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The propagation of a finite blister of fluid beneath an elastic sheet is controlled by the
local dynamics at the peeling periphery of the current. Previous works have described
constant volume elastic blisters by considering the peeling due to curvature at these
edges. Here, we show that an along-slope component of gravity fundamentally changes
the dynamics by removing the role of curvature at the trailing, upslope edge. The local
dynamics of this trailing edge is instead controlled by shear stress in the sheet, as in the
elastic Landau–Levich problem, and thereby allows for a receding edge, in contrast to
propagation by peeling for which only an advancing contact line is possible. Using an
asymptotic analysis, we show that this receding edge condition allows for a new, nearly
translating regime in which the body of the blister moves at an approximately constant
speed, leaving behind a thin layer of fluid. This prediction is verified by detailed numerical
modelling of the two-dimensional downslope spreading. We conclude by discussing the
applicability of these results in the rapid spreading of subglacial meltwater.

Key words: lubrication theory, ice sheets

1. Introduction

The evolution of a viscous gravity current beneath an elastic layer is a problem frequently
found in nature. It has been used to model situations such as subglacial flooding following
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lake drainage (Hewitt, Chini & Neufeld 2018) and magmatic intrusions in the Earth’s
crust (Michaut 2011). While these models typically consider only horizontal spreading,
observations of the downstream response of glacial ice following rapid supraglacial lake
drainage (Mejia et al. 2021) and the necessity of ice deformation in forming the flood
paths of rapidly rising jökulhlaups (Einarsson et al. 2017) suggest that the incorporation
of variable topography may be useful in describing the behaviour of such floods beyond
an initial spreading regime. Even when the current itself is flat, variations in the depth of
the overlying sheet can produce a pressure field equivalent to varying basal topography,
extending the relevance of the problem in the glacial case as well as in the case of
magmatic intrusions (Woods et al. 2019).

The case of a viscous current spreading beneath an elastic sheet on a horizontal
surface has been widely studied (Hosoi & Mahadevan 2004; Lister, Peng & Neufeld
2013; Adhikari & Tsai 2015; Hewitt, Balmforth & de Bruyn 2015). Peng & Lister (2020)
comprehensively described the behaviour of an expanding blister in the case of a rigid
impermeable base, with bending and tension in the upper membrane. Variations in the
properties of the lower boundary have also been considered, such as the poroelastic layer
considered by Hewitt et al. (2018) which was motivated by models of subglacial till. In
these cases, the shape of the blister is determined by the approximately constant pressure
in the interior, where viscous dissipation is negligible, while the evolution of the blister is
determined by the process of peeling at the edges.

It is well known that mathematical models of a fluid filled blister in which the edge of
the blister contacts an impermeable surface suffer from a divergence of the viscous shear
stresses at the contact point (Flitton & King 2004). These mathematical models do not
allow the contact line to propagate. A choice of regularisation is therefore required at the
contact line to allow spreading. A common choice is that of a pre-wetted layer (Hewitt et al.
2015; Peng & Lister 2020) but other choices such as a vapour tip (Hewitt et al. 2015; Ball
& Neufeld 2018) or considerations of fracture toughness (Lai et al. 2016b) have also been
explored. These regularisations resolve the viscous stresses in the tip region by removing
the contact point entirely, by filling the tip region with fluid of negligible viscosity, or by
constraining the geometry of the crack tip by the breaking of the solid, respectively.

Regardless of the choice of regularisation, the constant pressure interior solution
requires a jump in curvature at the contact line. In the pre-wetted layer and vapour tip cases,
a balance between bending and viscous stresses resolves this discontinuity and leads to an
advancing contact line, while models relying on fracture toughness impose the geometry
of the fracture front through a condition on the geometry of the elastic medium, and imply
a vapour or vacuum filled tip region. Lai et al. (2016a) showed experimentally that the
radius of a crack in an impermeable elastic medium remains constant, even as the fluid
inside it is drained. As a result, these models all describe blisters which spread uniformly
without the possibility for receding edges.

The introduction of a sloping base breaks the symmetry in the problem, and so is likely
to lead to behaviour beyond the case of uniform spreading described above. Hewitt et al.
(2015) introduce such a slope, but restrict their attention to solutions with a constant flux
into the blister, ensuring that the edges of the blister are static (upslope) or have advancing
contact lines (downslope). Outside of the study of blisters, recent work by Warburton,
Hewitt & Neufeld (2020) on the elastic analogue to the capillary Landau–Levich problem
considered a receding edge in the case of a plate being withdrawn at constant speed from
a bath of fluid overlain by an elastic sheet. In this case, it is the shear stress and not the
curvature which must be resolved at the edge of the constant pressure region, and hence
this edge may travel with arbitrary speed and direction, leaving behind a trailing film of
fluid in the receding case.
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Figure 1. Problem set-up, showing a layer of viscous fluid trapped between a rigid base and an elastic sheet.
In the far field (x � XD and x � XU) the elastic sheet sits on a thin fluid layer of thickness h0.

In this paper, we apply this description of a receding edge to the evolution of a
fixed-volume blister on a slope, demonstrating the presence of a new, nearly translating
(henceforth ‘translating’) regime in which the blister ceases spreading and instead travels
downslope, leaving a trailing film of fluid behind it. In § 2 we describe the governing
equations for a two-dimensional blister, and find characteristic length and time scales for
its evolution. In § 3 we present the results of numerical simulations, demonstrating the
presence of three separate regimes, dominated by the spreading of the blister, translating of
the blister, and viscous flow in the trailing film, respectively. We then study these regimes
analytically in § 4, deriving scaling relationships for their behaviour. We conclude in § 5
with a summary of our results and a discussion of how the model may be adapted to better
reflect the various geophysical processes which motivated it.

2. Governing equations

We consider the motion of a two-dimensional blister of a fixed volume per unit width, V .
The fluid is bounded above by an elastic sheet and below by a rigid surface, inclined at an
angle α to the horizontal, as shown in figure 1, and has density ρ and dynamic viscosity μ.
The sheet is modelled as a bending beam of thickness d, Young’s modulus E and Poisson
ratio ν, giving bending stiffness B = Ed3/12(1 − ν2). For the bending beam limit to be
valid, we require the thickness d to be much less than the length scale associated with the
fluid. The gravitational acceleration g acts both perpendicular and along the slope, thereby
driving flow, and additional effects such as tension (which is outweighed by elasticity
when the deformation is significantly less than the depth of the beam) are here neglected
for simplicity.

When the depth of the current is small compared with its extent, we may use lubrication
theory to describe the flow beneath the elastic sheet. The large aspect ratio means the
pressure is approximately hydrostatic. Taking into account the force due to bending on the
upper boundary, the pressure is therefore given by

p = p0 + ρg (h − z) cos α + B
∂4h
∂x4 , (2.1)

where h is the depth of the current, x is the coordinate in the downslope direction, z is
the distance from the lower boundary and p0 is the (constant) pressure at the surface of
the current in the absence of bending (with contributions both from atmospheric pressure
and the weight of the beam). Pressure gradients balance the shear parallel to the boundary
and, given no-slip boundary conditions at the top and bottom of the current, result in a
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parabolic velocity profile. The downslope fluid flux is therefore given by

q = h3

12μ

(
ρg sin α − ∂p

∂x

)
. (2.2)

Local conservation of mass therefore leads to an evolution equation which describes the
behaviour of the current

∂h
∂t

+ ∂

∂x

{
h3

12μ

[
ρg
(

sin α − ∂h
∂x

cos α

)
− B

∂5h
∂x5

]}
= 0. (2.3)

This model of viscous flow beneath an elastic sheet does not allow for peeling upwards at
the contact line when the sheet lies flush against the base due to a divergence in the viscous
stresses as h → 0 (Hewitt et al. 2015). It therefore requires a choice of regularisation
describing the physics at these points. In a glacial setting, existing drainage networks route
meltwater beneath the glacier in the absence of catastrophic flooding. Motivated by this
physical context, we regularise the problem by considering a pre-existing pre-wetting layer
of far-field depth h0, such that

lim
x→±∞ h = h0. (2.4)

We assume that the blister of fluid is initially sufficiently localised that bending stresses
dominate throughout the blister and hence determine its shape. The only remaining
parameter in the problem is therefore the initial (two-dimensional) volume of fluid
(excluding the pre-wetting layer)

V =
∫ ∞

−∞
(h − h0) dx (2.5)

which we take to be constant, motivated by observations of rapid supraglacial lake
drainage.

2.1. Non-dimensionalisation
Natural vertical and horizontal length scales and a time scale may be defined as

H ∼
(

V5ρg sin α

B

)1/6

, (2.6)

X ∼
(

BV
ρg sin α

)1/6

, (2.7)

T ∼ 12μ

√
B

(Vρg sin α)3 , (2.8)

which are arrived at by balancing the contributions of bending and the along-slope
component of gravity to the pressure. By scaling height h, length x and time t by these
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characteristic scales the problem may be written non-dimensionally as

∂h
∂t

+ ∂

∂x

{
h3
(

1 − Λ
∂h
∂x

− ∂5h
∂x5

)}
= 0, (2.9)

lim
|x|→∞

h = δ, (2.10)

∫ ∞

−∞
(h − δ) dx = 1, (2.11)

where now (and henceforth in the manuscript) we take h, x and t to be the dimensionless
variables. The behaviour of the blister is now a function of two parameters; the scaled
pre-wetting film thickness

δ = h0

(
B

V5ρg sin α

)1/6

, (2.12)

and the ratio of downslope to elasto-gravity length scales

Λ =
(

ρg cos αV2 cot 2α

B

)1/3

=
(

ls
leg

)4/3

, (2.13)

which determines the significance of lateral spreading due to gravity on the evolution of
the blister.

For simplicity, we focus in this paper on the case Λ � 1, in which the elasto-gravity
length scale leg = (B/ρg cos α)1/4 is much larger than the length scale associated with the
slope ls = √

V cot α. In this case the slope-perpendicular component of gravity is always
much smaller than the other terms in (2.9), and so can be neglected.

If instead Λ � 1, bending would not be able to balance the downslope component of
gravity everywhere within the blister at leading order, and so the behaviour described in
this paper would not be seen. Instead, the behaviour of the blister would progress through
a series of previously studied regimes in which the slope-perpendicular component of
gravity contributes first to spreading (Lister et al. 2013) and then to the progress of a
viscous gravity current down slope (Lister 1992).

3. Numerical results

The problem described by (2.9)–(2.11) has been solved numerically using a
Crank–Nicolson scheme modified to include the higher-order derivatives associated with
elastic bending of the beam. A predictor–corrector step was used for the nonlinear
dependence on film depth, h3. In order to fully resolve the behaviour at the peeling front, a
non-uniform grid spacing was used, with the grid spacing decaying linearly from an initial
coarse grid spacing to a much finer grid in the region of the peeling front. The fine grid
spacing was chosen to ensure that there were at least 10 grid points in each wavelength of
the travelling wave ahead of the peeling front. As the blister moves into the region with
the finer grid spacing, larger values of h combined with more closely spaced grid points
can lead to significant round-off error in the calculation of (h3hxxxxx)x. To avoid this, the
otherwise fixed grid spacing was updated whenever this round off error was estimated to
be more than 0.1 %. The point in the new grid at which the decay towards the smaller grid
spacing began was set at the maximum of x = 0 or a non-dimensional distance of 0.5 in
advance of the peeling front.
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Figure 2. Numerical solutions for the profile of the blister with δ = 10−4 at (a) relatively early
times t ≈ 1.65, 3.67, 8.17, 18.2, 40.4, 90.0; (b) intermediate times t ≈ 134, 446, 1480, 4910, 16 300, 54 200;
(c) and relatively late times t ≈ 121 000, 180 000, 268 000, 400 000, 597 000, 891 000; showing the spreading,
translating and gravity current regimes, respectively. All calculations performed with Λ = 0.

The calculations were initialised with the distribution

h(x, 0) = δ + 4√
π

e−(4x)2
, (3.1)

to represent rapid localised injection of a fixed volume of fluid. The code was tested against
solutions for the known behaviour of a viscous gravity current (B = 0) and for a blister on a
flat surface (α = 0) and found to produce the expected power-law behaviour for the extent.
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Figure 3. Positions of the edges of the region of elastic deformation and the back of the blister (where it meets
the trailing film) for δ = 10−4, t < 1000. The position of XU and XT is the same for early times. The sudden
jump in XT reflects the fact that ∂h/∂x is not monotonic, so the position of XT can change abruptly when a
local maximum falls below the threshold.

As this paper focusses on the case Λ � 1, the code was run with Λ = 0 to reduce the
computational cost.

A selection of the blister profiles produced by these numerical calculations are shown in
figure 2. Figure 3 provides more detail by showing the position of key points on the blister
over time. The numerical results exhibit three distinct phases in the evolution of the blister.

First, the blister spreads about the origin (figure 2a), as in the case of a blister spreading
on a flat surface. Defining the upslope, XU , and downslope, XD, extent of the region of
elastic deformation as the points at which the height above the prewetted layer crosses
the threshold h − δ ≥ δ/10, it can be seen that this initial spreading very quickly becomes
asymmetric (figure 3), with the downslope component of gravity ultimately causing the
blister to spread faster in the downslope direction.

Second, the effect of gravity is such that the upslope extent reaches a static position
(figure 3) and the blister then propagates solely downslope. In this regime the velocity
is controlled by peeling at the front, and the blister leaves a macroscopic film in its wake
(figure 2b). Tracking where the back of the blister meets the trailing film, XT , by finding the
first point behind the maximum value of h where the slope is less than ∂h/∂x ≤ δ/10, we
see that the blister is effectively translating in the down slope direction (figure 3), although
the volume decreases as fluid is left in the trailing film. As time progresses, a shock forms
in the trailing film, and progresses downslope in the direction of the blister. A close up of
this process can be seen in figure 4.

Finally, the shock collides with the blister, which by this point has lost enough fluid
that the blister is overwhelmed by the flux behind the shock. The propagation is now
controlled by the balance of downslope gravity and viscous drag in the trailing film as
found in a classical viscous gravity current, with the effects of elasticity only visible at the
front (figure 2c).
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Figure 4. Close up of shock forming in the trailing film, and the collision with the blister for δ = 10−4.
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Figure 5. Downslope position of the front edge of the blister against time for δ = 10−4, 10−4.5, 10−5, 10−5.5.
The triangles indicate the power law followed in each of the three regimes. Significant deceleration below the
predicted power law towards the end of the translating regime is due to fluid loss from the blister into the
trailing film.

These three regimes can be distinguished by the evolution of the front position of the
blister which is plotted in figure 5. Although the behaviour of the blister is complex,
early in each regime the front position obeys different power laws and we see that the
intermediate translating regime becomes less apparent as the pre-wetted layer depth, δ, is
increased.

Figure 6 shows the hydraulic potential, ∂4h/∂x4 − x, in each of the regimes. This can
be thought of as the apparent pressure (which we shall simply refer to as the ‘pressure’),
accounting for the slope. Indeed, it is identical to the pressure in glaciological situations
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Figure 6. Comparison of the pressure p = hxxxx − x, and the height h with analytical predictions (see § 4) in
the spreading, translating and gravity current regimes. The plots show the properties of pressure and height for
δ = 10−4 and (a) t ≈ 8.2; (b) t ≈ 1500 and (c) t ≈ 120 000. In the plot of the analytical prediction in (b) the
front position has been chosen to align with the numerics for easier comparison of the shapes. Comparison of
front positions can be seen in figure 12. The prediction for the trailing film in (b) incorporates the expansion
fan and the depth of the film being left at the time plotted, but does not show the full solution by characteristics,
instead switching from the expansion fan to a constant depth film when the two depths coincide.
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Figure 7. Front position of blister for Λ = 0 and Λ = 0.1, showing that the slope-perpendicular component of
gravity can safely be ignored for Λ � 1. The case δ = 10−2, Λ = 0.1 is not visible in the plot as it coincides
almost exactly with δ = 10−2, Λ = 0.

where the background potential gradient is cause by variations in the thickness of the
overlying ice, rather than the gradient of the bed. We see that this pressure is approximately
constant within the blister, while in the trailing film it is dominated by the −x term.

Numerical simulations were also run a few times with positive values of Λ. As
anticipated, the results showed that small values of Λ had little effect on the behaviour of
the blister, as seen in figure 7 which shows the evolution of the front position of the blister
for both Λ = 0 and Λ = 0.1. This suggests that the Λ = 0 case will approximate blister
evolution for which Λ � 1 and therefore that the choice to neglect the slope-perpendicular
component of gravity in the majority of simulations was valid.

To further understand the behaviour of the blister, in what follows below we detail the
physical balances which characterise propagation in a series of asymptotic regimes.

4. Analytical results

The numerical results show clear scaling relationships in the three regimes. Here we derive
simple analytical models, highlighting the key physical balances, in each regime.

We proceed by dividing the domain into a quasi-static interior region, x ∈ (X−, X+)

in which pressure is constant to leading order, and an exterior region in which viscous
stresses may play an important role. By comparison with the pressure in the numerical
results (figure 6) we expect X− and X+ (which are defined in terms of the pressure) to
correspond approximately to XT and XD (which are defined in terms of the height) with
X− ≈ XT and X+ ≈ XD. We denote the length of this quasi-static region as

L = X+ − X−, (4.1)

and the volume contained within the quasi-static region as

Ṽ =
∫ X+

X−
(h − δ) dx. (4.2)

967 A5-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.421


Evolution of an elastic blister on sloping topography

0 0.5 1.0 1.5 2.0 2.5 3.0

x

0

0.1

0.2

0.3

0.4

0.5

h

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

x

−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

(a) (b) (c)

Figure 8. Constant-pressure solutions calculated for a range of values of L, showing the effect of including the
downslope gravity term (blue) compared with the flat solutions previously studied (red). Here, as elsewhere,
L0(Ṽ) = (7200Ṽ)1/6. (a) L = 3

4 L0(Ṽ), (b) L = L0(Ṽ). (c) L = 5
4 L0(Ṽ).

Given a sufficiently localised initial injection of fluid, bending stresses will dominate and
quickly lead to approximately constant pressure everywhere within the injected fluid. As a
result, Ṽ ≈ 1 at t = 0.

4.1. Early times t � δ−1/2: spreading
At early times, spreading is slow and the entire region of elastic deformation is hydrostatic
away from the contact points, in a manner analogous to the horizontally spreading blister
considered by Lister et al. (2013). Hence both height and slope are zero to leading order at
the edges of the hydrostatic interior region and constant pressure requires

1 − Λ
∂h
∂x

− ∂5h
∂x5 = 0, (4.3a)

with

h = ∂h
∂x

= 0, (4.3b)

at the upstream and downstream edges, X− and X+, respectively.
Since we evaluate the form of the blister in the limit Λ → 0, the form is particularly

simple:

∂5h
∂x5 = 1, (4.4)

which has polynomial solutions. We note that since h ≥ 0 everywhere there are no
possible solutions with h = hx = 0 at x = X+ and L > (7200Ṽ)1/6 ≈ 4.4Ṽ1/6 (as seen
in figure 8). Hence there is an upper bound on the length of the isostatic region with a
peeling-by-bending front.

This equation may be simply integrated to give

h = (x − X−)2(x − X+)2
[

30Ṽ
L5 + 1

120

(
x − X− + X+

2

)]
. (4.5)
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The curvature is non-zero at the two edges, with

∂2h
∂x2

∣∣∣∣
X−

= 60Ṽ
L3 − 1

120
L3 ≡ K−, (4.6a)

∂2h
∂x2

∣∣∣∣
X+

= 60Ṽ
L3 + 1

120
L3 ≡ K+, (4.6b)

at the upslope and downslope edges, respectively.
This discontinuity in curvature where the blister meets the (flat) pre-wetted film reflects

a breakdown in the quasi-static approximation. While viscous dissipation may be neglected
in the interior of the blister, it becomes significant at the edges where the film thickness
approaches that of the pre-wetting film. In this limit, the curvature of the isostatic interior
blister must be matched with the curvature of a viscous peeling region in order to resolve
the discontinuity.

We look for a local travelling wave solution near the edges of the blister h = h(x − X±).
Near the edges a balance of the elastic pressure gradient with viscous shear stresses in the
travelling frame of reference gives

− Ẋ±
dh
dx

− d
dx

(
h3 d5h

dx5

)
= 0. (4.7)

Away from the edges of the blister, we must match our solution to the curvature hxx in the
interior of the blister, and to the pre-wetted film depth outside the blister.

This is the case of a peeling blister considered in Lister et al. (2013), which we review
here for completeness. We look for tip solutions whose height and peeling length scale are
set by the pre-existing film thickness and the above balance between bending and viscous
dissipation, respectively. By writing h = δg(ξ), where ξ = ±(|Ẋ±|δ−3)1/5x, the local tip
solutions described by (4.7) may be expressed as

− dg
dξ

= ± sgn(Ẋ±)
d

dξ

(
g3 d5g

dξ5

)
, (4.8a)

which we must match to the prewetted layer

lim
ξ→∞

g = 1, (4.8b)

and to the curvature in the interior of the blister

lim
ξ→−∞

d2g
dξ2 = Γ, (4.8c)

for some constant Γ .
A solution exists to this problem only in the case ± sgn(Ẋ±) = +1, and so solutions

must take the form of an advancing, peeling front at both the upslope and downslope
edges. Together, these conditions specify a unique solution, for which previous numerical
calculations have found Γ ≈ 1.35 (Hewitt et al. 2015).
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Evolution of an elastic blister on sloping topography
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Figure 9. Comparison of analytical (dashed line) and numerical (solid line) results for the spreading regime,
showing X+ in red and X− in blue. (a) δ = 10−3, (b) δ = 10−4.

Rescaling the curvature, hxx = δ(|Ẋ±|δ−3)2/5gξξ , we see that we must have K± =
δ(|Ẋ±|δ−3)2/5Γ and so

δ

( |Ẋ+|
δ3

)2/5

Γ = 60Ṽ
L3 + 1

120
L3, (4.9)

at the downslope edge of the blister, and

δ

( |Ẋ−|
δ3

)2/5

Γ = 60Ṽ
L3 − 1

120
L3, (4.10)

at the upslope edge of the blister. These combine to provide an evolution equation for the
length of the blister

L̇ = δ1/2Γ −5/2

⎡
⎣(60Ṽ

L3 + L3

120

)5/2

+
(

60Ṽ
L3 − L3

120

)5/2
⎤
⎦ . (4.11)

A comparison of the solution of these equations with the numerical results can be seen in
figure 9, showing good agreement.

At early times, Ṽ ≈ 1 and L is small and so the upslope and downslope edges respond
symmetrically with L ∼ (δt2)1/17 as for a blister spreading on a flat surface. This behaviour
is visible in figure 5. However, as time progresses and the length of the blister increases
the downslope component of gravity leads to faster peeling of the blister in the downslope
direction, while the upslope spreading speed decreases.

From (4.10) we see that there is a maximum value of L at which Ẋ− = 0 and the upslope
edge comes to rest, given by

L0(Ṽ) ≡
(

7200Ṽ
)1/6

. (4.12)

This corresponds to the upper bound on the length of the quasi-static region found at the
beginning of this section, and is the point at which the downslope component of gravity
is sufficient to balance the curvature that would otherwise exist at the upslope edge of the
blister. It is clear that the behaviour of the blister can therefore no longer be described
purely by considering peeling at the upslope and downslope contact positions.
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Figure 10. The predicted transition times between regimes (solid lines) in comparison with a measure of the
instantaneous power law for the front, p, where X+ = Atp. The solid red lines indicate the analytically predicted
transition times between spreading, translating and gravity current regimes, while the black line indicates the
time within the translating regime after which the speed is no longer predicted to be constant to leading order.
The power-law exponent p for the front position of the blister was obtained by fitting X+ = Atp to pairs of
numerical results at times t and te0.1.

Given our description of the spreading of the length of the blister, L ∼ (δt2)1/17, and
the requirement that L < L0(Ṽ), we expect this description of the behaviour to be valid
for t � δ−1/2. When t ∼ δ−1/2 the upslope edge of the blister will come to rest and the
blister will enter a second, translating regime. Figure 10 shows that this transition time is
consistent with the numerical observations.

4.2. Intermediate times δ−1/2 � t � δ−9/8: the translating blister
For small values of L, the shape of the blister is primarily determined by the bending
stress, and so the behaviour is similar to that of a blister on a flat surface. However, as L
increases, the effects of the downslope component of gravity become more prominent.
When L = L0(Ṽ), upslope migration ceases but, as shown in figure 2(b), the blister
continues to propagate downslope now depositing a macroscopic film at the trailing
upslope edge. To understand this dynamics we return to our original description of the
quasi-static interior in (4.5). For this larger value of L, the downslope component of gravity
drives a forward slumping of the blister (seen in figure 8). This means that there is no
longer a discontinuity in the curvature, which is needed to drive peeling at the upslope
extent of the blister. Instead, the shear stress in the elastic sheet, which is proportional
to hxxx, must be matched between the interior and trailing film as it is in the elastic
Landau–Levich problem considered by Warburton et al. (2020). Following their approach,
we first evaluate the shear stress at the upslope edge

∂3h
∂x3

∣∣∣∣
X−

=
(

9Ṽ
10

)1/3

≡ S(Ṽ). (4.13)
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Evolution of an elastic blister on sloping topography

Once again at the edge of the blister viscous dissipation balances flow driven by elastic
pressure gradients

− Ẋ−
dh
dx

− d
dx

(
h3 d5h

dx5

)
= 0, (4.14)

now with the requirement that the shear stress, hxxx, matches to that in the interior of the
blister.

The condition on shear stress is expressed as a condition on the third derivative, hxxx,
and so is weaker than the condition on curvature (4.8c). As a result, it does not specify
the sign of Ẋ−. However, we have shown that the length of a quasi-static region led by a
peeling front is bounded by L0(Ṽ). Hence, since the curvature continues to control peeling
at the front of the blister and L may not increase past L0(Ṽ), we may assume sgn(Ẋ−) =
sgn(Ẋ+) = +1.

We rescale the height of the drainage film as before with h = Hg(ξ) and ξ =
(Ẋ−H−3)1/5x. Here, H is the depth of the fluid film left behind. The weaker condition
on shear stress allows for a receding edge, and so the film depth is no longer pre-set and
may in general take a value other than δ. This rescaling gives

− dg
dξ

= d
dξ

(
g3 d5g

dξ5

)
, (4.15a)

with

lim
ξ→−∞

g = 1, (4.15b)

and

lim
ξ→∞

d3g
dξ3 = Λ, (4.15c)

for some constant Λ. This problem was considered by Warburton et al. (2020), who found
that Λ ≈ 0.8325. The scaling of the edge region requires that the shear stress exerted by
the bulk matches that at the edge, S = H(|Ẋ−|H−3)3/5Λ, and so

H
( |Ẋ−|

H3

)3/5

Λ =
(

9Ṽ
10

)1/3

. (4.16)

In contrast, the motion of the downstream edge behaves as before, with the dynamics
controlled by peeling by bending at the front

δ

( |Ẋ+|
δ3

)2/5

Γ =
√

2Ṽ. (4.17)

To relate these two equations, we must first find the relationship between Ẋ+ and Ẋ−.
The upper bound on the length of the quasi-static region requires that X+ − X− ≤ L0(Ṽ),
while immediate return to the spreading regime for X+ − X− < L0(Ṽ) suggests that we
must retain X+ − X− ≥ L0(Ṽ). Hence, we may assume that the blister is of slowly varying
length X+ − X− = L0(Ṽ) and take Ẋ− = Ẋ+ ≡ Ẋ (to leading order) to get the velocity of
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the blister. Thus
Ẋ = 25/4Γ −5/2δ1/2Ṽ5/4 = C1δ

1/2Ṽ5/4, (4.18)

where C1 ≈ 1.12, and the trailing film thickness is

H = Λ5/4Γ −15/8265/483−5/655/12δ3/8Ṽ25/48 = C2δ
3/8Ṽ25/48, (4.19)

where C2 ≈ 0.907.
The values of Ẋ and H are both dependent on the volume Ṽ inside the quasi-static region.

Hence, to determine the behaviour of the blister, we must formulate an evolution equation
for Ṽ . Once Ṽ is known, it may be substituted back into the equations for Ẋ and H.

Considering fluxes in and out of the quasi-static region, the volume evolves slowly
according to

˙̃V = Ẋ(δ − H) − (δ3 − H3), (4.20)

where Ẋδ is the change in volume due to the blister overrunning the pre-wetted layer, ẊH
is the loss of fluid into the trailing film, δ3 is the downslope flux in the prewetted film
ahead of the blister, and H3 is the flux from the trailing film in the direction of the blister.

When determining the shape of the blister, we assume that h = 0 to leading order at both
edges (4.3b). For this ‘touchdown’ assumption to hold at the upstream edge, the depth
of the trailing film must be much less than the height of the blister. Hence, noting that
H ∼ δ3/8(Ṽ/L0(Ṽ))5/8, we must have δ � H � Ṽ/L0(Ṽ). Thus, for all cases considered
here,

˙̃V ≈ −ẊH (4.21)

is sufficient to describe the leading-order evolution of the volume of the translating blister.
Together (4.18), (4.19) and (4.21) give

˙̃V = −C1C2δ
7/8Ṽ85/48, (4.22)

thus providing a prediction for the volume of the translating blister

Ṽ ≈
(

1 + 37
48

C1C2δ
7/8t

)−48/37

. (4.23)

We see that initially, to leading order, Ẋ is constant for small t, with

Ẋ = C1δ
1/2Ṽ5/4 ∼ δ1/2, (4.24)

as seen in figure 11(a). However, drainage from the blister causes slow deceleration, which
is particularly noticeable for larger values of δ (as seen in figures 10 and 11a). For values
of t � δ−7/8, drainage from the blister is sufficient to have a leading-order impact on the
speed, causing rapid deceleration and a departure from the previous power-law behaviour.
This can be seen in figure 10 as denoted by the black line. The predicted deceleration
agrees well with the numerical results at early times, as seen in figures 11(b) and 12. This
suggests that the prediction for the trailing film depth is accurate. However, relatively large
higher-order terms in the asymptotic expansion such as those caused by backflow from the
trailing film (O(δ1/4)) and variation in L0 (O(δ3/8)) mean that at late times there is some
deviation from the analytical prediction even for relatively small values of δ. Throughout
this deceleration the profile of the blister – with a translating quasi-static head which leaves
a thin film in its wake – nevertheless remains the same and the translating regime persists.
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Evolution of an elastic blister on sloping topography
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Figure 11. (a) Front speed of blister, scaled by the analytical prediction for its leading order value in the
translating regime, C1δ

1/2, shown for time t < 1000. Loss of fluid into the trailing film means that deceleration
below the leading-order value is visible, particularly for larger values of δ. (b) Scaled front speed, as before,
now adjusted to account for predicted volume loss. Breakdown in the asymptotics is apparent for larger values
of δ. Note that the jagged line at early times is a numerical artifact cause by averaging speed over a short period
of time.
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Figure 12. Scaled front position for different values of δ, along with analytical prediction. The inset figure
shows the analytical (dashed line) and numerical (solid line) results for the front position when δ = 10−5.5

with a log axis, showing the divergence from the predictions at late times more clearly.

4.3. Intermediate times δ−1/2 � t � δ−9/8: the trailing film
To determine the length of the translating regime, we must consider the dynamics within
the trailing film.

Within the trailing film, bending stresses are small and so the height of the blister evolves
as for a viscous gravity current, with

∂h
∂t

+ ∂h3

∂x
= 0. (4.25)

This equation can be solved using characteristics with h constant on characteristics
dx/dt = 3h2.

When the blister begins to translate at time t0 ≈ δ−1/2, it leaves behind a film of depth
h(x0, t0) = C2δ

3/8 at the upslope extent, x0, of the spreading regime. This produces a
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Figure 13. Blister profiles for various values of δ at t = e8.1 ≈ 3294, compared with the profile of a standard
viscous gravity current.

characteristic with x = x0 + 3C2
2δ

3/4(t − t0). In front of this characteristic, the film depth
can be determined by considering the characteristics associated with the film left at
later times, while behind it an expansion fan emanates from (t0, x0) and results in the
traditional h = √

(x − x0)/(3(t − t0)) profile for a viscous gravity current. This can be
seen in figure 13.

As the blister moves down slope, loss of fluid from the blister means that the depth of
the film left behind decreases, and therefore so does the gradient of the characteristics. As
a result, a shock must form at some point between the expansion fan and the characteristics
created as the blister deposits the trailing film. This is illustrated in the characteristic
diagram, figure 14, and produces the shock seen in figure 4. Conservation of flux across
the shock tells us that it must move with speed

Ẋshock = H2
− + H−H+ + H2

+, (4.26)

where H− and H+ are the film depths immediately upstream and downstream of the shock,
respectively. By considering the possible values of h within the trailing film, we can find
upper and lower bounds for this speed.

To find the upper bound, we note that h is constant along characteristics, and therefore
cannot be greater than the initial depth of the film left behind by the blister, H|t=t0 =
C2δ

3/8, anywhere within the trailing film. Hence we must have

Ẋshock ≤ 3C2
2δ

3/4. (4.27)

To find the lower bound, we consider the volume of fluid, 1 − Ṽ , left in the trailing film.
As the depth of the film decays both upstream and downstream of the shock, the depth
of the fluid immediately upstream of the shock must be at least (1 − Ṽ)/(X− − x0). By
substituting (4.23) into (4.18) and integrating, we can find an expression for the position
of the back of the blister

X− = x0 + 48
23C2

δ−3/8

[
1 −

(
1 + 37

48
C1C2δ

7/8t
)−23/37

]
. (4.28)
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Evolution of an elastic blister on sloping topography

0 20 40 60 80

Time t

0

20 000

40 000

60 000

80 000

100 000

120 000
D

o
w

n
sl

o
p
e 

p
o
si

ti
o
n
 x

Figure 14. Characteristic diagram showing the formation of a shock in the trailing film for δ = 10−4. The
position of X− (solid black line) and the shock (solid red line) are taken from the numerics. The dotted lines
show the characteristics on which h is constant.

Substituting (4.23) back into this equation, we see that X− − x0 ∝ 1 − Ṽ23/48 and
therefore X− − x0 grows more slowly than 1 − Ṽ . This gives us a lower bound on H−

H− ≥ 23C2

48
δ3/8 1 − Ṽ

1 − Ṽ23/48
≥ 23C2

48
δ3/8, (4.29)

which in turn gives us a lower bound on the speed of the shock

Ẋshock ≥
(

23C2

48

)2

δ3/4. (4.30)

These bounds imply that the speed of the shock scales as Ẋshock ∼ δ3/4. At early times,
this is substantially less than the approximately constant speed of the blister, Ẋ ∼ δ1/2.
However, as fluid drains from the blister, its speed decreases allowing the shock to catch
up with the blister. By considering the expression for the position of the back of the blister
given in (4.28), we see that drainage of fluid from the blister prevents it from travelling
further than X− = x0 + 48δ−3/8/23C2 and so when t ∼ δ−9/8 the shock must collide with
the translating blister. This transition time is visible in figure 10.

To understand the behaviour after the collision, we must consider the flux into the
blister. By considering our bounds on the depth of the fluid behind the shock, we
see that the flux behind the shock scales as (δ3/8)3 = δ9/8. Substituting the collision
time t ≈ δ−9/8 into (4.23) gives the volume of the blister immediately before collision,
Ṽ ∼ δ12/37. The corresponding rate of drainage from the blister into the trailing film
is ẊH ∼ δ7/8δ85/148 � δ9/8. Hence, after the collision the flux into the blister from the
translating film is much larger than the potential drainage due to translation. The flux into
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Figure 15. Comparison of analytical (dashed line) and numerical (solid line) results for the position of X+ in
the gravity current regime; (a) δ = 10−2, (b) δ = 10−4.

the blister can no longer be ignored, and our description of the translating blister breaks
down.

4.4. Late times t � δ−9/8: viscous gravity current
At early times, we may neglect the flow in the trailing film and assume that its effects on
the behaviour of the blister are minimal. However, it is apparent that this assumption does
not hold indefinitely. When the shock in the trailing film collides with the blister, the flux
within the trailing film can no longer be ignored. Fluid flows into the blister, increasing
the front speed Ẋ+ until the net flux into the blister becomes zero. The movement of the
blister is now entirely determined by the trailing film, and the behaviour of the system is
now that of a viscous gravity current with elasticity resolving the discontinuity in height
at the front and slope at the back. As the majority of the fluid is contained in the trailing
film, we may take X+ ≈ X−.

Assuming h � δ recovers the classic viscous gravity current solution, with X+ ∼ t1/3

(Lister 1992) as can be seen in figure 5. However, over time the depth of the current decays
and so the prewetted layer must once again be considered. The shape of the gravity current
is determined by characteristics, as before, giving

h = max
(

δ,

√
x − x0

3 (t − t0)

)
, (4.31)

upstream of X+. The position of the front can then be found by conservation, making sure
to account for the prewetted layer so that∫ X+

x0

hdx = 1 + (X+ − x0) δ. (4.32)

A comparison of the solution of this equation with the numerics can be seen in figure 15.

5. Discussion and conclusions

In this paper, we have considered the effect of a sloping base on the evolution of a
fixed-volume blister of fluid under an elastic sheet. To allow advancing contact lines,
we considered the case where regularisation is provided by a thin pre-wetted layer.
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We found that the introduction of a slope puts a limit on the length of the quasi-static body
of the blister

L ≈
(

7200BVhead

ρg sin α

)1/6

, (5.1)

where Vhead is the volume per unit width of fluid in the quasi-static region. Beyond this
length scale previous descriptions of spreading blisters cannot be applied. Slumping due to
gravity means that there is no curvature to drive spreading at the upslope end, and so a new
mechanism must be considered. By comparison with the elastic Landau–Levich problem,
we have shown that the behaviour at the upslope edge is instead driven by the shear stress
at the trailing edge of the blister. This allows for a receding edge and so provides a new
translating regime in which the body of the blister travels downslope with approximately
constant speed

Ẋ+ = (Vρg sin α)5/4 h1/2
0

12μB1/4 , (5.2)

leaving a thin layer of fluid behind it.
For the purpose of simplicity, we have restricted our attention to the case where the

behaviour of the blister is determined entirely by gravity and bending stresses. Other
descriptions of elastic blisters (e.g. Peng & Lister 2020) have incorporated tension, which
could also be added to our model. Tension T would add a Thxx term to the pressure. This
balances the bending term, Bhxxxx when x ∼ (B/T)1/2. Considering our upper bound on
the length of the quasi-static blister, we see that tension may be safely neglected within the
blister so long as

T �
(

B2ρg sin α

7200V

)1/3

. (5.3)

Similarly, by considering the length scales involved, we can show that this condition
implies that tension will always be outweighed by either bending or gravity at the
edges of the blister, while in the trailing film tension may be neglected for sufficiently
small prewetted layer thickness. Given the high bending stiffness of ice and the small
deformation observed compared with ice thickness, it is reasonable to assume that tension
will therefore not be relevant in a glaciological context. However, in other contexts it may
be significant and additional regimes may be observed which are not considered in this
paper.

Although we have restricted ourselves to the case where flow inside the blister is laminar
and the front is regularised by a prewetting layer in this paper, it could be fairly simply
modified to include more geophysically realistic conditions. The viscous interior of the
blister can be replaced by a description of turbulent flow, as in Hewitt et al. (2018),
relatively simply. This would have no effect on the shape of the constant-pressure interior,
although care has to be taken over the conditions for the flow at the edges of the blister
to remain laminar. Similarly, the regularisation at the peeling front could be replaced with
other physically relevant options, such as a fracture condition. As with the prewetted layer,
this would result in the peeling speed being determined by curvature at the front (Lister,
Skinner & Large 2019), and would also allow for situations in which no fracturing could
occur, perhaps halting the propagation if there is insufficient fluid in the quasi-static blister.

In this paper we have considered the case where the sheet overlying the fluid deforms
only elastically and have neglected the shear stress exerted on the sheet by the fluid.
In reality, there must be some force on the sheet in the upslope direction to prevent it
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from simply sliding down the slope on top of the lubricating layer of fluid beneath it.
Theoretical studies of a fluid beneath an elastic sheet often simply take the sheet to be
clamped (e.g. Hosoi & Mahadevan 2004), but in geophysical contexts a more complex
dynamics is likely to be involved. In the glacial context, a resistive force may result from
contact with the underlying till, with porosity of the till providing an effective prewetted
layer despite this contact. Slip laws such as the one described by Zoet & Iverson (2020)
relating the slip velocity to shear stress and pressure are used when modelling the viscous
flow of ice. Although the large velocities sustained during the translating regime suggest
that deformation will be predominantly elastic, incorporation of viscous effects and shear
stress in the sheet would provide more insight into the response of the overlying ice.

These modifications would allow for more realistic comparison with observations
such as those of supraglacial lake drainage, which has traditionally been modelled by
considering only horizontal spreading. While topography has little influence on the initial
spreading of the blister, its role in limiting the extent of spreading and keeping lake water
localised could have an influence on the transition between the initial flooding stage and
the later evacuation of water through an efficient subglacial drainage system.

Despite the simplicity of the existing model, it shows reasonably good agreement
with observations. The water from the lake drainage event described by Mejia et al.
(2021) travelled approximately 10–30 km within 1 day, giving a speed of at least
10−1–10−0.5 ms−1. Taking the effective slope to be the change in the ice elevation divided
by the distance travelled gives α ∼ 10−2 while ice thickness of approximately 1km
gives bending stiffness B ∼ 1017 Nm (Hewitt et al. 2018). Considering the shape of the
translating blister, we find that in this case the observed uplift of approximately 0.1 m
corresponds to a cross-sectional area of approximately 100 m. Substituting these values
into (5.2) gives an effective prewetted layer depth of

h0 ≈ 10−7.5 − 10−6.5 m. (5.4)

A porous till of permeability k and depth b is equivalent to a prewetted layer of depth
(kb)1/3 (Hewitt et al. 2018), putting this near the bottom of the expected range (h0 ≈
10−10/3 − 10−7 m) (Hewitt et al. 2018), for ice overlying a permeable till. Faster speeds
due to drainage later within the possible 1 day window would correspond to a deeper
effective pre-wetted layer depth, giving good agreement between possible speeds and the
known properties of glacial till.

Most practical applications of downslope blister propagation beneath an elastic sheet
are three dimensional, which introduces further complexity to the two-dimensional case
considered in this paper. While elasticity has a stabilising effect in some viscous problems
(Pihler-Puzović et al. 2012), the flow of an infinitely wide front of viscous fluid down a
slope beneath an elastic sheet has been shown to be unstable (Khomenko 2010). Depending
on the size of the initial distribution of fluid, similar instabilities may be seen in the case
of a more localised three-dimensional blister. The approach here, in which the shape and
evolution of the blister is determined entirely by the edge positions may provide some
insight into whether such instabilities exist. If they do, the range of scales involved make
it unlikely that a purely elastic model of ice would remain relevant, further increasing the
complexity.
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