UNIQUE ADDITION RINGS

W. STEPHENSON

1. Introduction. A semigroup (R, \cdot) is said to be a unique addition ring (UA-ring) if there exists a unique binary operation + making $(R, \cdot, +)$ into a ring. All our results can be presented in this semigroup theoretic setting. However, we prefer the following equivalent ring theoretic formulation: a ring R is a UA-ring if and only if any semigroup isomorphism α : $(R, \cdot) \cong (S, \cdot)$ with another ring S is always a ring isomorphism.

UA-rings have been studied in (8; 4) and are also touched on in (1; 2; 6; 7). In this note we generalize Rickart's methods to much wider classes of rings. In particular, we show that, for a ring R with a 1 and $n \ge 2$, the $(n \times n)$ matrix ring over R and its subring of lower triangular matrices are UA-rings. Further examples of UA-rings are "infinite" matrix rings and certain subclasses of the classes of prime rings, von Neumann regular rings, left self-injective rings and semiperfect rings.

2. Notation. For a ring R we let J(R) denote its Jacobson radical and for $n \ge 1$ we let R_n denote the ring of all $(n \times n)$ matrices over R and $T_n(R)$ the subring of lower triangular matrices. If A is a subset of R, then $l(A) = (x \in R: xA = 0)$ and $r(A) = (x \in R: Ax = 0)$ will denote the left and right annihilators of A, respectively.

3. Basic lemmas.

LEMMA 1. Let R and S be rings and α : $(R, \cdot) \cong (S, \cdot)$ a semigroup isomorphism. Suppose that A and B are left ideals of R such that $A \oplus B = Re$ for some idempotent $e \in R$. Then

(1) $(a + b)^{\alpha} = a^{\alpha} + b^{\alpha}$ for any $a \in A, b \in B$;

(2) if $s: A \to B$ is an R-homomorphism, then $(a^s + b)^{\alpha} = (a^s)^{\alpha} + b^{\alpha}$ for any $a \in A, b \in B$;

(3) α is additive on $\sum (A^s: s \in \operatorname{Hom}_R(A, B))$.

Proof. (1) Let g + h = e, where $g \in A$, $h \in B$. Then $g^2 = g$, $h^2 = h$, and gh = hg = 0. Further, A = Rg and B = Rh.

If $f^{\alpha} = g^{\alpha} + h^{\alpha}$, $f \in \mathbb{R}$, then $(fe)^{\alpha} = (ge)^{\alpha} + (he)^{\alpha} = g^{\alpha} + h^{\alpha} = f^{\alpha}$, and thus f = fe. On the other hand, $(fg)^{\alpha} = g^{\alpha}$ and $(fh)^{\alpha} = h^{\alpha}$, hence

$$f = fe = fg + fh = g + h = e.$$

Received August 12, 1968 and in revised form, April 30, 1969. This research was supported in part by a Science Research Council Fellowship.

If x = a + b, where $a \in A$ and $b \in B$, then a = xg and b = xh. Hence

 $a^{\alpha} + b^{\alpha} = x^{\alpha}g^{\alpha} + x^{\alpha}h^{\alpha} = x^{\alpha}(g^{\alpha} + h^{\alpha}) = x^{\alpha}e^{\alpha} = (a + b)^{\alpha}.$

(2) Let $s: A \to B$ be an *R*-homomorphism. Then it is easily verified that $A \oplus B = A^{(1+s)} \oplus B = Re$. Let $a \in A$, $b \in B$. Applying (1) three times we have:

 $a^{\alpha} + (a^{s} + b)^{\alpha} = (a + a^{s} + b)^{\alpha} = (a^{(1+s)})^{\alpha} + b^{\alpha} = a^{\alpha} + (a^{s})^{\alpha} + b^{\alpha}.$

Hence $(a^s + b)^{\alpha} = (a^s)^{\alpha} + b^{\alpha}$.

(3) follows immediately from (2).

COROLLARY 1. If s: $A \cong B$, then α is additive on $A \oplus B = Re$.

An immediate consequence of Corollary 1 is the following result.

THEOREM 1. If R is a ring with a 1 and $n \ge 2$, then R_n is a UA-ring.

Proof. If e_{ij} $(1 \le i, j \le n)$ are the usual matrix units for R_n , then $R_n = \bigoplus_{i=1}^{n} R_n e_{ii}$, where $R_n e_{ii} \cong R_n e_{jj}$ (as R_n -modules) for $1 \le i, j \le n$. The result then follows from Corollary 1. Next we prove a slight generalization of a theorem in (8).

LEMMA 2. Let R and S be rings and α : $(R, \cdot) \cong (S, \cdot)$ be a semigroup isomorphism. Suppose that C and C^{α} are abelian subgroups of R and S, respectively. Further, suppose that $(A_i)_{i\in I}$ and $(B_j)_{j\in J}$ are abelian subgroups of R such that $CA_i \subseteq A_i$ and $B_jC \subseteq B_j$ and such that α is additive on each A_i and on each B_j . If $A = \bigcup_I A_i$ and $B = \bigcup_J B_j$ and $C \cap l(A) \cap r(B) = 0$, then α is additive on C.

Proof. Let $c_1, c_2 \in C$. Then $c_1^{\alpha} + c_2^{\alpha} \in C^{\alpha}$ and there exists $c \in C$ such that $c^{\alpha} = c_1^{\alpha} + c_2^{\alpha}$.

For any $a \in A$, we have:

 $[(c - c_1 - c_2)a]^{\alpha} = (ca)^{\alpha} - (c_1a)^{\alpha} - (c_2a)^{\alpha} = (c^{\alpha} - c_1^{\alpha} - c_2^{\alpha})a^{\alpha} = 0 = 0^{\alpha}.$

Since α is one-to-one, $c - c_1 - c_2 \in l(A)$ and similarly $c - c_1 - c_2 \in r(B)$. Thus $c_1 + c_2 = c$ and $(c_1 + c_2)^{\alpha} = c^{\alpha} = c_1^{\alpha} + c_2^{\alpha}$.

COROLLARY 1. Using the same notation, if each A_i is a left ideal and each B_j is a right ideal and $l(A) \cap r(B) = 0$, then α is a ring isomorphism.

Proof. Take C = R in Lemma 2.

COROLLARY 2. The direct product of UA-rings with a 1 is a UA-ring.

Proof. Let $R = \prod_{i \in I} R_i$, where for each $i \in I$, R_i is a UA-ring with a 1. Suppose that $\alpha: (R, \cdot) \cong (S, \cdot)$ is a semigroup isomorphism with another ring S and let $e_i \in R$ be the central idempotent with 1 in the *i*th position and zeros elsewhere. If $f_i = e_i^{\alpha}$, then $f_i S f_i$ is a ring and α induces $(e_i R e_i, \cdot) \cong (f_i S f_i, \cdot)$.

1456

However, $e_i Re_i \cong R_i$ and thus α is additive on Re_i for all $i \in I$. Since $l(\bigcup_I Re_i) = 0$, it follows from Corollary 1 that α is a ring isomorphism, hence R is a UA-ring.

Example. Let $M = P_1 \oplus P_2 \oplus Q$ be a left *R*-module where P_1, P_2 , and *Q* are submodules such that $P_1 \cong P_2 \cong P$ and $\sum (P^f: f \in \operatorname{Hom}_R(P, Q)) = Q$ (for example if $P \cong {}_{R}R$). Then $S = \operatorname{End}_R(M)$ is a UA-ring.

Proof. Let e_1 , e_2 , and f be the projections of M onto P_1 , P_2 , and Q, respectively. Then e_1 , e_2 , and f are a set of orthogonal idempotents of S such that

$$S = e_1 S \oplus e_2 S \oplus f S$$
 and $e_1 S \cong e_2 S$.

Further, $Me_1S = M$. If $a \in r(e_1S)$, then $Ma = Me_1Sa = 0$ and hence $r(e_1S) = 0$. By Lemma 1 and Corollary 1 of Lemma 2, S is a UA-ring.

This result should be compared with those of Mihalev (6, see, for example, Proposition 1 and Theorem 3).

4. Unique addition rings. Throughout this section, all rings will be assumed to contain a 1.

LEMMA 3. Suppose that R and S are rings and α : $(R, \cdot) \cong (S, \cdot)$ is a semigroup isomorphism. If $e \in R$ is an idempotent, then α is additive on ReR(1 - e) and hence on

$$A = (ReR(1-e)R + R(1-e)ReR).$$

Proof. Hom(Re, R(1 - e)) is given by right multiplication by elements of eR(1 - e). Hence

$$ReR(1-e) = \sum [(Re)^s: s \in \operatorname{Hom}_R(Re, R(1-e))]$$

and thus by Lemma 1 (3), α is additive on ReR(1 - e). Similarly, α is additive on R(1 - e)Re and therefore on

$$A = (ReR(1-e)R + R(1-e)ReR) = ReR(1-e) \oplus R(1-e)ReR$$

Combining Lemma 3 and the above corollary, we obtain the following result.

THEOREM 2. Let R be a ring (with a 1) and G the set of all idempotents of R. If

$$A = \sum_{g \in G} RgR(1-g)R \quad and \quad l(A) \cap r(A) = 0,$$

then R is a UA-ring.

We now consider rings R such that any non-zero two-sided ideal of the form $l(A) \cap r(A)$, A a non-zero two-sided ideal, contains a non-zero idempotent. For lack of a better name, we call such rings X-rings.

Examples. Recall that a ring R is prime if l(A) = 0 for every non-zero twosided ideal of R. R is said to be semiprime if it contains no non-zero nilpotent

W. STEPHENSON

ideals. Finally, R is called left P.P. (principal ideals projective) if for any $a \in R$, l(a) = Re for some idempotent $e \in R$. The following are X-rings:

- (1) Prime rings and, in particular, simple and primitive rings;
- (2) Semisimple *I*-rings, that is, rings in which every non-zero left ideal contains a non-zero idempotent, in particular, von Neumann regular rings;
- (3) Semiprime left P.P. rings. In particular, semiprime semihereditary and hereditary rings. (To show this, note that in a semiprime ring, l(A) = r(A) for any two-sided ideal A and further, for x ∈ r(A), x ∈ rl(x) ⊆ rlr(A) = r(A).)

A non-zero central idempotent of a ring R is called abelian if every idempotent of eRe is central in eRe (and hence in R).

THEOREM 3. Let R be an X-ring containing no abelian central idempotents. Then R is a UA-ring.

Proof. Let $A = \sum_{g \in G} RgR(1 - g)R$, where G is the set of all idempotents of R, and note that $A \neq 0$ since 1 is not an abelian idempotent. Suppose that $l(A) \cap r(A) \neq 0$; then by hypothesis there is a non-zero idempotent $e \in l(A) \cap r(A)$.

Since R has no abelian central idempotents, we can always assume that e is not central. However, eA = Ae = 0 implies that eR(1 - e) = (1 - e)Re = 0, contradicting the fact that e is not central. Therefore $l(A) \cap r(A) = 0$ and, by Theorem 2, R is a UA-ring.

COROLLARY 1. An X-ring with no non-trivial central idempotents and at least one non-trivial idempotent is a UA-ring.

Since a prime ring is an X-ring which has no non-trivial central idempotents, we have the following result.

COROLLARY 2. A prime ring (with a 1) containing at least one non-trivial idempotent is a UA-ring.

Remark. If S is not a UA-ring, then it is easy to see that, for any ring R, $R \times S$ is not a UA-ring. Since there are fields which are not UA-rings (see 8), the restriction on abelian central idempotents cannot be omitted.

A ring R is called left self-injective if R considered as a left R-module is injective. Results of Utumi (9) yield the following theorem.

THEOREM 4. Any left self-injective ring R such that R/J(R) contains no abelian central idempotents is a UA-ring.

Proof. Since R is left self-injective, $\overline{R} = R/J(R)$ is a left self-injective, von Neumann regular ring (9, Theorems 4.7, 4.8 and Lemma 4.1). By hypothesis, \overline{R} contains no abelian central idempotents and hence, by (9, Lemma 7.7) there exist orthogonal idempotents $e_1, e_2, e_3 \in \overline{R}$ such that

 $\bar{R}e_1 \oplus \bar{R}e_2 \oplus \bar{R}e_3 = \bar{R}, \quad \bar{R}e_1 \cong \bar{R}e_2 \quad (\text{as left } \bar{R}\text{-modules})$

and $\overline{R}e_1 \oplus \overline{R}e_2$ contains a submodule A isomorphic to $\overline{R}e_3$. Since A is injective, being isomorphic to $\overline{R}e_3$, it is a direct summand of \overline{R} . Hence for some idempotent e_4 orthogonal to e_3 , $A = \overline{R}e_3$ and $\overline{R}e_3 \cong \overline{R}e_4$. By (9, Corollaries 3.2 and 4.12), we can lift the idempotents e_4 (i = 1, 2, 3, 4) to idempotents $f_i \in R$ such that the sets of idempotents $\{f_1, f_2, f_3\}$ and $\{f_3, f_4\}$ are orthogonal and $R = Rf_1 \oplus Rf_2 \oplus Rf_3$. Further, by (3, Proposition 1, 3.8), we can also lift the isomorphisms to obtain $Rf_1 \cong Rf_2$ and $Rf_3 \cong Rf_4$. The result then follows by Corollary 1 of Lemma 1.

5. Matrix rings. For a ring R and set I, let R_{rfI} denote the ring of "row finite" $(I \times I)$ matrices over R. That is, $R_{rfI} = ((a_{ij}))$: for each $i \in I$, $a_{ij} = 0$ for almost all $j \in I$). For $r \in R$ we let re_{ij} denote the matrix with r in the (i, j)th place and zeros elsewhere and write $1e_{ij} = e_{ij}$, when R has a 1.

THEOREM 5. Let R be a ring with a 1 and I a set containing at least two elements. Suppose that T is a subring of R_{rtI} (not necessarily with a 1), which contains e_{ki} , e_{kj} for all $k \in I$, where i and j are distinct elements of I. Then T is a UA-ring.

Proof. We have $Te_{ii} \cap Te_{jj} = 0$ and $Te_{ii} \oplus Te_{jj} = T(e_{ii} + e_{jj})$, where $(e_{ii} + e_{jj})$ is an idempotent. Further, $e_{ii} = e_{ij}e_{ji}$, $e_{jj} = e_{ji}e_{ij}$ and e_{ij} , $e_{ji} \in T$. Hence, as left *T*-modules, $Te_{ii} \cong Te_{jj}$. However, $l(Te_{ii}) = 0$ and thus, by Corollary 1 of Lemma 1 and Corollary 1 of Lemma 2, *T* is a UA-ring.

A slightly stronger form of Theorem 5, in the case that R is a division ring, was proved by Gluskin (1, Theorem 5.10.1).

Examples. (1) If $_{R}F$ is a free left *R*-module of rank at least 2, then $\operatorname{End}_{R}(F)$ is a UA-ring. This shows that there is no gain in generality in studying semigroup isomorphisms rather than ring isomorphisms of the endomorphism rings of free modules of rank at least 2; see, for example (6; 7; 2, 3.13).

Further examples of UA-rings are:

(2) R_{tI} denotes the ring of "finite" $(I \times I)$ matrices; $R_{tI} = ((a_{ij}): a_{ij} = 0$ for almost all $i, j \in I$);

(3) R_{rbI} denotes the ring of "row bounded" $(I \times I)$ matrices; $R_{rbI} = ((a_{ij}): a_{ij} = 0 \text{ for all } j \notin F$, where F is some finite subset of I).

Similar results hold for the rings of "column finite" and "column bounded" $(I \times I)$ matrices.

A ring R is said to have non-trivial matrix rank if $R \cong \prod_{i=1}^{n} (R^{(i)})_{n_i}$ for rings $R^{(i)}$ and integers $n \ge 1$ and $n_i \ge 2$ for i = 1, ..., n.

THEOREM 6. Let R be a ring with a 1 for which idempotents can be lifted modulo J(R). If R/J(R) has non-trivial matrix rank, then R is a UA-ring.

Proof. Suppose that $R/J(R) = \prod_{i=1}^{n} (R^{(i)})_{ni}$, where $n_i \ge 2$ and $n \ge 1$. Then

lifting the matrix units e_{jj} $(1 \leq j \leq n_i)$ of each $(R^{(i)})_{n_i}$ to idempotents f_{ij} $(1 \leq j \leq n_i)$, we have

$$R = \bigoplus_{1}^{n} \left(\bigoplus_{j=1}^{ni} Rf_{ij} \right),$$

where for each *i*, $Rf_{ia} \cong Rf_{ib}$ for all $1 \leq a, b \geq n_i$; see (3, Proposition 1.3.8). The result follows from Corollary 1 of Lemma 1.

Example. Any left-Artinian ring (or, more generally, any semiperfect ring (see 5, 3.6)) such that R/J(R) has non-trivial matrix rank, is a UA-ring.

So far, triangular matrix rings have escaped our net. For if Δ is a division ring and $T = T_n(\Delta)$, where $n \geq 2$, then T is left-Artinian, but $T/J(T) \cong \prod_{1}^{n} \Delta$ does not have non-trivial matrix rank. Further, $A = \sum_{g \in G} TgT(1-g)T = J(T)$, where G is the set of all idempotents of T, and $l(A) \cap r(A) = J(T)^{n-1} \neq 0$. T, although hereditary, is not an X-ring. Nevertheless, T is a UA-ring.

To prove this result we begin with a lemma.

LEMMA 4. Let T be a ring with a 1 and let $e \in T$ be an idempotent. If $l((1-e)Te) \cap (1-e)T(1-e) = 0$ and $r((1-e)Te) \cap eTe = 0$, then T is a UA-ring.

Proof. Suppose that $\alpha: (T, \cdot) \cong (S, \cdot)$ is a semigroup isomorphism with another ring S. By Lemma 3, α is additive on (1 - e)Te and eT(1 - e). Letting C = (1 - e)T(1 - e) and A = (1 - e)Te in Lemma 2, we see that α is additive on (1 - e)T(1 - e). Similarly, α is additive on eTe and thus on T.

If R and S are rings with a 1 and ${}_{S}M_{R}$ is a unital S - R bimodule, faithful both as a right R-module and as a left S-module, then we denote the ring of generalized triangular matrices $[{}_{SM_{R}}^{R}{}_{S}^{o}]$ by T(R, S, M). It is easy to see that a ring T is isomorphic to T(R, S, M) for some R, S, M if and only if there is an idempotent $e \in T$ such that eT(1 - e) = 0 and $eTe \cong R$, $(1 - e)T(1 - e) \cong S$ and $(1 - e)Te \cong M$, and $l((1 - e)Te) \cap (1 - e)T(1 - e) = 0$ and $r((1 - e)Te) \cap eTe = 0$.

An immediate consequence of Lemma 4 is the following result.

THEOREM 7. Any generalized triangular matrix ring T(R, S, M) is a UA-ring.

COROLLARY 1. If R is a ring with a 1 and $n \ge 2$, then $T_n(R)$ is a UA-ring.

6. Classical left quotient rings. For a ring R let

$$I(R) = (x \in R: l(x) = r(x) = 0)$$

denote the set of regular elements of R. As is well known, R possesses a classical left quotient ring Q if and only if the left Ore condition is satisfied (for the concept of classical left quotient ring and the results used in this section see (3,

1460

Appendix B; 5, 4.6)). Namely, for any $a \in R$, $b \in I(R)$ there exist $a' \in R$, $b' \in I(R)$ such that b'a = a'b.

Let α : $(R, \cdot) \cong (R', \cdot)$ be a semigroup isomorphism with another ring R'. If R satisfies the left Ore condition, then so does R'. Hence R and R' have classical left quotient rings Q and Q', respectively. The construction of the classical left quotient ring Q by means of an equivalence relation on $R \times I(R)$ (see 3) and the definition of multiplication in Q involve only the multiplicative structure of R. Hence α : $(R, \cdot) \cong (R', \cdot)$ can be extended to α : $(Q, \cdot) \cong (Q', \cdot)$. The following theorem is then immediate.

THEOREM 8. If R has a classical left quotient ring Q which is a UA-ring, then R is a UA-ring.

Example. Any left order R in a semiperfect ring Q such that Q/J(Q) has non-trivial matrix rank is a UA-ring. A particular example is any prime left Goldie ring of dimension at least 2. This case and the case that R is a semiprime left Goldie ring also follow from (4).

It would be interesting to know whether Theorem 8 could be generalized to rings R with zero singular ideal and so include all the results of Johnson (4). Q in this case would be the complete ring of quotients of R (see 5, 4.3) and hence would be a left self-injective von Neumann regular ring, which, barring abelian central idempotents, is a UA-ring.

References

- L. M. Gluskin, Semigroups and rings of endomorphisms of linear spaces, Izv. Akad. Nauk. SSSR Ser. Mat. 23 (1959), 841–870 = Amer. Math. Soc. Transl. (2) 45 (1965), 105–137.
- Endomorphisms of modules, Algebra and Mathematical Logic, pp. 3-20, Studies in Algebra (Izdat. Kiev. Univ., Kiev, 1966).
- N. Jacobson, Structure of rings, Rev. ed., Amer. Math. Soc. Collog. Publ., Vol. 37 (Amer. Math. Soc., Providence, R.I., 1964).
- 4. R. E. Johnson, Rings with unique addition, Proc. Amer. Math. Soc. 9 (1958), 55-61.
- 5. J. Lambek, Lectures on rings and modules (Blaisdell, Waltham, Massachusetts, 1966).
- A. V. Mihalev, Isomorphisms of semigroups of endomorphisms of modules, Algebra i Logika Sem. 5 (1966), no. 5, 59-67.
- *Isomorphisms of semigroups of endomorphisms of modules*. II, Algebra i Logika Sem. 6 (1967), no. 2, 35–47.
- 8. C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc. 54 (1948), 758-764.
- 9. Y. Utumi, On continuous and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173.

Bedford College, Regent's Park, London