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The interaction between nutrition and infection was the subject of important work by several
groups in the 1960s. The explosion of knowledge in immunology, including innate immunity,
has led to increased understanding of the impact of nutrition on host defence, but much more
work needs to be done in this area. In the last decade an increasing volume of work has opened
up the previously obscure world of human endogenous flora. This work suggests that the
microbiome, the total genetic pool of the microbiota, contributes to the already complex
interaction between nutrition and infectious disease. The established concept that nutritional
status, host defence and infection all impact on each other now has to be expanded into a
multiple interaction, with the microbiota interacting with all three other elements. There is
good evidence that the microbiome programmes host defence and drives a metabolome that
impacts on energy balance, and indeed on some micronutrients. In turn, host defence shapes the
microbiome, and nutritional status, particularly micronutrient status, helps determine several
elements of host defence. While interventions in this area are in their infancy, the under-
standing of interactions that already have an enormous impact on global health is now at a
threshold. The present review explores the evidence for these interactions with a view to
putting potential interventions into the context of a conceptual framework.

Nutrition: Intestinal defence: Microbiome

In the 1960s seminal work (for example, see Scrimshaw
et al.(1) and Mata(2)) defined the concept of the nutrition–
infection interaction(3). Understanding of the details of
this interaction is still sketchy, but now there are new
microbiological insights to fit into the picture. Although
Metchnikof, who discovered the macrophage, formed the
belief over one century ago that man needs a proper bac-
terial environment, and that ‘good’ bacteria may actually
promote health(4), he was in no position to understand the
remarkable dynamics of the balance between human hosts
and their microbial world, and the microbiome is what
drives its activities. It is only now, in the early twenty-first
century, that researchers are really in a position to under-
stand the ecosystem that man inhabits and that inhabits
man. Only now is it possible to begin to understand that
nutrition influences the microbiome and that the micro-
biome influences nutrition, that both these forces influence
host defence and that host defence may be one mechanism
through which the other forces influence each other. The

present review explores emerging evidence that nutrition,
host defence and the microbiome interact (Fig. 1) in a way
that possibly in future could be exploited to the benefit of
human health.

What is the microbiome?

Man lives in a microbial world and it is increasingly
recognised that the human organism is host to a very large
microbial community, which colonises every surface of the
body: skin; mouth; gut(5); vagina. Even within each of
these surfaces there is diversity; the skin of the axilla is
host to a very different microbial community from that of
the skin of the forearm or perineum and the stomach has a
different microbial flora from that of the mouth or rectum.
Man is therefore in a sense the sum of many parts; in
a much-quoted estimate an individual’s own cells are
outnumbered by the microbial residents of that individual
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by possibly an order of magnitude and their genetic ma-
terial is dwarfed by that of the microbiota. The microbiome
is an analogy with the genome, which is the sum of man’s
germ line-derivedgeneticmaterial.Understanding themicro-
biome is just beginning now that new techniques are avail-
able for understanding it without the need for bacterial
culture of each species of the microbiota(6–8). The reliance
until very recently on culture to identify bacteria has
always been a problem, as many of the bacteria present
cannot be cultured. Culture has a further problem; it yields
information on the biochemical and growth characteristics
of the species present, but that is not necessarily the re-
quired information. Certainly, from a nutritional point of
view what is of more interest is the sum of the metabolic
activities of the flora (the ‘metabolome’) or the composi-
tion of the total gene pool, which represents man’s genes
and that of the microbiota (the ‘metagenome’). Man has
recently been released from a dependence on bacterial
culture by the development of advanced DNA sequencing
and hybridisation methods that are outside the scope of the
present article, but which allow quantification of the rela-
tive abundance of different bacteria at a genetic level in a
way that is much more representative of the total bacterial
pool than has ever been possible before.
Bacterial taxonomy is complex and rapidly evolving, but

generally it is possible to divide the bacterial kingdom into
about seventy major divisions (each of which corresponds
to a phylum), twelve of which are represented in the
human gut(6). In the intestine ten of these phyla have been
described(Firmicutes,Bacteroidetes,Proteobacteria,Actino-
bacteria, Fusobacteria, Verrucomicrobia, Cyanobacteria,
TM7, Spirochaetes, and VadinBE97). In the stomach eight
phyla are present, although in much lower abundance
(Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria,
Fusobacteria, TM7, Deferribacteres, and Deinococcus-
Thermus). The flora of the oral cavity is different again.
Probably 15 000 species are represented in the human gut,
so description of the microbiome at a species level is an
impossibly complex task and currently changes in the
abundance of major phyla are all that can reasonably be
encompassed. In addition to bacteria there are viruses

(including phages that parasitise bacteria), yeasts and other
fungi, protozoa and helminths. All these microbes, even
helminths when in low abundance, can be considered to be
commensals. There is also one dominant representative
of the primitive prokaryotes, the Archaea, in Methano-
brevibacter smithii.

In the gut this vast microbial community is not inactive.
It carries out several important functions including fermen-
tation and catalysis of complex polysaccharides (particu-
larly those containing xylan, pectin and arabinose residues),
deconjugation of bile salts, salvaging urea and synthesising
essential amino acids(9) and vitamin K; there are probably
many others. Together, the collection of metabolic activ-
ities in a non-host compartment makes the flora of the gut a
separate metabolic organ or ‘metabolome’.

One such effect is the trophic effect that the flora has on
intestinal tissue in the host. The SCFA liberated by poly-
saccharide breakdown in the right colon of human subjects
have effects on colonic integrity as they represent an im-
portant metabolic fuel for the colonic epithelium(10). There
is also increasing evidence from animal models that the
microbiota is required for proper development of the gastro-
intestinal tract and associated immune cells (see later).

The establishment of the microbiota varies greatly de-
pending on circumstances, but once established it appears
to be remarkably stable. In utero the gut is sterile but after
birth it is rapidly (in <3 d) colonised by microbial popu-
lations. Infants born by caesarean section have a different
flora to those born vaginally, with delays in colonisation
following caesarean section of 10 and 30 d for Lacto-
bacillus-like and Bifidobacterium-like species respec-
tively(11). The implications for human health are as yet
unknown. These findings have been confirmed and exten-
ded by an analysis from a Dutch birth cohort, in which
mode of delivery, breast- or formula feeding and the use of
antibiotics were all found to be major determinants of the
composition of the flora(12). Antibiotics can have long-
lasting effects on the microbiota; deep sequencing of the
microbiome from three adults before and after cipro-
floxacin treatment has shown that most taxa recover by
4 weeks, but some taxa take much longer to recover(13).
Similar results have been obtained in mice(14), in which it
has also been shown that an intestinal pathogen (in this
case Citrobacter rodentium) perturbs the microbiota but
the pretreatment status quo returns within 28 d(15). Impor-
tantly, the microbiome tends to recover a composition
characteristic of that individual even after treatment with a
broad spectrum antibiotic, despite the apparent opportunity
that this treatment represents for a change in the flora and
that is sometimes exploited by Clostridium difficile(16).

Most interesting of all, there are several examples of
the ability of the microbiota to transmit a phenotype from
one experimental host to another. Mice that are deficient
in the transcription factor T-bet develop colitis. T-bet
defines T-cells of the T-helper 1 subset, which are pro-
inflammatory T-helper cells that are important in the
clearance of viral and other intracellular infections and
typically secrete the cytokine interferon-g . By transferring
the colonic flora from mice with T-bet deficiency and
colitis to wild-type animals the colitis can be transferred
too, suggesting that the flora has become ‘colitogenic’(17).

Microbiome

MalnutritionIntestinal
defence

Infection

Fig. 1. The interaction between nutrition, intestinal defence, infec-

tion and the microbiome. The microbiome is the gene pool of the gut

microbiota, which in its role as metabolic organ and as modulator of

immune responses plays a key role in the interactions between the

other elements. Note that two of these interactions are one way, so

that any influence of intestinal defence on nutritional status must be

indirect; likewise, the impact of nutritional status on susceptibility to

infection operates through host defence or through effects on the

microbiome.
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In a second example, mice deficient in the leptin gene
develop obesity and transferring their flora to wild-type
mice also transfers a change in energy balance so that the
recipient mice gain increased fat(18). This outcome can be
referred to as a ‘transplantable metabolome’ and it may
have enormous implications for understanding human
obesity, as one of the changes that can be seen in the micro-
biome of the ob/ob (leptin deficient) mouse is an increase
in Firmicutes:Bacteroidetes, which has also been described
in obese human subjects(19). It is possible that an obesity-
generating diet in some way transforms the metabolic
activity of the microbiome to make obesity more inevi-
table, and it can be speculated that this effect might help
explain why cycles of dieting often fail to control obesity
and why some individuals do appear to be condemned to
sustain higher body mass than others, even when consum-
ing less energy.

The microbiome influences host defence

As mentioned earlier, the intestinal flora appears to be
required for development of the gut and for full maturation
of the mucosal immune system. Experiments in germ-free
animals (which are raised in a sterile environment and
have no endogenous flora) are instructive(20). Such animals
have reduced mucosal thickness and underdeveloped mu-
cosal immune systems with hypocellular lymphoid tissue
(Peyer’s patches, isolated lymphoid follicles and intra-
epithelial lymphocyte and lamina propria plasma cell com-
partments are all less cellular). Mesenteric lymph nodes
are hypoplastic and there is a specific reduction in
CD4 +CD25 +Foxp3 + regulatory T-cells. Production of
IgA (the dominant secreted Ig class in the gut) is reduced,
probably because secretion of IgA seems to require the
phagocytosis and carriage of bacteria of the flora from the
epithelium to the mesenteric lymph node(21). Expression
of certain molecules fundamental to innate immunity (Toll-
like receptor 9, angiogenin 4 and RegIIIg) and adaptive
immunity (MHC class II, IL-25) is reduced(20).
Studies using experimental animals with specific gene

deletions confirm the dependence of the development of
the gut on the microbial flora. Animals with deletions
of the gene that encodes MyD88 (a central signalling
molecule of innate immunity), and that cannot therefore
recognise the presence of the microbial flora, develop
spontaneous colonic inflammation(22). When this deletion
is specific to Paneth cells, which are the cellular source of
a-defensins, the endogenous secretion of antimicrobial
peptides is impaired, indicating the importance of the gut
flora for maintaining constitutive expression of antimicro-
bial peptides and host defence against pathogens(23). One
molecule that can confer protection from inflammation has
recently been shown to be the polysaccharide A from
Bacteroides fragilis(24). In another example expression of
the antimicrobial peptide RegIIIg is reduced in germ-free
mice but can be restored by conventional flora(25). Colon-
isation with the single species Bacteroides thetaiotaomi-
cron does not fully restore expression in wild-type animals,
but in IgA-deficient animals this single species fully
restores RegIIIg expression, suggesting that in the absence

of IgA the close association between bacteria and epi-
thelium drives constitutive expression of the antimicrobial
molecule(25).

The microbiome influences nutrition

The transplantable metabolome observations referred to
earlier(18) strongly suggest that the microbiome can influ-
ence nutrition. Further evidence from an animal model may
have identified one mechanism by which the flora influences
fatty acid metabolism. SCFA are ligands for a G protein-
coupled receptor, Gpr41, present on enteroendocrine cells
in the colon that release the gut hormone peptide YY, which
in turn drives SCFA absorption(26). Gpr41-knock-out mice
are leaner than wild-type animals, suggesting that energy
salvage from SCFA is less efficient without this receptor,
but this difference in adiposity is only observed in gnoto-
biotic (i.e. known composition, in this case Bacteroides
thetaiotaomicron and Methanobrevibacter smithii) animals
and not in germ-free animals(26). This key paper demon-
strates that the flora interacts with host physiology to modu-
late host nutrition, and the mechanism is beginning to be
elucidated. Undoubtedly, over the coming years further data
will elucidate the details of this fascinating interaction.

Nutrition influences host defence

It has become axiomatic in teaching physicians, nurses and
dietitians that malnutrition leads to increased susceptibility
to infectious disease. The term ‘malnutrition’ in this con-
text is generally considered to mean reduced body mass.
However, the evidence base for this apparently simple
statement is slender. In classic experiments on starvation in
human volunteers(27) no evidence was found that incidence
of infectious disease is higher in the volunteers than in the
carers who looked after them, despite severe depletion of
body cell mass. Furthermore, there is no evidence that
patients with anorexia nervosa have an increased incidence
of infections(28), although case reports exist of exotic, par-
ticularly fungal, infections that appear to complicate this
disorder. In one of these studies IL-2 synthesis was reduced
by 49%(29). In another study T-lymphocyte populations
were found to be normal, with lymphocyte proliferation in
response to phytohaemagglutinin and concanavalin A
showing a marginal increase(28). Conversely, another study
has observed high circulating levels of IL-1b and TNFa,
together with reduced T-cell activation as expressed by CD2
and CD69(30). While this report is one of very few to
identify an immunological change, it may not be important
if an increase in susceptibility to infection is not observed.
These examples are of ‘pure’ or primary undernutrition,
a result of simple energy deprivation rather than under-
nutrition secondary to disease. Thus, altogether there is very
little evidence that pure malnutrition influences host
defence mechanisms.

In a more complex situation, in a trial in which Kenyan
schoolchildren were randomised to several different food
supplementation regimens (meat-based, milk-based, veg-
etable oil-based or none) antibody titres to Helicobacter
pylori, rotavirus, tetanus toxoid and malaria merozoite
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surface proteins were found to show very little change(31).
In severe malnutrition in children there is good evidence of
atrophy of the thymus and lymphatic tissues(32–34), and an
interesting hypothesis has been put forward that thymic
impairment programmed in early life carries forward into
susceptibility to infection in adult life(35). More recently,
dendritic cell function has been shown to be markedly
impaired in severely-malnourished children(36) but these
studies nicely illustrate the difficulty of interpreting data in
severe clinical malnutrition. The most recent study has
shown that lipopolysaccharide is correlated most closely
with the immune impairment(36), suggesting that it is the
coexistent infections that do the real immunological
damage. In ‘pure’ primary malnutrition, because of pure
energy deprivation as in famine and conflict situations, sur-
vival is better at extreme low BMI than would be expected
in patients with malnutrition complicated, or induced by,
infectious or malignant disease(37).
However, as there is abundant evidence that mal-

nourished children in developing countries have a high
coexistent burden of infectious disease(38), how is this
situation explained? There appear to be two possible ex-
planations. One, as suggested earlier, is that much of the
immunodeficiency in severe malnutrition is a consequence
of, as well as a cause of, infection. The second is that the
immunodeficiency seen in severely-malnourished patients
is related to micronutrient deficiencies. There is much
better evidence for the hypothesis that micronutrient de-
ficiencies impact on host defence than for the hypothesis
that reduced body cell mass (energy deprivation) impacts
on host defence. This second hypothesis would fit with the
lack of evidence for substantially increased infection sus-
ceptibility in pure malnutrition, as micronutrient depletion
in anorexia nervosa, for example, would be in a sense in
proportion to the reduced body cell mass until an inflam-
matory response supervenes, when losses of micronutrients
as a result of inflammation(39) would precipitate immuno-
logical consequences. The evidence that micronutrients can
alter host defence in the gut will be reviewed, with an
emphasis on human studies and a focus on four dominant
elements of host defence in the intestine: physico-chemical
barriers; innate immunity; humoral immunity; cell-
mediated immunity. The micronutrients for which there is
the most compelling evidence are vitamin A and Zn, and
also briefly discussed are Se, other antioxidants and Fe. In
much of what follows selected evidence has been used that
does not directly relate to intestinal defence mechanisms
because direct evidence for an effect in the gut is scant.

Vitamin A

There is strong evidence from randomised controlled trials
in Ghana and Indonesia that vitamin A has important ef-
fects in reducing adverse outcome from infectious disease
in underdeveloped countries, particularly diarrhoea and
measles(40). However, it is not clear whether the effect is
on immune function or on some other aspect of host de-
fence such as epithelial integrity, and the evidence for an
immune booster effect in human subjects appears to be
mixed. To summarise a recent excellent review(41), there is
good evidence that intestinal epithelial integrity is

improved by vitamin A, but not of improved antimicrobial
properties in breast milk, and there is no evidence of im-
proved barrier function in the vagina. There is very pre-
liminary evidence of reduced secretion of TNFa and IL-6
when challenged by specific pathogens. There is some
evidence of a beneficial effect in raising CD4 counts in
children infected with HIV but not in adults. Furthermore,
there is no conclusive evidence of effects on cytokine
production or lymphocyte function, but antibody responses
to tetanus toxoid may be enhanced if the vitamin A is
given before the vaccine. When contrasted with the highly
significant effects of vitamin A in reducing childhood
morbidity and mortality, particularly from measles and
diarrhoea, the very uncertain evidence of effects on im-
mune competence is striking. It seems likely on the basis
of current evidence that epithelial or barrier integrity is an
important part of the effect of vitamin A. However, two
recent studies on HIV infection in adults(42,43) have cast
doubt on the safety of vitamin A supplementation, which
was reported to be associated with increased mortality.

Zinc

There is abundant evidence that Zn is a critically-important
nutrient for the intestinal defence. Zn is effective in the
treatment of diarrhoea; in a recent meta-analysis a reduc-
tion in the duration and severity of acute and persistent
diarrhoea is confirmed(44). Zn also gives a 42 (95% CI 10,
63) % reduction in treatment failure or death from diar-
rhoea(45). Zn supplementation is now recommended by the
WHO alongside oral rehydration salts during treatment of
acute diarrhoea in children. However, Zn does not reduce
all-cause mortality(46,47); the effect seems to be specific to
diarrhoea.

It would be highly desirable to know how Zn works. Is it
an effect on immunity? There are two lines of evidence
that suggest that Zn deficiency adversely affects immune
function and that supplementation improves it. First, in
human subjects there are data from the 1970s that,
although not conclusive, support this contention. Children
with acrodermatitis enteropathica, a congenital defect of
Zn absorption, have thymic atrophy, lymphopenia, reduced
lymphocyte response to mitogens, reduced delayed-type hy-
persensitivity and reduced immunoglobulin responses(48).
Many other reports of immune defects in patients with Zn
deficiency are difficult to interpret because of comorbid
processes (e.g. renal failure) that could themselves impair
immunity. However, an important study in Indian children
with diarrhoea has shown that Zn supplementation in-
creases numbers of circulating CD3 and CD4 cells, but not
CD8 cells, B-cells or natural killer cells(49). In terms of
innate immunity Paneth cells, which synthesise antimicro-
bial molecules for innate defence of the small intestine in
human subjects, are also dependent on Zn(50,51). Second,
animal work supports this hypothesis. Zn deprivation of
mice for a period as short as 30 d reduces cell-mediated
immunity, delayed-type hypersensitivity, anti-tumour im-
munity and antibody responses by £80%(52). Challenging
Zn-deficient animals with low doses of Trypanosoma cruzi
or intestinal nematodes results in death(53). The deficiency
state is associated with reduced numbers of lymphocytes as
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a result of impaired lymphopoiesis, but the production of
antibody by each cell is not impaired. Furthermore, while
Zn deficiency has marked effects on lymphoid cells, there
is no effect on myeloid cells. It has been suggested that
maintenance of lymphocyte populations is very expensive
in terms of Zn and other nutrients, and that in the face of
nutritional stress innate defence is maintained at the ex-
pense of adaptive immune responses(52). However, there is
also evidence that innate immunity (natural killer cell
function and phagocytosis by macrophages) is impaired
in Zn deficiency and this effect may be a consequence
of reduced oxidative burst capacity, e.g. in trypanoso-
miasis(54). Zn itself induces release of IL-1, IL-6, TNFa
and interferon-g in macrophages but not T-cells and high
supraphysiological concentrations suppress T-cell func-
tions(55). Early data suggest that Zn is important for
maintenance of antimicrobial peptide delivery in the small
intestine(51,56). The most definitive evidence that Zn de-
ficiency impacts on immune function in human subjects
comes from experimental Zn deficiency induced by dietary
restriction in human volunteers(57). Deficiency reduces
thymulin levels in blood and reduces CD4:CD8. Zn de-
ficiency also reduces synthesis of the T-helper 1 cytokines
IL-2 and interferon-g , but not the T-helper 2 cytokines
IL-4, IL-6 and IL-10. Natural killer cell activity is also
reduced in the volunteers on a Zn-deficient diet. Clearly,
much work remains to be done in this area.

Selenium

A well-designed study has demonstrated that Se supple-
mentation improves responses to oral vaccines, providing
direct evidence of a micronutrient effect on intestinal
defence(58). Twenty-two volunteers with low plasma Se
concentrations were given modest doses of a Se sup-
plement (£100mg/d) or placebo and then were challenged
with oral polio vaccine and immune responses to the vac-
cine determined. Volunteers supplemented with Se were
found to show increased T-cell proliferation and higher
interferon-g and IL-10 production by T-cells 7 d after vac-
cination, as well as more rapid clearance of the virus in
faeces. Little is known about the impact of Se on intestinal
defence.

Other antioxidants

In the elderly vitamin E supplementation for 4 months
increases delayed-type hypersensitivity responses and in-
creases antibody titres to clinically-relevant vaccines
(hepatitis B, tetanus) but not Ig levels or T- or B-cell
numbers(59). Again, there are few data relating to intestinal
infectious disease, but there is scant evidence that
antioxidant supplementation reduces all-cause mortality
(including from other infectious diseases) or gastro-
intestinal cancer(60,61).

Iron

Studies in human subjects with Fe deficiency have shown
that Fe deficiency is associated with defects in both adapt-
ive and innate immunity that are reversible with Fe

therapy(62). Adaptive immune defects include reductions in
T-cell numbers, T-cell proliferation, IL-2 production by
T-cells, production of migration inhibitory factor by macro-
phages and tuberculin skin reactivity. Innate immune
defects include reduced neutrophil killing, probably a re-
sult of reduced myeloperoxidase activity and impaired
natural killer cell activity.

However, overcoming these defects with Fe sup-
plementation is far from simple. Lactoferrin in human milk
chelates Fe and inhibits bacterial proliferation by depriving
the bacteria of an essential nutrient. The bacteriostatic
effect of human milk is abolished by Fe therapy, so that Fe
therapy would be expected to increase neonatal intestinal
infectious disease. In milk-drinking nomads Fe therapy
is associated with an increase in Entamoeba histolytica
infection(63), possibly as a result of saturation of the milk
transferrin, which overcomes the protective effect. There
are few other data on intestinal defence, but Fe sup-
plementation increases risk of malaria(64) and it has been
suggested that Fe-supplementation programmes need to
take into account the important differences in risk and
benefit between malarious and non-malarious regions(62).

Vitamin D

While there has been great interest in the recognition that
vitamin D can modulate immune responses to Mycobac-
terium tuberculosis(65,66) and can up regulate expression of
the antimicrobial peptide LL-37(67), there is as yet no evi-
dence that this outcome impacts on intestinal defence.

Host defence influences the microbiome

There is very little evidence in human subjects for this
contention. While it is certainly an important question, it
has only recently become possible to address it; two recent
important experiments have demonstrated that host defence
can modulate the microbiome.

It has been shown that a transgenic mouse that expresses
a human intestinal a-defensin 5 (in addition to its own
complement of antimicrobial peptides) is protected against
salmonellosis(68). Furthermore, the composition of the flora
is altered(69) and it is tempting to speculate that this out-
come may be an important role of intestinal antimicrobial
peptide expression, as it has been established that such
expression responds to the microbiota(23).

Very interesting recent data from an in vitro model of
oral plaque biofilm formation indicates that antimicrobial
molecules can influence the relative abundance of many
species in the buccal flora (D Devine, personal commu-
nication).

Can this interaction be manipulated? The case for
and against probiotics

It would be useful if the susceptibility of individuals or
populations against intestinal infection could be reduced by
up regulating host defence or if the metabolome could be
manipulated. However, very few instances have been
demonstrated.
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Probiotics are orally-administered cultures of viable
bacteria, which are claimed to re-populate the microbiota.
Prebiotics are intended to modify the microbiota through
provision of a balance of nutrients that favours the expan-
sion of one bacterial group. Probiotics have been demon-
strated to be efficacious in the prevention of childhood
diarrhoea, which by implication means successful manipu-
lation of some element of this interaction(70). However,
of all the trials included in the review only two were
conducted in tropical populations who most need the
interventions. Nevertheless, this efficacy of probiotics
demonstrates the principle that manipulation is possible. A
full discussion of the large literature relating to probiotics
is outside the scope of the present article but some recent
data are worth noting. In a cross-over trial a probiotic
preparation has been shown to modify the composition of
the flora, but the same effect is obtained with a heat-killed
control, suggesting that its true effect might have been pre-
biotic rather than probiotic in nature(71). The likely effect
of probiotic preparations may actually be prebiotic, rather
than the commonly supposed effect, for two reasons. First,
prebiotics can undoubtedly manipulate the microbiota to
good effect, such as when oral rehydration therapy con-
taining resistant starch is used to shorten childhood diar-
rhoea(72). Second, it is not immediately apparent that a dose
of 1010 colony-forming units of a probiotic (many of which
will be killed by gastric acid) could greatly influence a
microbiota that comprises ‡1015 bacteria. More work is
needed on that point.

Can this interaction be influenced? The evidence
relating to nutritional modification

Nutritional manipulation of intestinal defence clearly
works; Zn is without question an important element of treat-
ment of diarrhoeal disease and vitamin A has an important
role to play in prevention. However, their mechanism of
action is not known; for vitamin A, even the metabolic fate
of mega-dose supplements is unknown. There is a strong
rationale for giving multiple micronutrients together when
attempting to achieve physiological nutritional restitution,
as free-living organisms do not consume single nutrients to
excess (or very rarely). This situation is different from
using single nutrients as pharmacological modulators of
specific physiological processes. In relation to Zn sup-
plementation during diarrhoea, it is not clear whether the
dose given represents physiological restitution at a time
when requirements are increased or whether the dose is
supraphysiological and in fact a pharmacological manipu-
lation of, for example, defensin expression. Future studies
should try and dissect out which of these processes is in
operation in each circumstance.
Of the different elements of intestinal defence that

might mediate these nutrient effects, effects on T-cells and
antimicrobial peptides seem to be the strongest candidates.
A placebo-controlled trial in healthy volunteers in
The Netherlands has found that a combined supplement of
vitamins A, C and E with Zn increases delayed-type
hypersensitivity responses but not lymphocyte subsets, oxi-
dative burst or responses to tetanus toxoid vaccine(73). As

part of a recent randomised controlled trial of a daily
multiple micronutrient supplement in Zambian adults(74) an
analysis was also carried out of antimicrobial peptide ex-
pression and an up-regulation of the a-defensin HD5 was
observed in malnourished (BMI <18.5 kg/m2) individuals
(P Kelly and T Shawa, unpublished results). Effects of
micronutrients on T-cell and antibody responses at rest,
during intestinal infection or following vaccination remain
largely unexplored.

Concluding remarks

Obesity is emerging as a public health crisis that will shape
the health challenges of the 21st century, yet one billion
individuals are undernourished and often these conditions
coexist in the same populations(75). While this position is
driven by inequality in an unjust world, the key to under-
standing these disorders may lie in the human metab-
olome(75), the microscopic and physiological mechanism
through which human behaviours drive some of the burden
of disease. Understanding the human metabolome may hold
the key to colo-rectal cancer, to inflammatory disorders and
to effective treatments for diarrhoeal disease (such as oral
rehydration therapy improved with resistant starch(72)). The
benefits of incisive research into the microbiome and its
effects on physiology could be very important indeed.
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