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Abstract

Body-worn sensor data is used in monitoring patient activity during rehabilitation and also can be extended to
controlling rehabilitation devices based on the activity of the person. The primary focus of research has been on
effectively capturing the spatiotemporal dependencies in the data collected by these sensors and efficiently classifying
human activities. With the increasing complexity and size of models, there is a growing emphasis on optimizing their
efficiency in terms of memory usage and inference time for real-time usage and mobile computers. While hybrid
models combining convolutional and recurrent neural networks have shown strong performance compared to
traditional approaches, self-attention-based networks have demonstrated even superior results. However, instead
of relying on the same transformer architecture, there is an opportunity to develop a novel framework that
incorporates recent advancements to enhance speed and memory efficiency, specifically tailored for human activity
recognition (HAR) tasks. In line with this approach, we present GLULA, a unique architecture for HAR. GLULA
combines gated convolutional networks, branched convolutions, and linear self-attention to achieve efficient and
powerful solutions. To enhance the performance of our proposed architecture, we employed manifold mixup as an
augmentation variant which proved beneficial in limited data settings. Extensive experiments were conducted on five
benchmark datasets: PAMAP2, SKODA, OPPORTUNITY, DAPHNET, and USC-HAD. Our findings demonstrate
that GLULA outperforms recent models in the literature on the latter four datasets but also exhibits the lowest
parameter count and close to the fastest inference time among state-of-the-art models.

1. Introduction

Human activity recognition (HAR) systems benefit from the valuable information provided by multi-
modal sensors, including acceleration, gyroscope, and temperature data. The challenge lies in identifying
accurate and efficient classification methods for HAR systems, which find applications in diverse areas
such as fitness monitoring and drug control systems (Khan et al., 2012), as well as stress and affect
detection (Schmidt et al., 2018).

In HAR systems, the sensor signal time series are divided into equal-length subsequences using the
sliding window technique. These subsequences are then classified into activities using various algo-
rithms, ranging from traditional machine learning approaches like Support Vector Machines and Random
Forest to advanced neural networks such as Recurrent Neural Networks (RNN), Convolutional Neural
Networks (CNN), or hybrid models. Notably, deep neural network models have demonstrated superior
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performance in activity classification compared to conventional machine learning algorithms in HAR
(Ma et al., 2019).

In addition to achieving high accuracy in activity classification, efficient resource utilization is
essential in the field of HAR due to increasing computational demands. Therefore, the focus of our
research is not only to improve the recognition of human activities but also to enhance resource usage by
introducing a novel solution. Our proposed model is an attention-based non-recurrent architecture that
incorporates gated convolutional networks (GCN) (Dauphin et al., 2017), a branching convolution
structure, and linear attention. The GCN utilizes Gated Linear Units (GLU) as gate mechanisms, enabling
convolutions without recurrent connections. To address constraints related to memory andmodel size, we
introduce a learnable class token that is added at the beginning of the encoded data and employed in the
classification layer (Tenney et al., 2019). This token, which has the same size as the embedding
dimension, results in minimal parameter increase while maintaining effectiveness.

By integrating both local and global features, our proposed network eliminates the need for feed-
forward (FF) layers, resulting in a substantial reduction in the number of parameters. This optimization
takes into consideration the efficiency and complexity of inference. Furthermore, we introduce innovative
features, such as the use of linearized attention instead of the conventional softmax self-attention, to
further enhance the model’s performance.

Effective training of our network requires a significant number of samples, similar to other
transformer-like structures. Instead of modifying the dataset or network architecture, we make adjust-
ments in the training process. Specifically, we incorporate the manifold mixup regularization technique,
which enables the learning of uncertainty and acts as a form of data augmentation (Verma et al., 2019). The
generation of new samples using this technique enhances the efficiency of network training.

As discussed below, the attention-based linear model proposed for HAR tasks demonstrates improved
performancewhilemaintaining advantages in terms of size, space, and time complexities. In our study, we
refer to this version of the network as GLULA. It outperforms various variants and state-of-the-art models
across four benchmark datasets, while significantly reducing the number of parameters compared to
recent state-of-the-art (SOTA) networks. The contributions of this article are as follows:

• We introduce a novel attention-based network architecture for HAR that offers several key
contributions. Firstly, our model is parallelizable and achieves the lowest parameter count among
novel works, optimizing space and time complexity through the utilization of linear attention. We
also showed that the proposedmethod potentially has the fastest or close to the fastest inference time
with respect to the input length among the latest models in the literature. This architecture
demonstrates superior performance on four HAR datasets (SKODA, OPPORTUNITY, DAPHNET,
USC-HAD) compared to recent models in the literature, and comparable results on the PAMAP2
dataset, validating the effectiveness of our proposed solution. We showcase performance improve-
ments over recent state-of-the-art models using both benchmark test sets and the leave-one-subject-
out (LOSO) cross-validation approach.

• Furthermore, we investigate the impact of different training techniques in scenarios where data is
limited, which is often the case for HAR datasets. Our findings demonstrate that incorporating
manifold mixups in a data-deficient environment enhances the network’s generalizability and
achieves high-performance scores when combined with additional training procedures.

• Additionally, we conduct a comprehensive comparison of various layers at different positionswithin
our proposed network. We illustrate that our network structure outperforms the different variants
presented in this article. When comparing the softmax self-attention unit (Vaswani et al., 2017) with
linear attention and gated convolutional networks, we observe that while softmax self-attention may
have higher complexity, replacing linear attention or GCN with softmax self-attention in different
parts of the network either yields equivalent or inferior performance. Furthermore, the utilization of
linear attention improves the model’s speed compared to regular self-attention.

• Lastly, our architectural choices, such as discarding feed-forward networks and prepending learn-
able class tokens, result in minimal size overhead for the task. Our model showcases the lowest
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number of parameters (with a noticeable difference) compared to other state-of-the-art solutions
while maintaining strong performance.

The remainder of the article is structured as follows. In Section 2, we provide an overview of related
works in the field. The problem formulation and our proposed approach are outlined in Section 3. Details
regarding the training and evaluation of our approach are presented in Section 4. In Section 5, we
showcase the experimental results and conduct comparisons with other methods. Finally, in Section 6, we
draw conclusions based on our findings and discuss potential avenues for future research.

2. Related work

HAR has been extensively studied using classical machine learning algorithms as well as deep learning
models. Classical algorithms, such as decision trees, kNN, and Boosted classifiers, have been explored,
with studies showing that kNN performs well on the PAMAP2 dataset (Reiss and Stricker, 2012).
However, these classical approaches heavily rely on handcrafted features and often have limited
effectiveness. In contrast, deep learning models, with their ability for automatic feature selection, have
shown superior performance in HAR tasks, especially when utilizing CNN and LSTM architectures
(Ma et al., 2019).

RNNs, while effective in capturing temporal dependencies, struggle with capturing long-range
relationships due to the vanishing gradient problem. On the other hand, CNNs excel in parallelization
but may face challenges in preserving spatial information. To address these limitations, researchers have
proposed combined RNN-CNN models. However, such models often treat sensor modalities equally
without considering their differences and importance. In response, Ma et al. (2019) introduced an
attention mechanism to the CNN-RNN model, assigning weights to each modality and improving
performance.

The Transformer architecture, initially introduced by Vaswani et al. (2017), has been successfully
applied to HAR tasks. Transformers leverage non-recurrent self-attention, enabling parallelization and
leading to improved performance in HAR. Building upon this concept, Mahmud et al. (2020) utilized a
self-attention-based neural network for HAR, further enhancing performance. Additionally, the Evolved
Transformer (EV) model proposed by So et al. integrates local information and expands data, which
proves beneficial for capturing global features in HAR tasks (So et al., 2019).

In the context ofHARclassification tasks, linear attention has emerged as amore efficient alternative to
softmax self-attention models. Linear attention addresses issues related to complexity, performance, and
memory requirements (Katharopoulos et al., 2020). Moya Rueda et al. (2018) proposed a deep learning
modelwith parallel branches and temporal convolution, achieving high accuracy inHAR.Ma et al. (2019)
introduced the multimodal AttnSense model, combining convolutional layers, attention mechanism, and
GRU to capture spatiotemporal dependencies. Mahmud et al. (2020) addressed the challenge of paralle-
lization by proposing a non-recurrent self-attention model. Furthermore, Tang et al. (2020) presented a
memory-efficient CNN model with redesigned filters, reducing parameters while maintaining perfor-
mance.

3. Methodology

3.1. Proposed approach

To provide context for the proposed architecture, it is essential to outline the problem at hand. Most HAR
datasets exhibit a consistent structure, characterized by C columns representing different sensor outputs.
For instance, three columns may represent 3D acceleration data captured by an inertial measurement unit
(IMU).Moreover, the IMUoften includes additional sensors such as amagnetometer and an gyroscope. In
HAR datasets, these sensor outputs are organized into R rows, with each row representing an instance of
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sensor readings over time. Consequently, we obtain a matrix Twith dimensions R × C, encapsulating the
time-series data from the sensors.

Then, T¼ T1, …, Tc, …, TC½ �, where Tc ¼ Tc1 , …, Tcr , …, TcR½ �T .
In this scenario, the atomic value of the sensor output at position (column) c and time instance (row) r is

denoted as Tcr . The goal of the HAR task is to classify a label based on the given matrix T. The label can
represent either a specific action or a sequence of actions.

The objective of this study is to develop an efficient non-recurrent model for HAR that achieves
effective parallelization, considers the importance of each sensor output, and ensures high performance.
Additionally, we aim to address the complexities associated with memory usage and inference time.

While Transformer networks have shown superior performance in classification tasks, they suffer from
high time and space complexity. The Evolved Transformer model, discovered through evolutionary
search, addresses some of these issues by reducing parameters and avoiding feed-forward constructions.
However, EV models were primarily designed for conversational Natural Language Processing or
translation tasks and still rely on softmax self-attention, which leads to high space and time complexity
during inference.

To create a more efficient and suitable network for HAR, we draw inspiration from EV models and
introduce significant modifications. Our approach incorporates the concepts of local–global aggregation
and addresses the problem of quadratic space and time complexity by utilizing linearized attention.

Our novel HARmodel begins by prepending learnable tokens (denoted as Li in Figure 1) and employs
a gated convolutional network with a branching structure of wide convolutional layers. It also incorpo-
rates a linear attention network, which has linear complexity, to extract features for the classification layer.
The classification layer consists of two fully connected layers that utilize the processed learnable class
tokens, sized to one timestep.

However, like most transformer-based models, our approach requires a substantial amount of training
data. Since many HAR datasets are limited in size, we employ manifold mixup regularization and other
training techniques to enhance the network’s accuracy and generalizability in data-deficient settings.

The overall structure of our network is illustrated in Figure 1, with each component labeled accord-
ingly. In the model, the input data is first segmented using a sliding window and then normalized. The
normalization technique varies for each dataset. Next, each timestep of the normalized input data is
mapped to a constant dimensionality RE through a trainable projection or embedding, (1) in Figure 1. We
append a learnable class token (Li) to the start of the input data, allowing it to extract relevant information
from all timesteps and channels through the self-attention block.We demonstrate that a linearized version
of softmax self-attention achieves effective results and learns to abstract and attend to the information,
making the prepended learnable vector a valuable feature for classification.

To incorporate positional information and enhance the model’s performance on time-dependent tasks,
we utilize axial positional embedding (Ho et al., 2019), which is learnable and added through augmen-
tation, (2) in Figure 1. This approach factorizes the encoding matrix into two matrices, reducing the
number of parameters and optimizing memory usage.

In the model, normalization layers are consistently applied prior to each block for distribution stability
(Ba et al., 2016), exemplified by (3) in Figure 1. For the role of the main block, denoted by (4) in Figure 1,
we evaluated various network types including GCN, Linear, and Softmax attention networks. In our
experiments, the gated convolutional network demonstrates better generalization performance compared
to softmax self-attention and linear attention. Additionally, skip connections, (5) in Figure 1, are used to
facilitate gradient flow, partially addressing the vanishing gradient problem and promoting faster
convergence (Drozdzal et al., 2016).

Next, the data is passed through two separate branches of convolutions, as shown in (6) in Figure 1,
inspired by similar structures found in the EV. Various activation functions, such as ReLU and GELU,
were evaluated, but the Mish activation function demonstrated the best performance in transformers, as
depicted in (7) in Figure 1. Following the branching structure of EV models, a depthwise separable
convolution is applied to extract spatiotemporal local features, as indicated by (8) in Figure 1.
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Figure 1. The graphical representation of the proposed model’s structure. Data preprocessing and each
layer are shown and numbered following the model description given in the methodology. While the
GCN, Linear Attention (L-Att), and Softmax Self-Attention (S-Att) can all potentially serve as the main
block (4), GCN has been shown to outperform the others in this role, as highlighted in equation (1).
Consequently, it is illustrated in the figure as the exclusive type for the main block. In contrast, for the
additional block (9), all three network types (GCN, L-Att, S-Att) underwent full testing. Hence, the

additional block in the graph showed as a choice among these three types. A comprehensive structure of
each of the network types that was tested as (9) is provided in Figure 2.
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After this module, a skip connection is performed, and the data is then passed through an additional
block, denoted as (9) in Figure 1, which significantly enhances the results by providing a more complex
representation of temporal data. This critical block can be realized using one of the attention networks or
GCN to produce the concluding data. In our study, the linear attention network outperformed GCN and
softmax self-attention in the additional block. The linear attention network offers linear complexity with
respect to the input length, while the complexity of softmax self-attention is quadratic. A comprehensive
layout of each network variant (GCN, Linear-Attention, Self-Attention) that we experimentedwith for the
additional block is illustrated in Figure 2.

Moreover, both softmax self-attention and linear attention networks have the same number of
parameters, with GCN utilizing slightly fewer. However, during inference or training, the softmax self-
attention network incurs a higher memory footprint and computational usage compared to the linear
attention network.

Our assumption is that the gated convolutional network, serving as the main block, and the branched
convolutions at the beginning of the model help capture local features and introduce new locally found
information to the data. Subsequently, the linear attention network, as an additional block, extracts global
features from the locally transformed data. Self-attention considers all data simultaneously, which may
explain the superior performance of GCN in the main block and the utilization of attention in the
additional block.

Finally, a learnable token is extracted and processed, as depicted in (10) in Figure 1, at the beginning of
the processed input matrix. This token is then fed into the classification layer, shown as (11) in Figure 1.
The classification layer includes the Mish activation function and, considering our concern for memory
usage, the learnable token is of size one timestep or embedding dimension. The two fully connected layers
of the classification layer scale accordingly to the token’s size, resulting in minimal additional parameter
overhead.

Throughout the study, several models were tested, with a focus on three main variants: GLU-HAR,
GLUSA-HAR, and GLULA-HAR. The “GLU” component represents the gated linear unit (or GCN),
“SA” refers to self-attention, and “LA” denotes linear attention. The GLU-HARmodel incorporates GCN
as the additional block, while GLUSA-HAR utilizes softmax self-attention, and GLULA-HAR employs
the linear attention network. As previously mentioned, based on the empirical evaluation, all three use
GCN as their main block. In some tables, the HAR appendage is omitted for brevity.

In summary, our proposed architecture enhances the efficiency and performance of HAR models by
taking into account the unique characteristics of sensor data. Through the utilization of linearized

Figure 2. The graphical portrayal of each network type that was experimented as the additional block:
Linear Attention (a), Softmax Self-Attention (b), and Gated Convolutional Network (c).
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attention, axial positional embedding, and manifold mixup regularization, we address challenges related
to space complexity, time complexity, positional information, and limited training data, thereby contrib-
uting to the advancement of HAR techniques. As discussed later, GLULA-HAR achieved the highest
performance among the three variants, outperforming other models and demonstrating comparable or
superior results compared to state-of-the-art approaches. Further details on these models and their
outcomes can be found in Sections 4 and 5.

3.2. Gated convolutional network

In line with the aforementioned information, it is worth noting that RNN suffers from a lack of
parallelization in input processing, resulting in slower training and inference times. On the other hand,
CNNnetworks can perform computations simultaneously,making them faster thanRNN-based solutions.
To createmore efficient languagemodels, Dauphin et al. (2017) introduced a gated convolutional network
that utilizes parallelizable causal convolutions.

Let us begin by clarifying what causal convolutions entail. Causal convolutions are similar to regular
convolutions, but the input is left-padded with zeros by k�1, where k represents the kernel size of the
causal convolution block. This approach ensures that the GCN only considers previous and current
timesteps, avoiding any influence from future inputs.

The input X would be fed into two different causal convolutional blocks with filters W and V,
respectively, where W,V∈Rk ×C ×C and C is the dimension size of sensors’ signal. Then, two separate
outputs will be put into the gated block, which uses a mechanism of gating linear unit (Dauphin et al.,
2017). This mechanism puts one of the outputs through the activation function and then gates the other by
element-wise multiplication. See formula (1), where b and c are learnable bias parameters; ϕ is an
activation function and f gcn is a function interpretation of a simple GCN.

f gcn Xð Þ¼ X ×W+ bð Þ⊗ ϕ X ×V + cð Þ: (1)

In concept, the gating mechanism can perform the selection of valuable features by V that control what
information from other output (which was convolved byW) will be passed to the subsequent layers. By
this, GCN learns to move only relevant information and gain non-linearity. Furthermore, as reported by
the original paper (Dauphin et al., 2017), the residual skip was added to the GCN for reducing the
vanishing gradient problem, and GCN was with bottleneck structure within a layer for reduction of
computational cost. For the activation function, ϕ, theMish functionwas used as it showed optimal results
in a variety of tasks (Misra, 2019).

3.3. Self-attention

The self-attention mechanism can be viewed as a means of computing the significance or importance of
each timestep in a sequence. In our scenario, the self-attention function establishes relationships between
each timestep and all other timesteps within the input. By assessing the similarities and correlations
between timesteps, self-attention calculates new values for each timestep. These values reconstruct the
timesteps and incorporate information from other timesteps based on their relevance.

As detailed by Vaswani et al. (2017), the query, key, and value (Q, K, V ) can be formed by linearly
transforming the source sequence using three distinct learnedweightmatricesWq,Wk , andWv. The query
can be envisioned as the information being sought, while the key represents the data that is pertinent to this
information. The value, on the other hand, is a learned representation of the content within the input.

In our case,we represent the query and the key as separate transformed timesteps,which are subsequently
compared. This comparison is accomplished through a scaled dot-product, following the approach outlined
in Vaswani et al.’s (2017) paper. The output of this comparison represents the similarities between the query
and key, or in other words, the attention scores among different timesteps. Next, the output is normalized
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using softmax and multiplied by the value vector, resulting in values that encode the relative importance of
each timestep and incorporate relevant information from other timesteps.

f hið Þ
at Q,K,Vð Þ¼V 0 ¼ softmax

Q,KTffiffiffiffiffi
dk

p
� �

V , (2)

where

Q,KTffiffiffiffiffi
dk

p (3)

is the compatibility function in the form of a scaled dot-product, dk is the dimension of the key used for
scaling the function to improve numerical stability, hi represents head i. After computing attention on Q,
K, and V, we get an output matrix, which can then further be utilized as an attention head.We can compute
more heads and by this, we can make use of multi-head attention. Distinct heads can capture different
unique features by having individual parameters. Then, to get the final result, the output from different
heads is concatenated, and by applying learned linear projection Wout, the concatenated outputs are
transformed into the original dimension.

f output ¼Wout × concat f h1ð Þ
at ,…, f hið Þ

at ,…, f hIð Þ
at

� �
: (4)

3.4. Linear attention

In the softmax self-attentionmechanism, once the query, key, and value (Q,K, andV) are obtained through
linear transformations, all three are input into equation (2). In our study, the dimensions ofQ,K, and Vare
RN ×D, where N represents the sequence length of the input, andD denotes its dimensionality. Examining
equation (2), we can observe that softmax attention scales quadratically with respect to N , resulting in a
computational complexity of O N2D

� �
(Katharopoulos et al., 2020). This quadratic scaling is also

applicable to memory consumption since the full attention matrix N ×N needs to be stored for gradient
computation.

To alleviate the time and space complexity, it is essential to consider softmax self-attention as a more
generalized form of self-attention, where the similarity function is an exponentiated dot product between
the query and key (Q, K). By introducing a unique value vector V0, the generalized self-attention can be
expressed as follows:

Vi
0 ¼

PN
j¼1sim Qi,Kj

� �
VjPN

j¼1sim Qi,Kj
� � , (5)

where, in the softmax self-attention case, the similarity function sim Q,Kð Þ¼ exp QTKffiffiffiffi
dk

p
� �

as it was
stated above. To note, in the self-attention different similarity function can be used such as polynomial
attention (Tsai et al., 2019).

For equation (5) to be an attention function, a constraint must be followed for a sim �ð Þ function: to be a
non-negative function (Katharopoulos et al., 2020). This actually includes all kernels of type
ker q,kð Þ :R2 ×D !R+ . Then given such a kernel ker q,kð Þ with a feature mapping ϕ, we can define
sim �ð Þ the function as the corresponding kernel ker q,kð Þ¼ ϕ qð ÞTϕ kð Þ. Then we can rewrite the whole
equation (5) as follows,

Vi
0 ¼

PN
j¼1ϕ Qið ÞTϕ Kj

� �
VjPN

j¼1ϕ Qið ÞTϕ Kj
� � , (6)

then, using the associative property of the matrix product, the equation goes further:
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Vi
0 ¼ ϕ Qið ÞTPN

j¼1ϕ Kj
� �

VT
j

ϕ Qið ÞTPN
j¼1ϕ Kj

� � : (7)

Equation (7) is called linear attention. It has linear complexity in time and memory with respect to the

sequence length N , due to
PN

j¼1ϕ Kj

� �
VT

j and
PN

j¼1ϕ Kj

� �
can be computed once for each query

(Katharopoulos et al., 2020).
For linear attention, featuremaps of a certain dimensionalityK are first computed,which in turn give us

the complexity O NKDð Þ for linear attention in terms of mathematical operations. However, Katharopou-
los used an exponential linear unit as the feature map (Katharopoulos et al., 2020). The full equation looks
like this: ϕ xð Þ¼ elu xð Þ+ 1. In linear attention, this feature map resulted in a complexity of O ND2

� �
in

terms of mathematical operations. It is very efficient if N is considerably greater than D. As the authors
have shown in their work, linear attention achieved results comparable to regular softmax self-attention
while being faster on the taskwhere the length of the sequence is higher than the dimensionality of the data
(Katharopoulos et al., 2020).

3.5. Training techniques

The development of Manifold Mixup regularization was driven by the need to address the issue of
overconfident predictions made by neural networks trained on hard labels (Verma et al., 2019). Over-
confidence can be problematic as it may result in incorrect classifications when evaluated on slightly
different samples, which can include outliers, noise, or distribution shifts.

To mitigate these effects, manifold mixup regularizers aim to encourage deep learning models to
produce less confident predictions during training by leveraging the interpolation of hidden features as an
additional training signal.

Algorithm 1 Manifold mixup regularizer (Verma et al., 2019)

Input: Deep neural network f with set of layers S and parameters θ, constant α, input minibatches.
1 Random layer k from S is selected.
2 Minibatches x,yð Þ and x0,y0ð Þ is fed through the layers of the network f until layer k. The resulting

hidden representations are gk xð Þ,yð Þ and gk x0ð Þ,y0ð Þ. Minibatches could be two distinct or the same
reshuffled batch.

3 Input Mixup Mixλ is performed on intermediate hidden representations gk xð Þð Þ, gk x0ð Þð Þ and one-hot
labels (y, y0). The result is the mixed minibatch: gk ,y≔Mixλ gk xð Þ,gk x0ð Þð Þ,Mixλ y,y0ð Þ,
where Mixλ q,uð Þ¼ λ �q+ 1� λð Þ �u and λ�Beta α,αð Þ.

4 The forward pass is continued in the model from where we stopped at the layer k until the output using
newly acquired mixed minibatch.

5 The output and mixed labels y are fed into the loss function, and the calculated value is used to update
all of the parameters θ in f . During updating, backpropagation goes through the whole computational
graph.

Output: Neural network f with updated θ.

In order to represent this regularization technique, we first define a deep neural network as
f xð Þ¼ f k gk xð Þð Þ, where gk represents a component of the network that maps the input x to the hidden
representation at a specific layer k. The function f k encompasses the remaining parts of themodel that lead
to the output f xð Þ based on the extracted features gk xð Þ. To incorporate Manifold Mixup as a regulari-
zation approach for training such a network, we need to follow five steps.

By employing Manifold Mixup during training, the resulting network exhibits smoother decision
boundaries across various levels of representation, as noted in Verma et al.’s (2019) work. Moreover, the
network learns flattened class representations with reduced variance directions. These effects ultimately
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enhance themodel’s generalization capabilities, leading to improved performance not only on test data but
also in the face of adversarial attacks (Verma et al., 2019).

We also considered Manifold Mixup as a valuable data augmentation technique, particularly in
scenarios where datasets are limited, such as in the case of HAR datasets. The rationale behind utilizing
Manifold Mixup is that it generates newmixed samples at each step, which differ not only due to changes
in mini-batches but also as a result of shuffling and mixing at various layers. Hence, we applied and
evaluated this regularization method in our work.

Another challenge associated with limited datasets is the issue of overfitting and divergence. Over-
fitting arises from training on a small sample space, but we partially addressed this problem by
incorporating Manifold Mixup. However, to further mitigate divergence between re-initialized networks,
scheduling techniques can be employed. These techniques promote more stable training and weight
updates. In our study, we utilized the one-cycle policy proposed by Smith (2018). This policy involves
gradually increasing the learning rate to amaximum value and then annealing it close to zero. The result is
that it helps the model navigate steep points of the loss landscape and settle into flatter minima, enhancing
stability during training.

4. Experiment evaluation

The section begins by presenting the setup and performance measurements. Subsequently, we provide
details regarding the datasets and preprocessing techniques employed. The final subsection outlines the
training procedures implemented and the hyperparameters utilized in the experiments.

4.1. Setup and evaluation

Our proposed solution was implemented using the PyTorch library and trained and tested on a cloud-
based GPU. The network was randomly initialized, and a batch size of 64 was utilized. To ensure
robustness, each experiment was repeated five times with different seeds, and the averaged values from
these experiments were used in the tables for analysis.

For evaluating and comparing the models’ performance, we employed the weighted F1-score as the
measurement metric. The weighted F1-score takes into account the label imbalance of HAR datasets and is
independent of the class distribution (Tang et al., 2020). Similar to themacro F1-score, theweighted F1-score
assigns a weight to each class, which corresponds to the class’s sample proportion in the total dataset:

Fw ¼
XC
c¼1

Nc

N total

2×Precisionc ×Recallc
Precisionc +Recallc

, (8)

where

Precisionc ¼ True positives for classc
True positives for classc+False positives for classc

, (9)

Recallc ¼ True positives for classc
True positives for classc+False negatives for classc

: (10)

4.2. Datasets

To evaluate the proposed model, its variations, and different training techniques, we utilized five HAR
datasets for our experiments.

The first dataset used for benchmarking is PAMAP2 (Reiss and Stricker, 2012). PAMAP2 consists of
sensor data from three IMUs placed on the chest, the dominant leg’s ankle, and the wrist of the dominant
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arm. Each IMU includes an accelerometer, gyroscope, magnetometer, and temperature sensor. Heart rate
measurements were also recorded separately. The sensors had a sampling frequency of 100 Hz, except for
the heart rate which was sampled at 9 Hz. PAMAP2 was collected from 9 participants and contains
12 different activities, with an additional 6 activities that were not used. Activities include basic postures,
locomotions, household chores, and recreational/sports. Each type of activity was collected in different
sessions with a time break between them. Following the principle of leaving-one-subject-out as done in
previous works (Tonmoy et al., 2021), we used data from participant number 106 as the benchmark test
set, while the rest of the dataset was used for training.

The second dataset is SKODA (Stiefmeier et al., 2008), which focuses on describing the activities of
workers in a car manufacturing environment. The dataset includes several accelerometers worn by aworker,
with a sampling frequency of 98 Hz. Data was recorded from a single subject for all cases. The dataset
comprises 10different activities performedduring the automanufacturing process, alongwith a null division
representing no activity. In total, there are 11 classes. These activities range from manual documentation
tasks (like writing on a notepad) to specific inspection or manipulative actions related to different parts of a
vehicle. For training, 90% of each class was used, while the remaining 10% was reserved for testing.

The third dataset is OPPORTUNITY (Roggen et al., 2010), which contains data from body-worn and
ambient sensors, with each timestep annotated with a specific activity. Activities are annotated at three
levels: high-level, mid-level, or gestures, and low-level or modes of locomotion. For our experiment, we
focused only on the mid-level activities, while other activities were labeled as null. This resulted in a total
of 18 different activities, with a significant class imbalance where around 75% of the dataset consists of
the null class. The dataset includes one drill session and five daily activity (ADL) sessions performed by
the subjects. Drill sessions involve the subject carrying out a specific sequence of actions, such as opening
and closing various kitchen doors and engaging in cleaning and drinking from various positions. In ADL
routines, the individual performs broader tasks like waking up, grooming, preparing breakfast, and
cleaning, but has more flexibility in the order of these specific actions. The sensors were sampled at a
frequency of 30 Hz. Following previous research, we used the fourth and the fifth ADL sessions
performed by subjects 2 and 3 for testing, while the rest of the dataset was used for training and validation.

The fourth dataset is USC-HAD (Zhang and Sawchuk, 2012), which provides sensor data from body-
worn gyroscopes and accelerometers. Each sensor provides 3-axis readings, resulting in a total of six
dimensions for each instance of data. The sampling rate is set at 100 Hz. The dataset consists of an equal
number ofmale and female participants,with each subject performing 12different activities. These activities
span from dynamic motion tasks like walking, jumping, and running to various stationary postures. USC-
HAD is a challenging dataset due to the diversity of activities, sensor placement, and low dimensionality,
which limits the available activity information. However, the dataset size is larger compared to the other
three datasets, and it is also balanced unlikeOPPORTUNITY,which is heavily skewed toward the null class.
Following the LOSO principle, two subjects (13 and 14) were separated for testing.

The last dataset is DAPHNET (Bachlin et al., 2009), which was collected to evaluate the ability of
different machine learningmethods to learn and recognize gait freeze events. This dataset has the potential
for developing an assistant for Parkinson’s disease patients. The data includes readings from three
wearable acceleration sensors placed on the hips and legs, resulting in a total of nine channels per sample.
Each sample is annotated as either a freeze or not. DAPHNET shares similar challenges with USC-HAD
in terms of sensor placement and low dimensionality, which limits the available information for activity
prediction. However, the dataset is imbalanced toward the no-freeze class and has only two classes to
recognize. The sensors were sampled at a frequency of 64 Hz. Following previous works, we used subject
2 as the benchmark test set (Tonmoy et al., 2021).

A summary of each dataset, including key information and an outline, can be found in Table 1.

4.3. Window sizes’ analysis

Window sizes can differ, but changing them alters the dataset’s sample count and activity distribution. As
a result, comparing models that use different window sizes for evaluation is not equitable.
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We have also considered performance relative to different window sizes, informed by existing
research. For instance, in Ma et al. (2019), the authors analyzed the impact of window size on final
scores. Their findings showed that a smaller sliding window typically leads to weaker recognition
accuracy. Optimal performance was achieved with 15 and 20-width sliding windows for Skoda and
PAMAP2, respectively. InMahmud et al. (2020), the model they introduced was only slightly affected by
window size changes. However, they did notice that datasets with complex activities needed a more
extended sliding window for capturing the correct activity label.

Thus, by taking into account the prior analyses and ensuring a fair comparison, we have selected
window sizes for each dataset based on those used in benchmarkmodels and recent works in the literature.

As for computational performance, the window size has a direct linear effect on inference speed due to
our solution’s design. As outlined in the manuscript, many of the GLULA layers possess a linear time
complexity concerning input length. That includes the additional block (Linear Attention) andmain block
(GCN). So, if the window size is doubled, the input length also doubles, roughly doubling the inference
time. However, there is always some computational overhead, so it will not exactly double the time, but
close to that. This can be prominently seen in Table 4. Nevertheless, the model size (the number of
parameters) remains constant independently of the window size. The reason is that the number of
parameters depends on the embedding dimension, which, in turn, is related to the sensor output
dimensionality, not the window size.

4.4. Data preprocessing

All the presented datasets contain NaN values, which occurred during the recording process. These NaN
values indicate instances where sensors were not functioning properly due to various reasons such as loss
of connection, internal errors, or inability to maintain the sampling frequency.

NaN values can have a significant impact on the computations of the model and can potentially corrupt
the results. Therefore, as a preprocessing step, the data were linearly interpolated to replace the NaN
values with estimated values based on neighboring samples.

Furthermore, it was observed empirically that normalized data tends to exhibit more stable behavior
during training and can accelerate the convergence of the model. To achieve this, all the datasets were
subjected to Z-score normalization, which standardizes the data distribution.

Next, the data were segmented using a slidingwindow techniquewith a 50%overlap. Thewindow size
for PAMAP2, DAPHNET, and OPPORTUNITY was set to the standard value of 5 s in real-time, as used
in previous works (Tonmoy et al., 2021). For the SKODA dataset, the window size was set to 2.5 s. In the
case of USC-HAD, the window size was set to 1 s, which is the standard time span utilized in related
studies (Haresamudram et al., 2020; Mahmud et al., 2020). After segmentation, each resulting sequence
was fed into the network for classification, where the model performed predictions on each segment.

4.5. Hyperparameters and training

Firstly, various attention networks were tested as the main block in the model, but they did not yield any
improvement in performance. Moreover, they consumed more memory and time compared to GCNs.

To evaluate the performance of different network configurations in the additional block layer, three
types of models were constructed as described in Section 3. The first model, called GLU-HAR, utilized

Table 1. Information about presented datasets’ structure

Dataset Number of activities Number of subject(s) Test subject(s) ID

PAMAP2 12 9 106
SKODA 11 1 10% of each class
OPPORT. 18 4 2,3(Run 4,5)
USC–HAD 12 14 13, 14
DAPHNET 2 10 2
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GCNs as both the main block and the additional layer. The second model, GLUSA-HAR, used a GCN as
the main block and a self-attention block as the additional layer. The GLULA-HAR model shared the
same structure as GLUSA-HAR but employed a linear attention network as the additional layer.

Two other models, namely GLUDynamic-HAR and GLUlightweight-HAR, were not included in the
resulting tables and were not evaluated with other parameters. These models followed a similar structure
to GLUSA-HAR, but differed in the additional layer, utilizing dynamic layers and lightweight convolu-
tional networks, respectively (Wu et al., 2019). However, the results obtained from these models were
significantly inferior to the scores achieved by GLUSA-HAR, and thus they were not further tested.

In the model, the input data is embedded into a new dimensionality from the original number of
channels. After resizing, it is important to ensure that the attention layer utilizes different heads to capture
distinct features. To achieve this, the embedding dimension E was set to be a power of two. Specifically,
we computed E¼ 2⌈ log2 Cð Þ⌉, where C represents the number of channels. The count of model parameters
differs proportionally to E for each dataset. In the case of USC-HAD, where the channel set is limited, the
model size is smaller. To enhance its learning capabilities, the embedding dimension was doubled.
Despite this modification, the number of parameters for USC-HAD remained comparatively low. More
details can be found in Section 5.2.

A comparison between the Adam and AdaBelief optimizers was conducted in Section 5.1. Both
optimizers performed well, but AdaBelief showed better performance. AdaBelief is a combination of
Adam and stochastic gradient descent (SGD), providing flexibility to adapt to different problem
scenarios. Additionally, AdaBelief takes into account the gradient and the curvature of the loss function.
Based on the test results and the aforementioned reasons, all experiments utilized the AdaBelief optimizer
during training.

As mentioned earlier, HAR datasets can be imbalanced, as in the case of OPPORTUNITY, and have a
limited sample size, which is crucial for self-attention-based models. However, the opposite holds true for
USC-HAD, where there is an equal number of examples per class and a large number of samples.
Therefore, Manifold Mixup and input balancing techniques were employed for PAMAP2, SKODA,
DAPHNET, and OPPORTUNITY.

In GLUSA-HAR and GLULA-HAR, two attention heads were utilized for PAMAP2, SKODA, and
OPPORTUNITY. However, for USC-HAD and DAPHNET, which have a small number of channels and
consequently a small embedding size, only one attention headwas used. Nevertheless, using two attention
heads for these datasets would not noticeably degrade performance. Increasing the embedding size to
make the model wider in all dataset cases, as mentioned before, did not lead to any significant changes.

5. Results of the experiments

Initially, in 5.1, training techniques were assessed on our proposed models, GLULA and GLUSA.
Subsequently, three variations of the model were trained using the suggested training methods and
compared across HAR datasets in Section 5.2. Additionally, the impact of the network structure on
inference time was examined.

In Section 5.3, we provide a brief description of the networks employed in other HAR papers. These
networks are then compared with our proposed model in Section 5.4, utilizing benchmark test sets.
Furthermore, in Section 5.5, a comparison is conducted using the leave-one-subject-out cross-validation
technique. In Section 5.5, we also delve into an experiment focused on performance speed comparisons.
To emphasize the efficiency and acceleration achieved by our proposed method in contrast to contem-
porary state-of-the-art models, experiments were conducted comparing inference times. These compar-
isons utilized the official implementations of the networks outlined in Section 5.3.

5.1. Evaluation of training methods

Before evaluating the proposed model and its variations with the suggested training techniques, it is
important to test the performance of each training method individually. For this purpose, the PAMAP2
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dataset was selected as it provides a good balance among the different datasets. PAMAP2 is moderately
imbalanced, but not as severely as OPPORTUNITY, and it has a sufficient sample size for training,
although smaller than USC-HAD. This makes PAMAP2 a suitable benchmark for comparing the
performance of our model under different training conditions and assessing how well the suggested
methods meet the proposed expectations. Both GLULA and GLUSA models were used for testing the
training techniques, while GLU-HARwas not considered due to its overall poor performance, as shown in
Section 5.2.

As depicted in Table 2, manifold mixup (MM) significantly improved the performance of GLUSA.
With GLULA, although the F1-weighted score remained nearly the same, themacro-score increased from
80:65 to 85:13. This indicates that MM helped the model better capture class differences, while the
weighted score showed minimal change. It is worth noting that mixups can be seen not only as a
regularization technique but also as an augmentation method. Such an approach can be particularly
beneficial in scenarios with limited data or imbalanced class distributions. Therefore, it can be effectively
employed to address the specific requirements of HAR tasks, as demonstrated in our results.

Furthermore, as observed in Table 2, scheduling techniques contributed to more stable training and
reduced divergence acrossmultiple observations (five in our case). This is evident from the lower standard
deviation (STD) observed across the results of the experiments. With more stable training, the average
score of GLULA improved to 88%, as it no longer had a lower offset than before.

When evaluating the results of using the AdaBelief optimizer, it is evident that the accuracy scores for
both GLULA and GLUSA models improved significantly. The training process of the models benefited
from AdaBelief’s capability to consider both the curvature of the loss function and its gradient.
Additionally, another advantage of incorporating the AdaBelief optimizer is its tuning capacity, which
allows for further optimization. In the other datasets, the inclusion of AdaBelief resulted in nearly
identical results for both GLUSA and GLULA models.

5.2. Evaluation of proposed models

First, it can be observed fromTable 3 that GLULAandGLUSAmodels have the same parameter count for
each dataset. This similarity arises due to both linear attention and self-attention layers having an equal
number of learning parameters. However, they differ in terms of time and space complexities during
inference. Linear attention approximates the computations of softmax self-attention, resulting in linear
complexity with respect to the input length but without reducing the parameter count. On the other hand,
GLU-HAR has a slightly larger parameter count.

Overall, despite the similar structure, the networks’ sizes are nearly identical, but they exhibit
significant differences in their complexities. GLULA-HAR is faster than GLUSA-HAR, as reflected in
the speed comparison shown in Table 4. However, the most crucial factor is performance, as indicated by
the F1�weighted scores. As seen in Table 3, GLULA-HAR outperforms GLUSA-HAR by a small
margin on the PAMAP2 dataset. Conversely, GLU-HAR performs substantially worse than the other two
models, with a score of 64.05%.

Table 2. F1-weighted scores with STD on PAMAP2 using training methods on GLULA and GLUSA models

Methods Models F1w STD

Adam GLULA–HAR 86.69 3.18
GLUSA–HAR 87.15 3.91

Adam + MM GLULA–HAR 86.04 3.48
GLUSA–HAR 88.54 2.52

Adam + MM + Scheduling GLULA–HAR 88.08 2.89
GLUSA–HAR 88.12 2.38

AdaBelief + MM + Scheduling GLULA–HAR 90.09 1.14
GLUSA–HAR 89.89 2.16
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Table 3 demonstrates that GLUSA-HAR and GLULA-HAR have almost the same score on the
SKODA dataset. The results exhibit a slight fluctuation of 0.13%, with GLUSA-HAR having a slight
advantage. Once again, GLU-HAR achieves the lowest score. In both the PAMAP2 and SKODAdatasets,
the embedding size is the same due to the number of channels, resulting in approximately 50 K
parameters. The only minor difference arises from the classification and embedding layers.

For the OPPORTUNITY dataset, the segments have the same number of timesteps as PAMAP2, but
the number of sensor dimensions is tripled, and the embedding size is doubled. Consequently, the models
are larger in size. Similar to SKODA, GLUSA-HAR, and GLULA-HAR show minor differences in
performance, with GLULA-HAR leading by 0.43% with a score of 95.93.

The USC-HAD dataset is the most complex, with the lowest number of channels and a small-scale
embedding dimension. Even after doubling the embedding dimension, the number remains small, around
4.0 K. In this case, GLU-HAR once again performs the worst. GLULA-HAR outperforms the softmax
self-attention-based model by 5.12%, achieving a F1�weighted score of 59.38%. Attempts to improve
the model’s performance on USC-HAD by adding more learnable tokens or increasing the embedding
dimension resulted in a size increase but degraded network performance due to overfitting. Therefore, the
number of parameters for USC-HAD is optimal, and the embedding cannot extract more valuable
information even with a low count.

In the DAPHNET dataset, the embedding dimension is the same as in USC-HAD, which is 16. This
leads to an almost identical number of parameters between the DAPHNETand USC-HAD cases, around
4.0 K. However, what makes the DAPHNET task easier compared to USC-HAD is that there are only two
activity classes: gait freeze and not. Similar toUSC-HAD,GLU-HARperforms theworst, while GLULA-
HAR outperforms the self-attention-based model by a significant margin, with a score of 94.11% for the
linear-attention-based model compared to 92.38% for GLUSA-HAR on the benchmark test set.

Although softmax self-attention is a powerful mechanism, it may lead to overfitting in constrained
environments. In contrast, linear attention, despite being an approximation, often provides a more general
solution. This is evident in the significantly higher weighted F1 scores achieved by GLULA-HAR in the

Table 3. Results obtained on different datasets using the proposed GLULA and its variations

Dataset Models F1w Num. of Param. (K)

PAMAP2 GLULA–HAR 90.09 50.2
GLUSA–HAR 89.89 50.2
GLU–HAR 64.05 54.4

SKODA GLULA–HAR 97.63 51.4
GLUSA–HAR 97.76 51.4
GLU–HAR 88.77 55.6

OPPORT. GLULA–HAR 95.93 196
GLUSA–HAR 95.50 196
GLU–HAR 87.50 213

USC–HAD GLULA–HAR 59.38 4.0
GLUSA–HAR 54.26 4.0
GLU–HAR 38.31 4.3

DAPHNET GLULA–HAR 94.11 3.8
GLUSA–HAR 92.38 3.8
GLU–HAR 80.69 4.1

Table 4. Speed comparison using the average forward pass time of our model with its variations on different datasets

Model PAMAP2 SKODA OPPORT. USC-HAD DAPH.

GLU 34.3 17.7 18.6 6.82 20.38
GLULA 35.2 18.1 18.8 6.84 20.43
GLUSA 42.8 19.5 19.4 7.53 22.1

Note. The unit is milliseconds (ms).
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USC-HAD and DAPHNET datasets, and comparable results to the GLUSAmodel on other benchmarks.
Therefore, in the context of HAR, linear attention proves to be more effective.

Additionally, in theory, GLULA-HAR should be faster during both forward and backward propagation
compared to GLUSA-HAR. To verify this, we examine the speed of the models, as presented in Table 4.

We conducted a comparison of the inference times for each network on different datasets, using a
cloud-based system. It is important to note that the time values provided may vary across different
machines. The measurements are given in milliseconds, with lower values indicating better performance.

As shown in Table 4, GLULA-HAR consistently outperforms GLUSA-HAR in terms of speed across
all datasets. This advantage is more pronounced when the ratio between input dimensionality and input
sequence length is lower. Notably, this effect is particularly evident in the PAMAP2, DAPHNET, and
USC-HADdatasets, where the ratio is the lowest. AlthoughGLU-HARwas the fastest among themodels,
its poor performance and higher number of parameters outweigh this advantage. Therefore, this variation
of the model is considered the least favorable.

While the inference times of the models were relatively close in our cloud-based GPU setup if we were
to reduce the allocated memory and bandwidth or increase the batch size, the speed difference between
GLULA-HAR and GLUSA-HAR would become more pronounced. This indicates that in computation-
ally limited environments, such as embedded systems, GLULA-HARwould be even faster thanGLUSA-
HAR.

Considering both the speed results and the performance scores from Table 3, we can conclude that the
GLULA-HAR model is the preferred choice among the different variations of the proposed solution.
Furthermore, it offers the advantage of linear complexity compared to the quadratic complexity of
GLUSA-HAR.

5.3. Compared algorithms

We conducted a comparison between our proposed models, GLULA-HAR and GLUSA-HAR, and
several other existing methods:

Lego-CNN (Tang et al., 2020): A lightweight convolutional neural network that employs memory-
efficient lego-filters.

Self-Att (Mahmud et al., 2020): A self-attention-based model that utilizes SA blocks along with sensor
Modality Attention and global Temporal Attention. The evaluation of this model differs from others as it
uses the F1�macro score instead of F1�weighted. We followed the structure of the model and
estimated the number of parameters. However, we could not reproduce the results on the PAMAP2
dataset due to aminor code oversight, where the label class was included as input during inference instead
of being predicted. Therefore, we relied on the results presented in the papers (Mahmud et al., 2020;
Tonmoy et al., 2021).

DeepConvLSTM (Ordóñez and Roggen, 2016) (also known as DCL): A classical approach for HAR
tasks that combines convolutional layers with recurrent units. The exact number of parameters may vary
depending on different implementations. This model can be trained effectively with limited data, unlike
self-attention-based models and transformers. Hence, we referred to the results presented in Ma et al.
(2019) and Tonmoy et al. (2021).

Attsense (Ma et al., 2019): Amultimodal model that incorporates attention-fusion subnets. It combines
convolutional layers, Gated Recurrent Units, and attention mechanisms. This model extends the Deep-
ConvLSTM and DeepSense models, and the number of parameters is similar to DeepConvLSTM.
However, due to its reliance on recurrent mechanisms, it is less computationally efficient in terms of
inference and training speeds.

R-CNN (Moya Rueda et al., 2018): A convolutional neural network that has demonstrated high
performance on various datasets. Although the original work did not cover all the datasets we used, we
employed the official implementation and extracted the number of parameters.

HSA (Tonmoy et al., 2021): This model addresses the challenge of recognizing unseen activities
through a hierarchical self-attention-based approach. It combines data from different sensor placements
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over time and incorporates a decoder that uses feature representations from the self-attention encoder for
detecting unseen activities in open-set recognition. However, the encoder-decoder structure of hierar-
chical self-attention adds complexity. Similar to the Self-Att model, there was a misstep in the PAMAP2
dataset implementation where labels were included as part of the input during inference. We relied on the
results from the paper (Tonmoy et al., 2021), but this oversight should be addressed in future works.

iSPLI (Ronald et al., 2021): A deep learning model inspired by the Inception-ResNet structure
introduced by Google. It emphasizes high predictive accuracy while utilizing fewer device resources.
The authors tested the architecture on four datasets using transfer learning and believe that their work will
establish a benchmark.

Although ourmodel can also be compared to classical machine learning solutions, it has been observed
in Ma et al. (2019) that machine learning models underperform compared to deep learning models across
all benchmark datasets.

In conclusion, we have compared our models, GLULA-HAR and GLUSA-HAR, to various existing
methods, considering their different architectures, performance metrics, and complexities.

5.4. The analysis of experimental results

In Table 5, the “Num. of Params” column provides four values representing the model sizes for the
PAMAP2, SKODA, OPPORTUNITY, and USC-HAD datasets, respectively. If only one value is
specified, it indicates that the network size remains relatively consistent with marginal changes across
different datasets. The performance of the models is measured using the F1�weighted score, except for
the Self-Att network (Mahmud et al., 2020), which utilizes the F1�macro score. We also calculated the
macro score for our proposed solution. However, for the DAPHNET dataset, we relied on the F1�
weighted result presented in Tonmoy et al. (2021), given that both works are from the same author,
ensuring the reliability of the score numbers. In the table, to account for the score type differences, two
scores are presented in the format of F1�weighted=F1�macro.

As shown, our proposed model, GLULA-HAR, achieves the highest scores in four benchmark
datasets: USC-HAD, OPPORTUNITY, DAPHNET, and SKODA. GLUSA-HAR slightly outperforms
the F1w score for the SKODA dataset but falls behind in all other measurements.

On the PAMAP2 dataset, both models underperformed compared to R-CNN (Moya Rueda et al.,
2018), HSA (Tonmoy et al., 2021), and Self-Att (Mahmud et al., 2020). The Self-Att network had 11 times
more parameters than our solutions, while HSA had 10 times more parameters. GLULA-HAR had a
slightly lower score than Lego-CNN but used 50 times fewer parameters than Lego-CNN (Tang et al.,
2020). When comparing GLULA with Attsense (Ma et al., 2019), a linear-attention-based solution,
GLULA had over six times fewer parameters and a higher F1�w score by almost 1%.

Since the SKODA dataset is less complex than others, all presented algorithms achieved an F1 score of
no less than 91%. Our model obtained the highest results among recent works while maintaining a
substantially lower number of parameters. For example, HSA had 40 times more parameters, while
Attsense had six times more.

Table 5. Size and scores (F1-weighted/F1-macro) comparison of our model with listed methods on benchmark datasets. The bold
values indicate the best or close to the best results for the corresponding metric in the table’s column among presented models.

PAMAP2 SKODA OPPORT. USC-HAD DAPH. Num. of Params

GLULA 90.1/90.3 97.6/96.3 95.9/78.0 59.4/50.9 94.1/79.7 50/51/196/4/4 K
GLUSA 89.9/88.0 97.8/96.6 95.5/72.2 54.3/46.5 92.4/72.8 Same as above
Lego–CNN (Tang et al., 2020) 91.4/ – 85.5/ – – 2.86 M/�/610 k/�/�
Self–Att (Mahmud et al., 2020) /95.0 /93.0 /61.0 /50.0 82.0/ 590 K
DCL (Ordóñez and Roggen, 2016) 74.8/ 91.2/ 67.0/ 38.0/ 84.0/ 331 K
Attsense (Ma et al., 2019) 89.3/ 93.1/ – – – 331 K
HSA (Tonmoy et al., 2021) 99.0/ 95.0/ 68.0/ 55.0/ 85.0/ 0.51/2.1/0.91/2.3/0.59 M
iSPLI (Ronald et al., 2021) 89.0/ – 88.0/ – 94.0/ 1.34 M/�/1.35 M/�/1.33 M
R–CNN (Moya Rueda et al., 2018) 93.7/ – 92.1/ – – 26 M/�/30 M/�/�
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For the OPPORTUNITY dataset, the difference in sizes was less significant, but the performance
improvement was notable. There were evident contrasts in parameter count and performance between our
solution and the classical DeepConvLSTM (Ordóñez and Roggen, 2016) as well as recent state-of-the-art
models. Furthermore, Attsense, an expansion of DeepSense, which itself was based on DeepConvLSTM,
exhibited a similar model size reduction compared to our proposed model.

In the USC-HAD dataset, our model outperformed the previous state-of-the-art models while contain-
ing significantly fewer parameters than the HSA and Self-Att networks, which showed similar perfor-
mance. GLULA, with only 4,000 parameters, wasmuch smaller compared to HSA, which had 2.3million
parameters.

The GLULAmodel for the DAPHNET dataset had an embedding dimension of 16, resulting in a model
size almost equal to that of the USC-HAD case. The iSPLI network achieved an identical F1�weighted
performance score of 94.0%.Ourmodel performed slightly better by0.1%while containing300 times fewer
parameters. The second closest model in terms of performance was HSAwith an F1 score of 85%.

Overall, GLULA-HAR consistently achieves similar or higher scores than the softmax self-attention-
based proposed model in all benchmark datasets. It also offers higher performance speed and lower
complexity. Among all knownmodels, GLULA-HAR achieves the highestF1� score results in theUSC-
HAD, SKODA, DAPHNET, and OPPORTUNITY datasets, surpassing state-of-the-art models. Addi-
tionally, the proposed solution exhibits significantly fewer parameters than the presented networks.

5.5. The analysis of experimental results of LOSO cross-validation testing

To further demonstrate the validity of our proposed method, we conducted leave-one-subject-out cross-
validation experiments on our model using each dataset, including SKODA. This approach involved
excluding the data of one subject at a time for evaluation and repeating this process for each subject in the
dataset. We then collected the results for each subject and calculated the average score across subjects. To
account for randomness in the training, we performed the subject evaluation experiment five times with
different seeds and took the mean score.

In the case of the SKODA dataset, which consists of only one subject, we divided the dataset into
10 random non-overlapping chunks to simulate the leave-one-subject-out cross-validation. We used the
F1-weighted score as the evaluation metric and compared our proposed solution with a self-attention-
based modification of the model, referred to as GLUSA. As shown in Table 6, GLULA outperforms
GLUSA by a noticeablemargin of about 1% in all datasets, except for USC-HAD and SKODA.However,
when we consider the standard deviation of the performance across the evaluation trials, the difference
between the proposed models in LOSO experiments is modest.

To continue further on the performance evaluation of our proposed models in LOSO cross-validation
testing, we incorporated results from othermethods detailed in Section 5.3 for a comparative analysis with
our models, namely GLULA-HAR and GLUSA-HAR. In particular, the models HSA (Tonmoy et al.,
2021) and Self-Att (Mahmud et al., 2020) are presented in Table 6. This inclusion is because these models
either outperform or are on par with other recent models (besides proposedmethods) in terms of results on
benchmark datasets, as shown in Table 5. A supplementary reason for adding these models is that their
authors conducted LOSO cross-validation studies, in contrast to models like iSPLI (Ronald et al., 2021),
which lack such results.

Table 6. LOSO-Cross-Validation F1-weighted scores comparison. The asterisk highlights the oversight in the reported result of the
model’s experiment (row) on the corresponding dataset (column), where data leakage occurred in the form of labels being

inadvertently included as part of the input.

PAMAP2 SKODA OPPORT. USC-HAD DAPH.

GLULA 74.8 ± 1.8 98.0 ± 0.5 79.0 ± 0.8 71.3 ± 4.3 86.2 ± 2.4
GLUSA 73.7 ± 2.1 98.0 ± 0.6 77.9 ± 0.4 72.4 ± 2.2 85.4 ± 1.9
HSA 94.0* – 43.0 68.0 72.0
Self–Att 92.0* – 42.0 60.0 71.0

e10-18 Aldiyar Bolatov, Aigerim Yessenbayeva and Adnan Yazici

https://doi.org/10.1017/wtc.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2024.5


As evidenced by Table 6, both GLULA and GLUSA demonstrate superior performance during the
LOSO cross-validation testing relative to HSA and Self-Att across three benchmark datasets: USC-HAD,
OPPORTUNITY, and DAPHNET. Although the performance gap in the USC-HAD dataset is minimal,
the LOSO results on the DAPHNETand OPPORTUNITYunderline the noticeable advantage of GLULA
over HSA and Self-Att in these datasets.

Similar to earlier analyses on benchmark test sets, Self-Att and HSA displayed commendable results
on PAMAP2 LOSO cross-validation, with scores of 94.0 and 92.0%, respectively. Conversely, GLULA
yielded a lower F1 of 74.8%. However, in the official implementation of HSA and Self-Att in the
PAMAP2 dataset, a critical oversight was identified in the data preparation process. This misstep is
present both in LOSO cross-validation experiments and benchmark set tests as referenced in 5.3.
Specifically, this involved a form of data leakage where labels were inadvertently included as part of
the input during inference. As mentioned earlier, this oversight should be addressed in future works.

Additionally, the performance of GLULA on the PAMAP2 LOSO cross-validation provided interest-
ing insights into the dataset and themodel’s adaptability to different subjects. Among the nine participants
in the dataset, subjects 105 and 109, when used as test sets, exhibited the lowest performance scores.
While no specific anomalies were identified in the data for subject 105, it is noteworthy that subject
109 was the only left-handed participant in the dataset (Reiss and Stricker, 2012). This particularity
suggests that when the model was evaluated using subject 109 as the test set, it had been trained
exclusively on data from right-handed participants, potentially contributing to the poor performance
observed. This observation shows the need for future datasets to encompass a more diverse collection to
better understand the effect of handedness on the model’s capacity to differentiate actions.

Regarding the SKODA dataset, as it was mentioned, there is only one subject present in the set.
Consequently, it was not engaged in LOSO cross-validation testing for Self-Att and HSA. In contrast, we
added outcomes from analogous experiments for SKODA to gather data for future comparative analyses.

It is important to note that the number of parameters remained consistent across these experiments, the
same as in 5.4. This consistency reinforces the assertion that our proposed model boasts a significantly
reduced parameter count compared to the recent works in the literature. This factor should be considered
when evaluating models based on LOSO cross-validation.

A noteworthy observation from the results is the consistent drop in performance across all models
when subjected to the LOSO cross-validation testing. This decline does not necessarily stem from flaws in
the networks’ architecture or training. This phenomenon appears to be prevalent among the evaluated
models. A plausible explanation for this observed trend could be attributed to uneven data distributions
across individual subjects within the datasets. Such disparities might lead to irregular outcomes across
differing participants. For instance, there exist scenarios where specific actions are absent for a given
subject while being present in others for training. Such inconsistencies in action distribution across
subjects can diminish the model’s performance on specific participants, culminating in a lowered
aggregate score during LOSO cross-validation.

Considering the aforementioned observations and contrasting the outcomes of our proposed method-
ology with the latest state-of-the-art techniques, it becomes evident that GLULA possesses the compar-
ative robustness to different subject-specific variability and the relative ability to adapt to some changes in
the data distribution. Also, it is important to emphasize that benchmark test sets receivedmore attention in
this work because datasets’ authors tend to ensure a better balance between subjects and the representation
of action classes in the test subset, thereby resulting in more reliable and robust evaluations.

5.6. Examination of inference speed

In Section 5.4, we highlighted that our proposedmethod, GLULA, has a notably reduced parameter count
compared to recent models in the literature. Nonetheless, it is not immediately implied that it will also
guarantee the fastest inference time. To further examine this point, we undertook experiments comparing
the inference times between GLULA and recent state-of-the-art models, including HSA, iSPLI, and Self-
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Att. Our selection was driven by the fact that these networks showed the best or close to the best results in
terms of performance scores, as evidenced in Table 5.

For our experiments, we used the official GitHub implementations of these models, modifying them
specifically for inference purposes. We implemented changes to ensure the models operated solely in
inference mode and further optimized both the models and their forward passes using Just-In-Time (JIT)
compilation. This optimization was applied uniformly, including to our proposed model, to maintain
consistent testing conditions. However, it is important to acknowledge that these conditionsmay not be an
ideal environment for comparison, since there could be potential speed differences due to variability in
computational graph implementations.

The inference time is significantly influenced by the window size (or duration) of the time-series input.
An increase in the length of the time sequence notably elevates computational complexity, consequently
slowing down the inference process. For instance, the complexity of a linear attention block increases
linearly with the sequence length, while softmax self-attention, as previously discussed, scales quadrat-
ically. Table 7 illustrates variations in conditions relating to the configuration of the models’ input shapes.
All dimensions presented in this table are determined post-completion of all of the pre-processing steps,
just prior to model inference.

The first value in each table cell denotes the length of the input sequence for a specific dataset and a
certain model. Differences in sequence length primarily stem from the diverse pre-processing approaches
employed in each study. For example, the Self-Att model employs a three-fold data downsampling,
resulting in the shortest sequence length among the models compared. In contrast, in the other two works
and our own, we directly utilize the datasets’ time steps. It is noteworthy that the Self-Att study (Mahmud
et al., 2020) initially experimented with different window sizes similar in size to those in our work, but
observed inferior performance. Consequently, all results used for the comparison are based on the
dimensions that are listed in Table 7, which showed the best scores in their work.

The second value in the table denotes the total number of sensor channels utilized. In our proposed
model, we employed nearly all channels available in the PAMAP2 and OPPORTUNITY datasets. This
approach aimed to minimize hand-crafted preprocessing steps, allowing us to evaluate the model’s
performance under those scenarios. On the other hand, in the Self-Att and HSA models, authors
selectively used only certain channels, identified through empirical analysis as the most effective, while
discarding others. It is important to note that the second dimension does not significantly impact
computational complexity across datasets. This is because, in all the networks, the channel dimension
is resized from the start using a learnable matrix (Mahmud et al., 2020; Tonmoy et al., 2021).

Additionally, not all datasets had corresponding implementations available, but despite this limitation,
we could still recognize a general speed performance trend for the models on the available datasets. To
facilitate a meaningful comparison between our leading model variant, GLULA, and the highlighted
recent SOTA models, we conducted our evaluations on a device equipped with an NVIDIA RTX 3060
6GB GPU. This specific choice was made to have a constrained computational setting.

For the sake of precision and to ensure the results were not skewed by varying batch sizes, our
experiments were designed tomeasure the inference time for individual data instances. To get an inference
speed performance, we repeated this process 500 times for each model. Additionally, we initiated a GPU
warm-up phase before starting our timed runs. Following all of that, we computed and recorded the
average inference time for each model across the various datasets’ instance size parameters.

Table 7. Configuration of the models’ input dimensions following all pre-processing procedures across datasets

PAMAP2 SKODA OPPORT. USC-HAD DAPH.

GLULA 500, 40 250, 60 150, 113 100, 6 320, 9
Self–Att (Mahmud et al., 2020) 33, 18 49, 60 32, 77 32, 6 –

HSA (Tonmoy et al., 2021) 1500, 18 715, 60 300, 77 200, 6 320, 9
iSPLI (Ronald et al., 2021) 256, 36 – 90, 77 – 192, 9

Note. The first value in the table cell corresponds to the temporal dimension, and the second value represents the number of sensors’ channels.
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It is crucial to emphasize that the time measurements presented might exhibit variations when tested
across diverse computing environments and hardware configurations. Additionally, while the speed of an
optimized model can be influenced by the specifics of its implementation, our results underscore a
recognizable trend. For clarity, all the time measurements in our study are expressed in milliseconds,
where a lower value represents better performance.

Table 8 presents a comparative analysis of the average inference times of GLULA against existing
techniques across benchmark datasets. As previously mentioned, we employed several optimization
tweaks to enhance the inference speed of each model, and then JIT compiled them. These optimizations
resulted in a noticeable reduction in inference times, which also brought the results closer numerically
across different models. Additionally, it is important to note that all models compared in Table 8 are non-
recurrent. This characteristic allows for parallelization across the temporal dimension, leading to smaller
differences in inference times across varying input lengths, especially when using a batch size of one. For
instance, GLULA demonstrated an average inference time of 0.94 ms on the PAMAP2 dataset, compared
to 0.91 ms on the SKODA dataset, despite the sequence length of PAMAP2 being twice as long. It is also
noteworthy that while the DAPHNET dataset has longer sequence lengths compared to the USC-HAD
dataset, the processing time for DAPHNETwas shorter. This is attributed to the fact that we doubled the
dimensions in GLULA for the USC-HAD dataset, thereby affecting the inference time.

In comparing the inference speed of GLULA with Self-Att, our proposed solution displayed only a
marginal lag behind Self-Att across all datasets. For instance, in the SKODA dataset, Self-Att achieved an
inference time of 0.89ms, with GLULA trailing by 0.02ms. This performance difference is attributable to
the significant differences in input sequence lengths between the two models, as detailed in Table 7. In
Self-Att., the input sequence length is considerably shorter than in GLULA – up to 15 times shorter in the
case of PAMAP2 and 3 times shorter for USC-HAD. This variation arises due to the specific handcrafted
preprocessing steps, such as downsampling, employed in Self-Att. It is important to note that the sequence
length in Self-Att is fixed and does not vary like in GLULA, restricting the possibility of testing how
varying lengths might impact inference speed. However, it can be assumed that with increased sequence
lengths, Self-Att would either match or exceed the inference time of GLULA. This reason is based on the
fact that while GLULA’s layers exhibit linear computational complexity relative to input length, Self-Att.
incorporates two softmax self-attention sub-modules, each characterized by quadratic complexity
(Mahmud et al., 2020).

GLULA consistently outperforms the other twomodels across all datasets in terms of inference speed.
For instance, on the PAMAP2 dataset, GLULA registers a time of 0.94ms, which is noticeably lower than
HSA’s 2.12 ms., and iSPLI’s 1.36 ms. However, the main challenge for analysis is the varying input sizes
for each of the datasets.

To establish a fair comparison between GLULA and HSA, we focused on their speed performance on
the DAPHNET dataset, where the window sizes are identical, as shown in Table 7. In this context,
GLULA noticeably outperforms HSA, with inference times of 0.87 and 2.19 ms, respectively. This
substantial difference is primarily due to the complex hierarchy of softmax self-attention blocks integrated
within HSA (Tonmoy et al., 2021). That implies multiple attention layers, each exhibiting quadratic
complexity relative to the input length, whichwill be particularly sensitive when processing largewindow
sizes without downsampling. Moreover, HSA shows varied time performance across different datasets
due to its hierarchical structure being conditioned on the input sequence dimensions.

Table 8. The average inference time of the proposed model with existing methods on benchmark datasets for speed comparison

PAMAP2 SKODA OPPORT. USC-HAD DAPH.

GLULA 0.94 ± 0.05 0.91 ± 0.04 0.98 ± 0.04 0.9 ± 0.05 0.87 ± 0.03
Self–Att (Mahmud et al., 2020) 0.88 ± 0.07 0.89 ± 0.16 0.85 ± 0.07 0.86 ± 0.04 –

HSA (Tonmoy et al., 2021) 2.12 ± 0.23 8.32 ± 0.83 3.69 ± 0.47 1.42 ± 0.28 2.19 ± 0.38
iSPLI (Ronald et al., 2021) 1.36 ± 0.05 – 1.21 ± 0.06 – 1.41 ± 0.11

Note. The unit is ms.
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The input sequence lengths used in iSPLI’s for each dataset are approximately half of those inGLULA.
Additionally, iSPLI is built on an inception convolutional network framework (Ronald et al., 2021),
which has linear complexity in relation to the sequence input length. Despite these factors, GLULA
consistently demonstrates faster inference speeds than iSPLI across all datasets. For example, in the
OPPORTUNITY dataset, GLULA and iSPLI recorded inference times of 0.98 and 1.21 ms, respectively.
This can be attributed to the inception-based network’s architecture, which involves numerous stacked
layers of convolutions and consequently a larger number of parameters. That makes iSPLI overall more
computationally intensive than GLULA, resulting in slower speed.

It is essential to remember that the efficiency of these models is tied to their implementation and the
libraries used. Consequently, while the observed differences could be narrower or broader by better
implementation, they underline GLULA’s potentially the fastest inference for individual data instances
with respect to the input sequence length among recent SOTAworks in the literature.

6. Conclusion

In conclusion, this article addressed the critical challenge of the size/performance trade-off in HAR for
mobile and embedded systems, which is valuable in the production of monitoring systems that can follow
human activity in real-time and control other systems based on that data. We introduced GLULA, a novel
approach for HAR that combines linear attention, GCN, and wide convolutions while adapting structures
such as branching. By using linear attention instead of regular softmax self-attention, our model achieved
faster speed and reduced time and memory complexity. The incorporation of non-recurrence and
parallelization further enhanced the flexibility and efficiency of our network.

To reduce the model’s parameter count, we avoided the use of feedforward layers and instead captured
local dependencies more efficiently using GCNwith branching. Additionally, by employing a prepended
learnable token and a simple classification layer, we optimized parameter usage andminimized overhead.
Our solution also employed various training techniques, including manifold mixup, one-cycle schedul-
ing, and the AdaBelief optimizer, to enhance stability and handle limited data.

We conducted extensive experiments on five benchmark datasets (USC-HAD, PAMAP2, SKODA,
DAPHNET, and OPPORTUNITY) to evaluate the performance, speed, and variations of our model. The
original GLULA network, along with the suggested training techniques, demonstrated comparable or
superior results compared to other variants. The linear attention-based method outperformed regular
softmax-based approaches in HAR tasks while exhibiting lower time and space complexity.

Our experiments also revealed that the proposed network outperformed state-of-the-art models on the
SKODA,USC-HAD, DAPHNET, andOPPORTUNITY datasets while maintaining the lowest parameter
count by a noticeablemargin and having one of the fastest inference timewith regard to the input sequence
length. This success can be attributed to the architectural structure of GLULA, which effectively captures
local and global spatiotemporal features.

For future research, we suggest exploring the use of data generated by GANs and employing different
augmentation techniques to further enhance the performance of HAR models. Additionally, considering
the inspiration drawn from the Evolved Transformer and evolutionary-based neural architecture
(AutoML) research, applying similar AutoML techniques to HAR tasks could lead to more robust
solutions. Furthermore, the collection of a more diverse dataset would be advantageous in enhancing
our understanding of the effects of handedness on action movements patterns and their differentiation.

Data availability statement. All datasets and sample codes used in this study were obtained from open-source resources and have
universal access. The code for this study, along with the resulting weights and hyperparameters, will be made available at https://
github.com/Etzelkut/HAR-proj. If required during the review process, the code and hyperparameters will be shared and/or added to
the GitHub repository.

Acknowledgments. We are grateful to the SEDS School of Nazarbayev University for providing laboratory and resources to do
computational experiments.

e10-22 Aldiyar Bolatov, Aigerim Yessenbayeva and Adnan Yazici

https://doi.org/10.1017/wtc.2024.5 Published online by Cambridge University Press

https://github.com/Etzelkut/HAR-proj
https://github.com/Etzelkut/HAR-proj
https://doi.org/10.1017/wtc.2024.5


Authorship contribution. All authors contributed to the conception and design of the study, and manuscript preparation, and
participated in result discussions. They also worked collaboratively on the final text. A.B. conceived the study, developed the
software, and contributed to the theoretical aspects of the article. Ai.Y. worked with the datasets, contributed to the theoretical
aspects, and also assisted with the software. Ad.Y. provided supervision for the research findings and contributed to the formulation
of the hypothesis. All authors have read and approved the final manuscript.

Funding statement. The research described in this article received funding from the NU Faculty-development competitive
research grants program at Nazarbayev University under Grant Number-110119FD4543.

Competing interest. The authors declare no competing interests exist.

References
Ba JL, Kiros JR and Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450.
Bachlin M, Plotnik M,Roggen D,Maidan I,Hausdorff JM,Giladi N and Troster G (2009) Wearable assistant for Parkinson’s

disease patients with the freezing of gait symptom. IEEE Transactions on Information Technology in Biomedicine 14(2),
436–446.

Dauphin YN, Fan A, Auli M and Grangier D (2017) Language modeling with gated convolutional networks. In Proceedings of
the 34th International Conference on Machine Learning, Vol. 70. Sydney: PMLR, pp. 933–941.

DrozdzalM,Vorontsov E,Chartrand G,Kadoury S and Pal C (2016) The importance of skip connections in biomedical image
segmentation. In Deep Learning and Data Labeling for Medical Applications. Cham: Springer, pp. 179–187.

Haresamudram H, Beedu A, Agrawal V,Grady PL, Essa I, Hoffman J and Plötz T (2020) Masked reconstruction based self-
supervision for human activity recognition. In Proceedings of the 2020 International Symposium on Wearable Computers.
New York: ACM, pp. 45–49.

Ho J, Kalchbrenner N, Weissenborn D and Salimans T (2019) Axial attention in multidimensional transformers.
Katharopoulos A, Vyas A, Pappas N and Fleuret F (2020) Transformers are rnns: Fast autoregressive transformers with linear

attention. arXiv preprint arXiv:2006.16236.
Khan WZ, Xiang Y, Aalsalem MY and Arshad Q (2012) Mobile phone sensing systems: A survey. IEEE Communications

Surveys & Tutorials 15(1), 402–427.
Ma H, Li W, Zhang X, Gao S and Lu S (2019) Attnsense: Multi-level attention mechanism for multimodal human activity

recognition. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington, DC: AAAI Press,
pp. 3109–3115.

Mahmud S, Tonmoy M, Bhaumik KK, Rahman A, Amin MA, Shoyaib M, Khan MAH and Ali AA (2020) Human activity
recognition from wearable sensor data using self-attention. arXiv preprint arXiv:2003.09018.

Misra D (2019) Mish: A self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681.
MoyaRuedaF,GrzeszickR,FinkGA,Feldhorst S andTenHompelM (2018) Convolutional neural networks for human activity

recognition using body-worn sensors. In Informatics, vol. 5. Basel: Multidisciplinary Digital Publishing Institute, p. 26.
Ordóñez FJ and Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity

recognition. Sensors 16(1), 115.
Reiss A and Stricker D (2012) Creating and benchmarking a new dataset for physical activitymonitoring. InProceedings of the 5th

International Conference on PErvasive Technologies Related to Assistive Environments. New York: ACM, pp. 1–8.
Roggen D,Calatroni A,RossiM,Holleczek T, Förster K,Tröster G,Lukowicz P,Bannach D, Pirkl G, Ferscha A,Doppler J,

Holzmann C,Kurz M,Holl G,Chavarriaga R, Sagha H, Bayati H,CreaturaM andMillàn JR (2010) Collecting complex
activity datasets in highly rich networked sensor environments. In 2010 Seventh International Conference on Networked Sensing
Systems (INSS). Kassel: IEEE, pp. 233–240.

Ronald M, Poulose A and Han DS (2021) Isplinception: An inception-resnet deep learning architecture for human activity
recognition. IEEE Access 9, 68985–69001.

Schmidt P, Reiss A, Duerichen R, Marberger C and Van Laerhoven K (2018) Introducing wesad, a multimodal dataset for
wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction.
New York: ACM, pp. 400–408.

Smith LN (2018) A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and
weight decay. arXiv preprint arXiv:1803.09820.

So DR, Liang C and Le QV (2019) The evolved transformer. arXiv preprint arXiv:1901.11117.
Stiefmeier T, Roggen D, Ogris G, Lukowicz P and Tröster G (2008) Wearable activity tracking in car manufacturing. IEEE

Pervasive Computing 7(2), 42–50.
Tang Y, Teng Q, Zhang L,Min F and He J (2020) Efficient convolutional neural networks with smaller filters for human activity

recognition using wearable sensors. arXiv preprint arXiv:2005.03948.
Tenney I, Das D and Pavlick E (2019) Bert rediscovers the classical nlp pipeline. arXiv preprint arXiv:1905.05950.
Tonmoy M, Mahmud S, Mahbubur Rahman A, Ashraful Amin M and Ali AA (2021) Hierarchical self attention based

autoencoder for open-set human activity recognition. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Berlin: Springer, pp. 351–363.

Wearable Technologies e10-23

https://doi.org/10.1017/wtc.2024.5 Published online by Cambridge University Press

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2003.09018
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1901.11117
https://arxiv.org/abs/2005.03948
https://arxiv.org/abs/1905.05950
https://doi.org/10.1017/wtc.2024.5


Tsai Y-HH,Bai S,YamadaM,Morency L-P and Salakhutdinov R (2019) Transformer dissection: An unified understanding for
transformer’s attention via the lens of kernel. arXiv preprint arXiv:1908.11775.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł and Polosukhin I (2017) Attention is all you
need. In Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, pp. 5998–6008.

Verma V, Lamb A, Beckham C, Najafi A, Mitliagkas I, Lopez-Paz D and Bengio Y (2019) Manifold mixup: Better
representations by interpolating hidden states. In International Conference on Machine Learning. Long Beach, CA: PMLR,
pp. 6438–6447.

Wu F, Fan A, Baevski A, Dauphin YN and Auli M (2019) Pay less attention with lightweight and dynamic convolutions. arXiv
preprint arXiv:1901.10430.

ZhangM and Sawchuk AA (2012) Usc-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors.
In Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM, pp. 1036–1043.

Cite this article: Bolatov A, Yessenbayeva A and Yazici A (2024) GLULA: Linear attention-based model for efficient human
activity recognition from wearable sensors. Wearable Technologies, 5, e10. doi:https://doi.org/10.1017/wtc.2024.5

e10-24 Aldiyar Bolatov, Aigerim Yessenbayeva and Adnan Yazici

https://doi.org/10.1017/wtc.2024.5 Published online by Cambridge University Press

https://arxiv.org/abs/1908.11775
https://arxiv.org/abs/1901.10430
https://doi.org/10.1017/wtc.2024.5
https://doi.org/10.1017/wtc.2024.5

	GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors
	Introduction
	Related work
	Methodology
	Proposed approach
	Gated convolutional network
	Self-attention
	Linear attention
	Training techniques

	Experiment evaluation
	Setup and evaluation
	Datasets
	Window sizes’ analysis
	Data preprocessing
	Hyperparameters and training

	Results of the experiments
	Evaluation of training methods
	Evaluation of proposed models
	Compared algorithms
	The analysis of experimental results
	The analysis of experimental results of LOSO cross-validation testing
	Examination of inference speed

	Conclusion
	Data availability statement
	Acknowledgments
	Authorship contribution
	Funding statement
	Competing interest
	References


