde{z}\rangle\right\}
$$

The group $\operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ is isomorphic in the obvious way to $H_{m}^{n} / \mathbb{Z}_{m}$. Suppose that $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ are isomorphic and let $\psi: \operatorname{Aut}\left(\mathbb{C}^{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ denote an isomorphism. Clearly, $\psi\left(U_{n}\right)$ induces an action of U_{n} on $\mathbb{C}^{n *} / \mathbb{Z}_{m}$, and therefore there is $F \in \operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ such that for the isomorphism $\psi_{F}: \operatorname{Aut}\left(\mathbb{C}^{n}\right) \rightarrow$ $\operatorname{Aut}\left(\mathbb{C}^{n *}\right), \psi_{F}(g):=F \circ \psi(g) \circ F^{-1}$, we have: either $\psi_{F}(g)=\phi_{n, m}^{-1}(g)$, or $\psi_{F}(g)=$ $\phi_{n, m}^{-1}(\bar{g})$ for all $g \in U_{n}$, where we consider U_{n} / \mathbb{Z}_{m} embedded in $H_{m}^{n} / \mathbb{Z}_{m}$.

The rest of the proof proceeds as for the case $m=1$ above with obvious modifications. We consider the centralizer C_{m}^{*} of $\phi_{n, m}^{-1}\left(U_{n-1}\right)=\phi_{n, m}^{-1}\left(\overline{U_{n-1}}\right) \subset H_{m}^{n} / \mathbb{Z}_{m}$. Clearly, $\psi_{F}(C)=C_{m}^{*}$. Then we find the commutant $C_{m}^{*^{\prime}}$ of C_{m}^{*}, and we have $\psi_{F}\left(C^{\prime}\right)=$ $C_{m}^{*^{\prime}}$. As above, it turns out that $C_{m}^{*^{\prime}}$ is Abelian. Therefore, $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{C}^{n *} / \mathbb{Z}_{m}\right)$ cannot be isomorphic.

The proof is complete.

References

[A1] D. N. Akhiezer, On the homotopy classification of complex homogeneous spaces (translated from Russian). Trans. Moscow Math. Soc. 35(1979), 1-19.
[A2] , Homogeneous complex manifolds (translated from Russian). Encyclopaedia Math. Sci. 10, Several Complex Variables IV, 1990, 195-244, Springer-Verlag.
[AL] E. Andersen and L. Lempert, On the group of holomorphic automorphisms of \mathbb{C}^{n}. Invent. Math. 110(1992), 371-388.
[GG] M. Goto and F. Grosshans, Semisimple Lie Algebras. Marcel Dekker, 1978.
[H] G. Hochschild, The Structure of Lie groups. Holden-Day, 1965.
[IKra] A. V. Isaev and S. G. Krantz, On the automorphism groups of hyperbolic manifolds. J. Reine Angew. Math. 534(2001), 187-194.
[K] W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3(1967), 43-70.
[R] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary. Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag, 1965, 242-256.
[VO] E. Vinberg and A. Onishchik, Lie Groups and Algebraic Groups. Springer-Verlag, 1990.

Centre for Mathematics and Its Applications	Department of Complex Analysis
The Australian National University	Steklov Mathematical Institute
Canberra, ACT 0200	42 Vavilova St.
Australia	Moscow 117966
e-mail: Alexander.Isaev@anu.edu.au	Russia
	e-mail:kruzhil@ns.ras.ru

[^0]: Received by the editors September 19, 2001; revised December 18, 2001.
 The second author is supported by grants RFBR 99-01-00969a and 00-15-96008.
 AMS subject classification: 32Q57, 32M17.
 Keywords: complex manifolds, group actions.
 (C)Canadian Mathematical Society 2002.

