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Connected Components of Moduli Stacks
of Torsors via Tamagawa Numbers

Kai Behrend and Ajneet Dhillon

Abstract. Let X be a smooth projective geometrically connected curve over a finite field with function

field K . Let Gbe a connected semisimple group scheme over X. Under certain hypotheses we prove the

equality of two numbers associated with G. The first is an arithmetic invariant, its Tamagawa number.

The second is a geometric invariant, the number of connected components of the moduli stack of G-

torsors on X. Our results are most useful for studying connected components as much is known about

Tamagawa numbers.

1 Introduction

We work over a finite ground field k. Let X be a smooth geometrically connected

projective curve over k with function field K . Let G be a semisimple group scheme

over X. This means that G is a smooth group scheme over X, all of whose geometric

fibres are (connected) semisimple algebraic groups. We denote the generic fibre of G

by G.

Recall a little bit of terminology: G is split if it admits a split maximal torus over

K . By the semisimplicity assumption, this implies that G (but not G) is a Chevalley

group, i.e., a group scheme which comes from a split semisimple group defined over k

by base extension. The fundamental group scheme of G has as fibres the fundamental

groups of the fibres of G. It is a finite Abelian group scheme over X. Thus G, or

equivalently G, is simply connected if and only if this fundamental group scheme is

trivial.

The roots of this article are a circle of ideas that began to take shape in [Har70,

HN75]1 In particular, it was observed that there is a connection between Tamagawa

numbers and the trace of the Frobenius endomorphism on the cohomology of certain

moduli spaces. This led to the following.

Conjecture 1.1 (G. Harder) If G is split, the Tamagawa number of G is equal to the

number of connected components of the moduli space of G-torsors on X.

We will study a variation that does not assume that G is split. We will work with

stacks rather than spaces. This has two advantages: first there is a precise relationship

between the Lefschetz trace formula on the moduli stack with the Tamagawa number

without the need for approximations, see §4. The second advantage is that these

stacks always exist without any restriction on the characteristic of the ground field.

See for example [Bal04].
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1Also, A reinterpretation of Tamagawa numbers in the function field case. G. Harder, unpublished note.
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In order to forge a relationship between the stack and the Tamagawa number we

will need to assume that G satisfies the Hasse principle, see Section 4. The Hasse

principle is known to hold for all split groups, see Corollary 4.2. If G̃ is the universal

cover of G, then Weil’s conjecture asserts that the Tamagawa number of G̃ is 1. This

conjecture is known in the split case by [Har74]. In the number field case the full

conjecture is known by [Kot88]. One expects that a variation of the proof would

work in the geometric case as well. The main result of this work is that under certain

assumptions on the ground field the Tamagawa number of G is in fact the number of

connected components of the moduli stack. Furthermore, one can deduce that these

components are in fact geometrically connected.

In Section 3 we begin by recalling the definition of the Tamagawa number. The

section ends with a precise statement of the main results of this paper.

The purpose of Section 4 is to give the proof of the main results modulo the proof

of the trace formula and Ono’s formula. Section 4.1 recalls basic facts about the Hasse

principle. Section 4.2 use the Siegel formula and the trace formula to give a geometric

interpretation of the Tamagawa number. Section 4.3 gives a formula for the canonical

open compact subgroup in terms of special values of Artin L-functions. Finally the

proof is given in Section 4.4.

Section 5 is devoted to an outline of the proof of the Lefschetz trace formula for

the moduli stack of G-torsors. The hardest part of the proof is to show that the

trace of the Frobenius converges absolutely on the cohomology of the stack. We only

sketch many of the proofs as they are standard (although long) and the details can be

found in [Beh90]. Section 5.1, describes the main results on semistabilty for torsors.

Section 5.2 introduces the Shatz stratification on the moduli stack of G-torsors. The

proof of the trace formula along with some semi-purity results for the weight spaces

of the cohomology of the moduli stack of G-torsors are proved in Section 5.3.

The final technical tool needed in Section 4.4 is Ono’s formula and some of its

consequences. This formula is proved in Section 6.

Let us remark that Ono’s formula implies that the Tamagawa number is equal to

the number of elements of π1(G) when G is split. Thus, we prove that for a semisim-

ple Chevalley group the stack of G-bundles has |π1(G)| components.

In view of Section 4 below, it is tempting to try to use the results and methods of

[AB82] to prove the main assertions of this paper. However one does not have the

necessary base change theorems required to transport the results of the cited paper

to positive characteristic. The moduli stacks of G-torsors are not proper; indeed they

are not even separated. In the case G is split and the ground field is C , it is known

[AB82, Tel98] that the moduli stack has |π1(G, e)| components.

2 Notations and Conventions
• Qℓ denotes the ℓ-adic rationals. We fix once and for all an inclusion Qℓ →֒ C.
• k, kn is a ground field, which is assumed to be perfect. Sometimes k will be a finite

field. In this case kn denotes the extension of k of degree n.
• X will be a smooth projective geometrically connected curve over k with structure

map π : X → Spec k.
• G is a smooth connected reductive group scheme over X.
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• G is the generic fiber of G.
• Dyn(G) is the scheme of Dynkin diagrams of G. See [DG70, Exp. XXIV].
• T is the free Abelian group on the connected components of Dyn(G).
• T(P) is the free Abelian subgroup of T generated by the components of the type

of P.
• BunH,X or BunH is the moduli stack of H-torsors on X where H is an affine group

scheme over X.
• BunαH denotes the moduli stack of H-torsors of degree α.
• Bunα,≤m

H
denotes the moduli stack of H-torsors of degree of instability at most m

and degree α.
• Bun

α,m
H

denotes the moduli stack of H-torsors of degree of instability equal to m

and degree α.
• Bun

α,o
H

denotes the moduli stack of H-torsors of type of instability o and degree α.
• τ(G), τn(G) is the Tamagawa number of G or of G ⊗k kn.

3 The Main Results

Let us begin by recalling the definition of the Tamagawa number of a semisimple

algebraic group. To do this, we begin by constructing the Tamagawa measure on

G(A).

For any point x of X (place of K), we denote by Kx the completion of K at x.

The ring of integers inside Kx is ÔX,x. The ring of adeles of K , notation A, is the

restricted product of all Kx with respect to the ÔX,x. Throughout we fix an additive

Haar measure µx on each Kx, normalized so that ÔX,x has volume 1.

We fix a section ω of the line bundle ∧dim G
OX

Lie(G). It induces, in a natural way, a

Haar measure ωx on each of the analytic varieties G(Kx), see [Oes84, Section 2]. The

subset G(ÔX,x) of G(Kx) is open and its volume is computed by the formula below,

which also characterizes this measure.

Proposition 3.1 Let n be the order of vanishing of ω at x. Then we have

vol(G(ÔX,x)) = |k(x)|−n−d|G(k(x))|,

where d is the dimension of G and k(x) is the residue field of x.

Proof See [Oes84, 2.5]

For a semisimple group scheme G on X the vector bundle Lie(G) is of degree 0

on X.

The Tamagawa measure is a measure on G(A) defined by

q(1−g) dim G
∏

x∈X

ωx.

It follows from the product formula that this measure does not depend on the choice

of ω. The Tamagawa number of G, τ(G), is defined to be the volume of G(A)/G(K)

under this measure. It is known to be finite [Har69]. (Also, the Tamagawa number

depends only on the generic fibre G of G, even though we used G in the definition.)
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Conjecture 3.2 (A. Weil) If G is simply connected, then τ(G) = 1.

In the number field case this is a theorem proved by R. Kottwitz [Kot88].

Let BunG be the moduli stack of G-torsors on X. We will show that under var-

ious hypotheses, the Tamagawa number computes the number of open and closed

substacks BunG.

Theorem 3.3 Assume that there is a splitting field L for G whose constant field is k

and that k contains all roots of unity dividing the order of the fundamental group of G.

Further assume that Weil’s conjecture holds for the universal cover of G and G satisfies

the Hasse principle. Then BunG has τ(G) components and each of these components is

geometrically connected.

Note that given any G, we can always find kn/k such that by base extending to kn

the first two hypotheses of the theorem are satisfied.

We will deduce the following from this theorem.

Corollary 3.4 If the generic fiber of G is a Chevalley group, then BunG has exactly

τ(G) components each of which are connected.

Using similar techniques we can also prove the following.

Theorem 3.5 If Weil’s Tamagawa number conjecture is true, then BunG is geometri-

cally connected for every simply connected G

4 The Proof

4.1 The Hasse Principle

We begin by recalling some theorems of G. Harder on the Hasse principle. Recall

that an algebraic group G over K satisfies the Hasse principle, if the map of Galois

cohomology sets

H1(K,G) −→
∏

x∈X

H1(Kx,G)

is injective.

Theorem 4.1 (G. Harder) The Galois cohomology group H1(K,G) is trivial, if G is

simply connected. In particular, the Hasse principle holds for such G.

Proof See [Har75].

Corollary 4.2 The Hasse principle holds when the generic fiber G is a Chevalley group.

Proof Let G ′ be the universal cover of G and M the fundamental group scheme of

G. As the first Galois cohomology vanishes for G ′ and all its inner forms, we have

an injection H1(K,G) →֒ H2(K,M). As G ′ is also a Chevalley group, there is an

exact sequence 0 → M → Gr
m → Gr

m → 0, where Gr
m is a maximal torus of G ′

containing M. The result follows from Hilbert’s theorem 90 and the fact that there is

an injection of Brauer groups

Br(K) →֒
∏

x∈X

Br(Kx).
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Convention 4.3 For the remainder of this section we assume that the generic fiber

G satisfies the Hasse principle.

4.2 The Siegel Formula and the Trace Formula

We now begin to give a geometric interpretation of the Tamagawa number of G.

Lemma 4.4 Let x ∈ X be a closed point. The étale cohomology set H1(Spec(ÔX,x),Gx)

is trivial.

Proof We need to show that every Gx-torsor over Spec(ÔX,x) has an ÔX,x-point. By

Lang’s theorem, such a torsor has a point over the residue field of ÔX,x that can be

lifted to an ÔX,x-point by formal smoothness.

Proposition 4.5 Every G-torsor is trivial over the generic point of X.

Proof We have a diagram of étale cohomology sets

H1(X,G) //

��

H1(K,G)

��
∏

x∈X H1(Spec(ÔX,x),Gx) // ∏
x∈X H1(Kx,G).

The bottom left corner vanishes and the right vertical map is injective by the Hasse

principle. So the top map is trivial.

Recall that the integral model G of G defines an open compact subgroup K of G(A)

with K =
∏

x∈X G(ÔX,x).

Lemma 4.6 There is a bijection between elements of G(A) and (isomorphism classes

of) triples (P, φ, (ρx)x∈X), where P is a G-torsor, φ is a trivialization of P over the generic

point of P, and ρx is a trivialization of P over the formal disc Spec(ÔX,x).

Proof There is an obvious map from such triples to the elements of G(A). We con-

struct its inverse as follows. Let a = (ax) be an adelic point of G. There is an open

Zariski subset U of X such that a is integral over U , that is, ax ∈ G(ÔX,x) for x ∈ U .

Consider the flat cover U ∪
⋃

x /∈U Spec(ÔX,x) of X. To construct P we need only spec-

ify descent data with respect to this cover and apply faithfully flat descent. On the

intersection U ∩Spec(ÔX,x) they are given by ax. This gives P, together with a generic

trivialization and a trivialization at each x 6∈ U . For x ∈ U the trivialization ρx is

given by the trivialization over U multiplied by ax.

Proposition 4.7 There is a bijection between points of the double coset space

G(K)\G(A)/K

and the set of isomorphism classes of G-torsors over X.
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Proof Use the above Lemma together Proposition 4.5.

Theorem 4.8 (Siegel’s Formula) We have

τ(G) = vol(K)
∑

P∈BunG(k)

1

|Aut(P)|
.

The sum is over isomorphism classes of G-torsors on X and |Aut(P)| is the order of the

automorphism group of P, which is finite.

Proof We have

τ(G) = vol(G(A)/G(K)) =

∑

x

vol(KxG(K)/G(K))

(the sum is over a collection of double coset representatives)

=

∑

x

vol(K)
1

|xKx−1 ∩ G(K)|
= vol(K)

∑

P∈BunG(k)

1

Aut(P)
.

The first equality is by the preceding proposition. One checks in the bijection above

that the automorphism group of P is identified with xKx−1 ∩ G(K). Note that one

can show that vol(K) is finite [Kne67]. Furthermore the sum converges [Har69].

We will prove below a Lefschetz trace formula for the algebraic stack BunG. This

formula forges a link between the Siegel formula and the cohomology of BunG, and

we will describe it now.

If X is an algebraic stack over the finite field k we define its number of k-rational

points by

#X(k) =

∑ 1

|Aut(x)|

where the sum is over isomorphism classes of objects in X(k). We denote by Φ acting

on the cohomology of X. We will prove in Section 5 the following version of the trace

formula for BunG over k.

Theorem 4.9 We have
∑

x∈Bun
G

(k)

1

|Aut(x)|
= q(g−1)(dim G)

∑
(−1)i tr Φ|Hi (Bun

G
,Qℓ),

and both sides converge absolutely.

Remark 4.10. The trace formula for stacks of finite type is proved in [Beh03]. The

stack BunG is not of finite type but it is naturally filtered by stacks of finite type. Our

main task in proving the above theorem is to prove the convergence.

Corollary 4.11 In the current setting we have

τ(G) = vol(K)q(g−1) dim G

∞∑

i=0

(−1)i tr Φ|Hi (Bun
G
,Qℓ).

Proof Combine the above remark with Theorem 4.9.
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4.3 Artin L-Functions and the Volume of K

We begin by recalling Steinberg’s formula for the number of points of a semisimple

group over a finite field. Let H/k be a semisimple connected linear algebraic group.

By Lang’s theorem, it is necessarily quasi-split, so let B be a Borel subgroup and T ⊆ B

a maximal torus. Let kn/k be a splitting field for H. We form the Weyl group W =

(NH(T)/T)(kn). Note that W acts on X(T ⊗k kn) ⊗ Q and hence on its symmetric

algebra S. By a theorem of Chevalley, the invariants of this action is the symmetric

algebra on finite dimensional graded vector space V =
⊕

n≥2 Vn.

Theorem 4.12 Let F be the Frobenius of kn/k. We have

|H(k)|

qd
=

∏

n≥2

det((1 − q−nF)|Vn),

where d is dimension of H and q is the number of elements of k.

Proof See [Ste68, 11.16].

We return to our global situation. First we observe the following.

Proposition 4.13 Let K =
∏

x∈X G(ÔX,x) be the canonical open compact. Then

vol(K) = q(1−g) dim G
∏

x

|k(x)|− dim G|G(k(x))|.

Proof This is by Proposition 3.1 combined with the fact that the vector bundle

Lie(G) has degree 0.

As there is an integral model G for G, by Lemma 5.1 we can find an unrami-

fied extension L/K that splits G. We may assume that the extension is in fact Ga-

lois. Correspondingly, we have a Galois cover Y → X. Again form the Weyl group

W = (NG(T)/T)(L), which acts on the symmetric algebra of X(G
⊗

K L) ⊗ Q .

Using Chevalley’s result again, we obtain a finite dimensional graded vector space

V =
⊕

n≥2 Vn. Each of the Vi ’s are Gal(L/K)-modules so we can form the associated

Artin L-functions

Ln(X, s) = L(X,Vn, s) =

∏

x∈X

det((1 − q−s deg x fx)|Vn
).

In the above fx is the Frobenius for the extension of residue fields k(y)/k(x) and y is

a point lying over x. Using the above theorem and Proposition 4.13, we have

vol(K) = q(1−g) dim G
∏

n≥2

Ln(X, n)−1.

In summary, we have the following.
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Theorem 4.14 The volume of the open compact is given by

vol(K) = q(1−g) dim G
∏

n≥2

Ln(X, n)−1,

where each Ln is an Artin L-function described above. Furthermore, we have

Ln(X, s) = Z(X, s)γn

mn∏

i=1

pni (X, s),

where Z(X, s) is the zeta function, pni(X, s) =
∏

(1 − αniq
−s), |αni | = q1/2, and γn is

some integer.

Proof The only part that needs justification is the last statement, see [Mil80, p. 126].

4.4 The Proof of the Main Theorems

We are in a position to give the proof of the main theorems modulo some technical

results. The proofs of these will be given later.

We denote the Tamagawa number of the base extension by τn(G) = τ(G ⊗k kn).

Here kn is the unique extension of the finite field k of degree n. A key ingredient in

the proofs of the main theorems is the fact that the sequence

τ1(G), τ2(G), . . . ,

is constant under suitable hypothesis. Using Ono’s formula we will show the follow-

ing.

Proposition 4.15 Given G with a field of constants k, suppose all roots of unity divid-

ing the order of |π1(G)| are in k. Further assume Weil’s conjecture for the universal cover

of G. Then we have τn(G) = τ(G) for every n.

Proof See Corollary 6.14.

We need the following technical definition and lemma to make the proofs of the

main results go more smoothly.

Definition 4.16 Let
∑∞

m=1 snm = tn be a sequence of series of complex numbers.

We say that the series converge uniformly if for every ǫ > 0 there is an M0 such that

for every M ≥ M0 we have
∣∣∣

M∑

m=1

snm − tn

∣∣∣ < ǫ

independently of n.

Lemma 4.17 Let
∑∞

m=1 snm be a sequence of series that all sum to t independently

of n. Furthermore, assume that the convergence is uniform and that the series
∑∞

n=1 snm

converges absolutely for each m. Then t = 0.
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Proof Let ǫ > 0 and M be as in the definition of uniform convergence. We have

∣∣∣t −
M∑

m=1

snm

∣∣∣ < ǫ.

However,
∑∞

n=1

∑M
m=1 snm converges and hence limn→∞

∑M
m=1 snm = 0, and we are

done.

Recall that the zeta function of X can be written in the form

Z(X, s) =

∏2g
i=1(1 − αiq

−s)

(1 − q−s)(1 − q−s+1)
,

where αi are the eigenvalues of the Frobenius on H1(X,Qℓ). It will be important

below to note that the αi have absolute value q1/2.

Finally, before giving the proof, we will need two facts about the cohomology

of BunG. First we will need to know that the vector spaces Hi(BunG,Qℓ) are finite

dimensional. Secondly, we will need that the eigenvalues of Φ have absolute value at

most q−i/2 on Hi(BunG,Qℓ). Both these facts are proved in §5.

Proof of Theorem 3.3 We have

τ(G) = vol(K)q(g−1) dim G
( ∞∑

i=0

tr Φ|Hi (Bun
G
,Qℓ)

)
(Theorem 4.8)

=

∏

n≥2

Ln(X, s)−1(tr Φ|Hi (Bun
G
,Qℓ)) (Theorem 4.14).

Let {β j} be the eigenvalues of Φ on
⊕

i>0 Hi(BunG,Qℓ) and ǫ j their signs in the

above formula. So we have

τ(G) − tr Φ|H0(Bun
G
,Qℓ) =

(∏

n≥2

Ln(X, n)−1 − 1
)

(tr Φ|H0(Bun
G
,Qℓ))

+
∏

n≥2

Ln(X, n)−1
(∑

j

β jǫ j

)
.

We remind the reader that ℓ-adic cohomology of a stack X over a finite field is defined

by first passing to the algebraic closure, i.e., it is really defined on X⊗k k̄. With this in

mind, the action of the Frobenius on the cohomology of the base extension BunGm
is

just given by Φ
m.

τm(G) − tr Φ
m|H0(Bun

G
,Qℓ) =

(∏

n≥2

Ln(Xm, n)−1 − 1
)

(tr Φ
m|H0(Bun

G
,Qℓ))

+
∏

n≥2

Ln(Xm, n)−1
(∑

j

βm
j ǫ j

)
.

https://doi.org/10.4153/CJM-2009-001-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-001-5


12 K. Behrend and A. Dhillon

For future use, we denote the series on the right-hand side of the above equation

by Am.

Note that

Ln(Xm, s) = Ln(X, s) = Z(Xm, s)
γn

mn∏

i=1

pni(Xm, s),

where the γn is the same as that in Theorem 4.14. We have

Z(Xm, s) =

∏2g
i=1(1 − αm

i q−ms)

(1 − q−ms)(1 − qm(1−s))

and

pni(Xm, s) =

∏
(1 − αm

niq
−ms).

In the above formulas the αi and αni are the same as those in the formulas for X.

Now H0(BunG,Qℓ) is finite dimensional by the results of Section 5. So there is a

km/k such that the connected components of BunGm
are geometrically connected

and have a rational point. It follows that Φ
lm is the identity on H0(BunG,Qℓ) for all

l > 1. So using Proposition 4.15, the series Alm satisfy the first of the hypothesis of

Lemma 4.17. Now using the fact that |β j | ≤ q−1/2, by Corollary 5.22 the remaining

hypotheses are easily checked. It follows that Alm = 0. It follows that there are exactly

τ(G) components.

Now consider 1 < r < m. A similar analysis shows that each of the series Alm+r is

zero. So tr Φ
r|H0(Bun

G
,Qℓ) = τ(G) also. It follows that Φ must be the identity and we

are done.

Proof of Theorem 3.4 Note that Weil’s conjecture is true for Chevalley groups by

[Har74]. The result is now obtained by combining the above with Corollary 6.8.

Proof of Theorem 3.5 Argue as in the proof of Theorem 3.3.

5 The Lefschetz Trace Formula for BunG

5.1 Semistabilty for G-Torsors

The purpose of this subsection is to recall the main results and constructions of

[Beh95]. The main point of that paper is to extend notions such as (semi)stability

and Harder–Narasimhan filtration to torsors over a reductive group scheme.

For concepts such as root systems with complementary convex solids, special

facets and semistabilty of root systems, the reader is referred to the first three sec-

tions of [Beh95]. The relationship of these concepts with what is to follow can be

found in Section 6 of that paper.

The following construction will be used throughout this work.

Lemma 5.1 There is a finite étale cover f : Y → X such that f ∗G is an inner form.

Proof We make use of the notations of [DG70]. Let G0 be the constant reductive

group scheme over X having the same type as G. Being an inner form means that

the scheme Isomext(G,G0) has a section over X. By [DG70, XXIV, theorem 1.3] and
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[DG70, XXII, corollary 2.3], G is quasi-isotrivial and hence so is Isomext(G,G0). This

implies by [DG70, X, corollary 5.4] that Isomext(G,G0) is étale and finite over X. So

we take Y to be one of these components and the section is the tautological section.

Note that such an inner form is generically split by the Hasse principle. See Corol-

lary 4.2 and Proposition 4.5 above.

Definition 5.2 Let H be a smooth affine group scheme over X with connected

fibers. We define the degree of H to be deg H = deg Lie(H), where Lie(H) is the Lie

algebra of H viewed as a vector bundle on X.

By Lemma 5.1, a reductive group scheme has degree 0.

Definition 5.3 • We say that G is semistable if for every parabolic subgroup P of G

we have deg P ≤ 0.
• We say that G is stable if for every parabolic subgroup P of G we have deg P < 0.
• The largest integer d such that there exists a parabolic subgroup P of G of degree

d is called the degree of instability of G and is denoted degi(G).

By [Beh95, Lemma 4.3], the integer degi(G) is finite.

Let Dyn(G) be the scheme of Dynkin diagrams of G, see [DG70, XXIV]. The power

scheme of Dyn(G), denoted P(Dyn(G)) is the scheme that represents the functor

schemes/X → sets

T 7→ P(Dyn(GT)).

Here P means the set of open and closed subschemes. For a parabolic subgroup P

of G recall the definition of the type of P, denoted t(P), from [Beh95, p. 294]. The

type t(P) is a section of P(Dyn(G)) → X. In a nutshell, the type of P can be thought

of in the following way: think of G as a family of reductive groups over X and then

Dyn(G) is their Dynkin diagrams glued together in the appropriate way. Over a point

x ∈ X choose a Borel subgroup contained inside Px. This Borel gives a choice of

simple roots which correspond to the vertices of the Dynkin diagram over x. We

consider Lie(P)x ⊆ Lie(G)x, and let R be the subset of the simple roots that consists

of those roots α such that the weight space for −α is in Lie(P) with respect to the

above inclusion. The value of t(P) over x is the complement of R.

Let T be the free Abelian group on π0(Dyn(G)). By definition of power scheme,

the section t(P) chooses some connected components of Dyn(G); let T(P) be the free

Abelian group on these components.

Let o be a positive element of T(P), that is, an element of the form
∑

ni oi with

the ni positive. Given such an o, one can construct a vector bundle W (P, o). We refer

the reader to [Beh95, p. 293] for the construction and basic properties.

Definition 5.4 Let P be a parabolic subgroup of G and let o be a component of its

type. We define the numerical invariants of P to be all deg W (P, o) as o ranges over

the components of the type of P.
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Definition 5.5 A parabolic subgroup P ⊆ G is called canonical if

• the numerical invariants of P are all positive,
• the Levi component P/Ru(P) of P is semistable.

The main results of [Beh95] can be summarized in the following theorem.

Theorem 5.6 There is a unique canonical parabolic subgroup of G. It is maximal

among parabolic subgroups of maximal degree. It commutes with pullback under sepa-

rable covers.

The above constructions and definitions apply to a G-torsor E as follows. One

forms the inner form EG = E ×G,Ad G. Then EG is a reductive group scheme over X

and we define the degree of E, etc. to be that of EG.

5.2 The Shatz Stratification on BunG

We will describe in this subsection the Shatz stratification on BunG and state its ele-

mentary properties. The proofs are often just generalizations of facts about the usual

Shatz stratification for vector bundles. When new ideas are involved, we sketch these.

The interested reader is referred to [Beh90] for complete proofs.

Let BunG be the moduli stack of G-torsors. Let X(G) be the group of characters

of G. Each G-torsor E defines a map

deg E : X(G) → Z

φ 7→ deg(E ×φ Gm).

For α ∈ X(G)∨ we denote by BunαG the open and closed substack of BunG of

torsors of degree α. For m an integer we denote by Bunα,≤m
G the substack of torsors

of degree of instability at most m. It is an open substack of BunαG that is in fact of

finite type. To show this last fact we proceed in several steps.

By a vector group over X we mean the underlying additive group of a vector bun-

dle over X.

Proposition 5.7 Let V be a vector group on X. Then the natural map BunV →
H1(X,V ) makes BunV into an affine gerbe over the vector space H1(X,V ). This gerbe

is trivial, i.e., isomorphic to BH0(X,V ) × H1(X,V ). It follows that BunV is a smooth

stack of finite type of dimension r(g − 1) − d, where r is the rank of V and d its degree.

Proof A torsor for V defines, via cocycles, a cohomology class, and this defines the

canonical map. It is easy to see it is a gerbe. Let t : T → H1(X,V ) be a an affine

morphism. The T-points of H1(X,V ) are in bijection with H1(XT ,VT), thinking of T

as a k-scheme by composition of structure maps. Hence t defines a cohomology class

ξ ∈ H1(XT ,VT) which corresponds to a VT torsor E. This gives a map t̃ : T → BunV

that lifts t . Hence the triviality result.

Proposition 5.8 Let P be a parabolic subgroup of G and let H = P/Ru(P). The

natural map BunP → BunH is a smooth epimorphism of stacks that is of finite type and

relative dimension dimX Ru(P)(g − 1) − deg(EP), where E is the universal G-torsor. It

induces an isomorphism on cohomology.
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Proof The unipotent radical is filtered by subgroups all of whose quotients are vector

bundles [DG70, XXVI, 2.1]. One then proceeds by induction.

Proposition 5.9 Let B be a Borel subgroup of G and assume that G is split over the

generic point of X. Then for each β ∈ X(B)∨ the stack Bun
β
B is of finite type.

Proof The quotient B/Ru(B) is a split torus. It is well known that the components

of BunGm
are of finite type and the result follows from the above proposition.

Proposition 5.10 Let Z be a projective scheme over k and let f : Z ′ → Z be a projec-

tive flat cover. Let H be a smooth affine group scheme over Z. Then the natural pullback

map BunH → Bun f ∗H is affine and of finite presentation.

Proof Straightforward. See [Beh90, 4.4.3].

Before we get to the proof of the fact that Bun
α,≤m
G

is of finite type, we need some

constructions. Let P be a parabolic subgroup of G. The type of P is an open and

closed subscheme of Dyn(G). Its connected components o1, o2, . . . , os generate a

subgroup T(P) of T. There is an action of P on W (P, oi). Taking the determinant of

the action produces a character χi of P.

Definition 5.11 We say that an element α of X(P)∨ is positive if α(χi) > 0 for

i = 1, . . . , s. We denote by X(P)∨+ the collection of all such positive elements.

We have a homomorphism T(P) → X(P) and taking duals and identifying the

dual of T(P) with itself via the basis o1, o2, . . . , os, we obtain σ : X(P)∨ → T(P). As

P acts on Ru(P) and this group is filtered by subgroups with vector bundle quotients,

we may take determinants to obtain a character χ0. Evaluation at χ0 gives a map

m : X(P)∨ → Z. Finally the inclusion P ⊆ G gives a map δ : X(P)∨ → X(G)∨.

Proposition 5.12 The map δ × σ : X(P)∨ → X(G)∨ × T(P) is injective with finite

cokernel.

Proof The details can be found in [Beh90, 7.3.11], but the idea is as follows. Using

Lemma 5.1, one can assume that G is generically split. To see the reduction observe

that the cover in Lemma 5.1 may be taken to be Galois with group Γ. The character

groups of the original groups are just the groups of Γ invariants.

In the split case one uses the correspondences set up in [Beh95, §6] to reduce the

problem to questions about root systems with complementary solids.

Theorem 5.13 The stack Bun
α,≤m
G

is of finite type.

Proof See [Beh90, 8.2.6] for full details. Again, by passing to Galois covers, we may

assume that G is generically split as the natural map

Bun
α,≤m
G

→ Bun
tr ˇ(α),≤m
f ∗G

is of finite type by Proposition 5.10. Choose a Borel B ⊆ G and let χ1, χ2, . . . , χs be

the associated characters inducing a map
∐

β Bun
β
B → Bun

α,≤m
G

, where the disjoint

union is over all characters such that

d(β) = α, m(δ) ≤ m, β(χi) ≥ −2g.
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The above proposition shows this disjoint union is finite. A calculation shows

that the morphism exists, i.e., the degree of instability of the torsors in the image

is at most m. Furthermore, the morphism is surjective. By Proposition 5.9, we are

done.

Every parabolic subgroup P of G determines an element

s∑

i=1

n(P, oi)oi, in T,

where oi are the connected components of the type of P. For a reductive group

scheme G on a family of curves X → S, we define a function n : S → T as follows.

For a point s ∈ S choose an algebraic closure k(s) of the residue field at s. Define n(s)

to be n(Ps) where Ps is the canonical parabolic subgroup of Gs.

Proposition 5.14 Let Sd be the locally closed subscheme of S where the degree of in-

stability of G is d. Then n is a continuous function on Sd.

Proof See [Beh90] (7.2.9)

Denote by Bun
α,m
G

the locally closed substack of torsors of degree α and degree of

instability m. Denote by Bun
α,o
G

the locally closed substack of torsors of degree α and

type of instability o.

If E is a P torsor of degree α, then the torsor E ×P G has degree δ(α). If σ(α) =∑s
i=1 ni oi , then ni = n(E×P,Ad P), where we think of E×P,Ad P as a parabolic subgroup

of E ×P,Ad G. Furthermore, degi(E ×P,Ad P)) = m(α).

Theorem 5.15 Denote by Ḡ the reductive group scheme G×k k̄ over the curve X ×k k̄.

Let P be a parabolic subgroup of Ḡ and let α ∈ X(P)∨+ . The natural map

Bun
α,0
P

→ Bun
δ(α),m(α)

Ḡ

is finite radical and surjective.

Proof Recall that a morphism is radical if it induces a bijection on L-points for every

field L. Representability of this morphism is easy to show. The fact that it is radical

and surjective amounts to the existence and uniqueness of the canonical parabolic.

5.3 The Lefschetz Trace Formula for BunG

Proposition 5.16 Let P be a parabolic subgroup of Ḡ. Let α ∈ X(P)∨+ . Let H =

P/Ru(P). Then there is a natural isomorphism

Hi(Bund(α),σ(α)

Ḡ
,Qℓ) → Hi(Bunα,0

H
).

Proof Use Theorem 5.15 and Proposition 5.8. Note that a finite radical and surjec-

tive morphism induces an isomorphism on cohomology [AGV72, Expose VII].
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Lemma 5.17 There is a function r : T → Z such that if E is a Ḡ-torsor of type of

instability o, then r(o) = dimX Ru(P) where P is the canonical parabolic of E.

Proof This is just because two parabolic subgroups having the same type are twisted

forms of each other.

Proposition 5.18 The closed immersion Bun
α,o
G

→ Bun
α,≤m(o)
G

is of codimension

c(o) = r(o)(g − 1) + m(o).

Proof This is a standard dimension calculation.

Define γ(i) to be the smallest integer such that

γ(i) ≥

{
1 + i/2 if g > 0,

1 + i/2 + |Φ| if g = 0,

where |Φ| is the number of roots of G.

Proposition 5.19 Let i ≥ 0 be such that m ≥ γ(i). Then the canonical map

Hi(Bun
α,≤m
G

,Qℓ) → Hi(BunαG,Qℓ) is an isomorphism.

Proof Let c be the codimension of Bun
α,o
G

in Bun
α,≤m
G

where m(o) = m. Using the

above, one shows that for m ≥ γ(i) we have i ≤ 2c − 2. A Gysin sequence yields the

result.

For a divisor D on X we denote by BunG(D) the moduli stack of G-torsors with

level structure over D. By level structure over D for a torsor E we mean a section of

i∗DE where iD : D →֒ X is the natural inclusion.

Proposition 5.20 Let D be a divisor on X. Let Bun
α,≤m
G

(D) be the moduli stack of

G-torsors on X with level structure at D. Let E be the universal torsor on BunαG. If

p∗
E Lie(G)(−D)|

Bun
α,≤m

G

= 0,

then Bun
α,≤m
G

(D) is a Deligne–Mumford stack.

Proof We need to show that the diagonal morphism of Bun
α,≤m
G

(D) is unramified.

Let K be a field and consider a K-point Spec K → Bunα,≤m
G (D). It corresponds to

a pair (E, s) where E is a a torsor on XK and s is a section. Denote by Aut(E, s) the

automorphism group of E compatible with s. If π : X → Spec k is the structure

morphism, then we need to show that πK (Aut(E, s)) is unramified over Spec K . A

calculation shows that one may identify the Zariski tangent spaces of this group with

H0(XK , Lie(G)(−D)) which vanishes.

Theorem 5.21 The eigenvalues of the arithmetic Frobenius acting on

Hi(Bun
α,≤m
G

,Qℓ)

have absolute value at most q−i/2.
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Proof First, for a smooth Deligne–Mumford stack the analogous statement is true

by comparison to its coarse moduli space [Beh93]. Now for a quotient stack [X/Γ],

where X is a smooth Deligne–Mumford stack and Γ any algebraic group, we proceed

as follows. First we may assume that Γ = GLn by choosing a faithful representation

Γ →֒ GLn and replace X by X ×Γ GLn. The Leray spectral sequence for

[X/GLn] → B GLn

has E2 term Hi(B GLn,Qℓ) ⊗ H j(X,Qℓ). The result follows for the quotient as it is

known for X and B GLn.

Corollary 5.22 The eigenvalues of the arithmetic Frobenius acting on Hi(BunαG) have

absolute value at most q−i/2.

Lemma 5.23 For the group Ḡ there is a function m : T → Z such that if E is a Ḡ-tor-

sor with type of instability o ∈ T, then m(o) is the degree of instability of EḠ. If P is a

parabolic subgroup of Ḡ, then the diagram

X(P)∨
o

//

""D
D

D

D

D

D

D

D

D

T

m

��
Z

commutes.

Proof If E and F are torsors with the same type of instability o, there is a parabolic

P of type η where η is the support of o and E and F have reductions E ′ and F ′ to P.

Then o(deg E ′) = o = o(deg F ′), and our lemma follows from the fact that m factors

through T(P).

Let η be a closed and open subscheme of Dyn(Ḡ). Let

C(η,mu) =
∣∣{o ∈ T(η)+ | m(o) = µ}

∣∣ .

Here T(η)+ denotes the set of linear combinations in the support of η all of whose

coefficients are positive.

Lemma 5.24 We have C(η, µ) = O(µs) where s is the number of components of the

type of P.

Proof Recall the definition of the characters χi and χ0 from the discussion after

Proposition 5.10. The result follows from the fact that there are positive rational

numbers such that χ0 =
∑s

i=1 yiχi .

Lemma 5.25 Let R be the radical of Ḡ. There exist finitely many d1, . . . , dn ∈ X(Ḡ)∨

such that for every d ∈ X(Ḡ)∨ there is an R-torsor of degree di − d.
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Proof Let M = {δ ∈ X(R)∨ | BunδR 6= ∅}. By looking at dual objects one constructs

an exact sequence of tori over X, 1 → S → R → Gr
m → 1, where the last map has

a quasi-section. We can identify X(R)∨ with X(Gr
m)∨ and using this identification

and the quasi-section, we observe that M has finite index in X(R)∨. It follows that

M has finite index in X(Ḡ)∨ and we take di to be a set of coset representatives for

X(Ḡ)∨/M.

Let A be the set of open and closed subschemes η ⊆ Dyn Ḡ such that there is

a torsor E whose canonical parabolic has type η. For each η ∈ A, fix a torsor Eη .

Let Pη ⊂ Eη Ḡ be the canonical parabolic and let Hη = Pη/Ru(Pη) be its Levi fac-

tor. We choose for each η degrees d(η, 1), d(η, 2), . . . , d(η, n) ∈ X(Hη)∨ according

to the above lemma. We get a finite family of stacks Bun
d(η, j),0
Hη

parameterized by

A×{1, . . . , n}. Set bi(η, j) = dimQℓ Hi(Bun
d(η, j),0
Hη

,Qℓ). Choose B(i) = sup bi(η, j).

Lemma 5.26 There is an integer N so that B(i) = O(iN).

Proof The stacks in question are quotients of smooth Deligne–Mumford stacks by

Proposition 5.20. The result follows from the usual spectral sequence.

Recall the definitions of γ(i) after Proposition 5.18 and r(o) in Lemma 5.17. We

set

D(i) =

∑

eta∈A

γ(i)∑

µ=0

C(η, µ)B(i − 2µ− 2r(η)(g − 1)).

Lemma 5.27 The following sum converges:

∑

η∈A

∑

m

q−m+(1−g)RuP
∑

i

dim Hi(Bun
Hη ,C
G

d(m), 0,Qℓ)q−i/2.

Proof Use the above estimate.

The convergence now follows from some general observations about cohomology

of stacks that we outline below. Denote by W iH j(X,Qℓ) the i-th weight space of the

j-th cohomology group.

Recall that a morphism Z → Z̃ is called a universal homeomorphism if it is fi-

nite radical and surjective. Such a morphism induces an equivalence of étale sites by

[GR71, Expose IX 4.10].

Theorem 5.28 Let X be a smooth stack with a countable stratification by locally closed

stacks Z̃i . We assume that the union Xn =
⋃n

i=0 Z̃i is open. Suppose that there are

universal homeomorphisms Zi → Z̃i with each of the Zi ’s smooth and the following

sum converges:

∞∑

n=0

q−codim(Zn,X)
∑

i, j

dim GrW
i H j(Zn,Qℓ)q−i/2 <∞.

Then the trace of the Frobenius converges absolutely on X.
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Proof Let Z → X be a morphism of finite type smooth schemes which factors as

Z → Z̃ → X, where π : Z → Z̃ is a universal homeomorphism and i : Z̃ → X a

closed immersion with complement U . We have a long exact sequence

· · · → H∗(Z̃, i!
Qℓ) → H∗(X,Qℓ) → H∗(U ,Qℓ) → · · · .

Let c = dim X − dim Z. We have H∗−2c(Z,Qℓ(−c)) = H∗(Z, π!i!Qℓ) because Z

and X are smooth. Now pulling back via π induces an isomorphism of étale sites

[GR71, Expose IX,4.10]. As π∗ is the right adjoint of π∗, it is the inverse of π∗ and

hence also a left adjoint of π∗. Since π is proper, we conclude that π!
= π∗. Thus,

we have H∗(Z, π!i!Qℓ) = H∗(Z, π∗i!Qℓ) = H∗(Z̃, i!Qℓ), Thus we have a natural long

exact sequence

· · · → H∗−2c(Z,Qℓ(−c)) → H∗(X,Qℓ) → H∗(U ,Qℓ) → · · · .

This result extends to stacks and filtrations of schemes and stacks consisting of more

than two pieces. Assembling these long exact sequences we get the required result

and some simple analysis gives the required result.

Theorem 5.29 We have

∑

x∈Bunα
G

(k)

1

Aut(x)
= q(g−1)(dim G)

∑
(−1)i tr Φ|Hi (Bun

G
,Qℓ),

and both sides converge absolutely.

Proof The convergence of the trace is by the above proposition and lemma, noting

that the natural maps Bun
m,0
P → BunG are finite radical and surjective onto their

image by the uniqueness of the canonical parabolic. The stratification being used

is Shatz stratification induced by reduction to the canonical parabolic. The open

substacks of bounded degree of instability are of finite type by Theorem 5.13. As the

trace formula holds for these, the result follows.

6 Ono’s Formula and Applications

Let M be the fundamental group scheme of G. So M is an Abelian group scheme over

K and there is an exact sequence 1 → M → G̃ → G → 1, where G̃ is the universal

cover of G. For a continuous Gal(K
s
/K)-module N, let

X
1(K,N) = ker

(
H1(K,N) →

∏

x∈X

H1(Kx),N)
)
.

Here Kx is the completion of the global field K at x.

Theorem 6.1 (Ono’s Formula) Assume that Weil’s conjecture holds true for the uni-

versal cover G̃ of G, that is, τ(G̃) = 1. Then we have

τ(G) =
|H0(K, M̂)|

|X1(M̂)|
,

where M̂ = Hom(M,Gm) is the dual Galois module.
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A notational clarification is in order here. The object M̂ is to be viewed as functor

on field extensions of K . We have M̂(L) = X(M) ⊗K L. We will often write Hi(L, M̂)

when we really mean Hi(L, M̂(L̄sep)).

The above theorem is the main result of [Ono65]. It was originally only proved in

the number field case and some modifications are needed in the function field case.

We will detail these below.

To prove this result we need to generalize the theory of Tamagawa measures to re-

ductive groups. We refer the reader to [Oes84, 1.4] for the definition of the Tamagawa

measure dτH for a reductive group H.

In [Ono65], the theorem is proved by reducing to the case of an isogeny of tori.

This was treated in [Ono63]. However this last paper contains a small error in the

function field case that was corrected in [Oes84, p.23, Ch. IV].

We need some background results before giving the proof of the above theorem.

Let Λ1 ⊆ Λ be an inclusion of free Abelian groups of the same rank r. Let

x = {x1 = 0, x1, . . . , xt}

be a set of coset representatives for Λ/Λ1. A function f : Λ → R is said to be x-com-

patible if

• f has finite support;
• f (α) = f (α + xi) for all α ∈ Λ1 and all i.

Such a function is said to be Λ1-compatible if it is x-compatible for some choice of

coset representatives containing 0.

Lemma 6.2 Suppose we have three lattices Λ1 ⊆ Λ2 ⊆ Λ3 of the same rank r. Let

f : Λ3 → R be Λ1 compatible. Then

∑

y∈Λ2

f (y) =
( ∑

y∈Λ3

f (Y )
) 1

[Λ3 : Λ2]
.

Proof This is elementary.

We denote by Dq the set {qi|i ∈ Z}. Choose a basis {χ1, . . . , χr} = χ for the

group X(H) of rational characters of H. We define

ψχH = ψH : H(A) → Dr
q

by sending x 7→ (‖χ1(x)‖, ‖χ2(x)‖, . . . , ‖χr(x)‖). In the above χi is really the adeli-

zation of χi . The image of ψ is of finite index in Dr
q. Denote by H(A)1 the ker-

nel of ψ. We denote by dτ 1
H the measure on H(A)1 that is the quotient of dτH by

[Dr
q : Im(ψ)](log q)r. The Tamagawa number of H is

τ(H) =

∫

H(A)1/H(K)

dτ 1
H .
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Proposition 6.3 Let Λ ⊆ Im(ψ) ⊆ Dr
q be a sublattice of maximal rank. If F is

Λ-compatible, then

∫

H(A)/H(K)

F(ψH(x)) dτH = τ(H)
( ∑

x∈Dr
q

F(x)
)

(log q)r.

Proof We have, noting the previous lemma,

∫

H(A)/H(K)

F(ψH(x))dτH =

∑

y∈Im(ψ)

F(y)

∫

H(A)1/H(K)

dτ

=

∑

y∈Dr
q

F(y)

∫

H(A)1/H(K)

dτ

[Dr
q : Im(ψ)]

=

∑

y∈Dr
q

F(y)

∫

H(A)1/H(K)

dτ 1
H(log q)r.

Proposition 6.4 Consider an exact sequence 1 → H ′ i
→ H → H ′ ′ → 1. Suppose

H ′ is a torus, H ′ ′ is semisimple, and the sequence is generically split. Then

τ(H ′)τ(H ′ ′) = τ(H)| cok î |.

In the above formula î is the dual map on character groups.

Proof See [Ono65, Proposition(1.2.2)]. The fact that the sequence is generically split

implies that the induced map on adelic and K-points is exact. Furthermore X(H) is

a subgroup of X(H ′) of finite index | cok î|. By the elementary divisors theorem, we

may choose a basis χ1 · · ·χr of X(H ′) such that m1χ1 · · ·mrχr is a basis of X(H). We

have a diagram

Dr
q

m
// Dr

q

Im(ψH ′) //

OO

Im(ψH)

OO

H ′(A)

ψH ′

OO

// H(A).

ψH

OO

We have a sequence of inclusions Im(ψH ′ ) →֒ Dr
q →֒ Dr

q. In what follows we write

the group operation on Dr
q additively. By the elementary divisors theorem, there are

bases of the two outside lattices of the form {e1, . . . er} and {d1e1, . . . drer}. Define a

function on Dr
q by

f (eα1

1 + · · · + eαr
r ) =

{
1 0 ≤ αi < di ,

0 otherwise.
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This function has the property that

∫

H ′(A)/H ′(K)

f (ψH(x ′) + t) dτH ′ =

∫

H ′(A)/H ′(K)

f (ψH(x ′)) dτH ′ ,

which just follows from the definitions. Using the compatibility properties of f and

Lemma 6.2 one shows that
∫

H ′(A)/H ′(K)

f (ψH(x ′)) dτH ′ =
1

| cok î|

∫

H ′(A)/H ′(K)

f (ψH ′(x ′)).

This follows from the definition of f and the fact that dτH ′ is a Haar measure. We

have

τ(H)(
∑

y∈Dr
q

f (y))(log q)r
=

∫

H(A)/H(K)

f (ψH(x)) dτH

=

∫

H ′ ′(A)/H ′ ′(K)

dτH ′ ′

∫

H ′(A)/H ′(K)

f (ψH(x ′)ψ(x)) dτH ′

=

∫
τ(H ′ ′)

∫

H ′(A)/H ′(K)

f (ψH(x ′)) dτH ′

=
τ(H ′)τ(H ′ ′)

| cok î|

( ∑

y∈Dr
q

f (y)
)

(log q)r,

which finishes the proof.

Lemma 6.5 Let 1 → H ′ → H
κ
→ H ′ ′ → 1 be an exact sequence of linear algebraic

groups over K. Assume that H ′ is semisimple simply connected, H ′ ′ is a torus, and H is

reductive. Then

(i) κ(HA) ∩ H ′ ′
K = κ(Hk);

(ii) H ′ ′
A = κA(HA).

Proof Let x ∈ κ(HA)∩H ′ ′
K . Then κ−1(x) is a torsor for H ′. By [Har75], this torsor

is trivial which yields the result.

(ii) For each x ∈ X the map κx, obtained by base change to Kx, is surjective. This

is because the Galois cohomology H1(Kx,H
′) vanishes since H ′ is simply connected.

Proposition 6.6 Let 1 → H ′ → H
κ
→ H ′ ′ → 1 be an exact sequence of connected

reductive groups with H ′ semisimple simply connected and H ′ ′ a torus. Then

τ(H ′)τ(H ′ ′) = τ(H).

Proof Compare with [Ono65, Prop 1.2.3]. Let F be compatible with ImψH ′ ′ . Con-

sider the integral

J =

∫

H(A)/H(K)

F(ψH ′ ′(κ(x))) dτH = τ(H)
( ∑

x∈Dr
q

F(x)
)

(log q)r.
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To see this, note that κ̂ induces an isomorphism on character groups, as H ′ is semi-

simple. Then apply the above lemma along with Proposition 6.3. Again by the lemma

we may apply [Wei82, Theorem 2.4.4] to this integral and obtain

J = τ(H ′)

∫

H(A)/H(K)

F(ψH ′ ′(y)) dτH ′ ′ = τ(H ′)τ(H ′ ′)
( ∑

x∈Dr
q

F(x)
)

(log q)r.

Again we have made use of the above lemma.

We now recall Ono’s construction of crossed diagrams. Let G̃ be the universal

cover of G, so that we have an exact sequence 1 → M → G̃ → G → 1. Note that M

is of multiplicative type [DG70, IX] over the field K . Recall the following result from

[DG70, X].

Proposition 6.7 The category of groups of multiplicative type over K is antiequivalent

to the category of Gal(K̄ s/K)-modules that are finitely generated as Abelian groups.

The above duality is induced by Hom(−,Gm), i.e., by taking character modules.

Now observe that we can find an exact sequence 0 → M → T ′ → T → 0, with

X(T ′⊗K K ′) a projective Gal(K ′/K)-module for some splitting field K ′ of T ′. To see

this set GM = {g ∈ Gal(K̄ s/K) | g fixes M̂}. Let Γ = Z[GM] and we can find an

exact sequence 0 → kernel → Γ + Γ + · · · + Γ → M → 0. Set G∗
= (G̃ × T ′)/M

and we have a diagram

0

��

T ′

i

�� ��@
@

@

@

@

@

@

@

0 // G̃ //

  @
@

@

@

@

@

@

@

G∗ //

��

T // 0

G

��
0

Proof of Theorem 6.1 We use the above notations. As in [Ono65, Lemma 2.1.1]

the vertical column above has a generic section. Assuming Weil’s conjecture that

τ(G̃) = 1, we obtain

τ(G) =
τ(T)| cok(î)|

τ(T ′)

using Proposition 6.4 and Proposition 6.6. Theorem 6.1 follows now from arithmetic
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duality theorems and the arguments in [Ono65, p.99–102]. Also note [Oes84, Corol-

lary 3.3].

Corollary 6.8 Suppose that the group G is split. Then the sequence

τ1(G), τ2(G), . . .

is constant. Here τn(G) is the Tamagawa number of the base change G ×k kn.

Proof See the cited work of Ono, in particular [Ono65, Theorem 2.1.1] and [Ono63,

Proposition 4.5.1]. Essentially, under the stated hypothesis, the Tamagawa number is

the cardinality of the fundamental group which is stable under base change.

The remainder of this section will be devoted to studying how the Tamagawa num-

ber changes under base extensions of the form kn/k under various hypotheses. We

begin by recalling the explicit construction of the localization maps for M̂ in our

particular setting.

We view the Galois module M̂ as a functor on field extensions of K in the usual

way. Given a diagram of fields

K ′
1

// K ′
2

K1
//

OO

K2

OO

with the vertical maps being Galois extensions, we obtain morphisms

Gal(K ′
2/K2) → Gal(K ′

1/K1) and M̂(K ′
1) → M̂(K ′

2).

This gives maps Hi(K ′
1/K1, M̂) → Hi(K ′

2/K2, M̂). In particular we have diagrams

K̄ s // Kx
s

K //

OO

Kx

OO

for every x ∈ X. This yields the map H1(K, M̂) →
∏

x∈X H1(Kx, M̂), whose kernel is

X
1(K, M̂).

We record the following.

Lemma 6.9 Consider the projection π : Xn → X.

(i) The map π is étale.
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(ii) Let x ∈ X. Then π−1(x) consists of gcd(n, deg x) points.

(iii) Suppose π(y) = x. Then Kn,y/Kx is a cyclic Galois extension of degree n
gcd(n,deg x)

.

Its Galois group is generated by the Frobenius.

Proof This is well known. See for example, [Ros00].

We denote by Kn the function field of Xn. We assume from now on that there is

a splitting field L for G that has field of constants k and further k contains all roots

of unity of order dividing the fundamental group of G. The field Ln has its obvious

meaning.

Lemma 6.10 Let y ∈ Xn and denote by π the projection Xn → X. Under the above

hypothesis we have that M̂(Kn) (resp. M̂(Kn,y)) is a trivial Gal(Kn/K)-module (resp.

Gal(Kn,y/Kπ(y))-module).

Proof Note that M̂(Kn) = M̂(K̄ s)Gal(K̄s/Kn). The group Gal(Kn/K) is cyclic and gen-

erated by the Frobenius. Let F be a lift of the Frobenius to Gal(K̄ s/K). As the field of

constants of L and K are the same, we may assume F fixes L. Now by the assumption

on the roots of unity we have that F acts on M̂(K̄ s) trivially. The result follows. The

other case is similar.

Proposition 6.11 Suppose that G has a splitting field with field of constants k and if

k contains all roots of unity dividing the order of M, then |H0(Kn, M̂)| does not depend

on n.

Proof Follows from the above lemma.

Lemma 6.12 The natural map

Hi(Kn/K, M̂) →
∏

y∈Xn

Hi(Kn,y/Kπ(y), M̂)

is injective.

Proof By the Riemann hypothesis for function fields, we can find a point x ∈ X with

deg x coprime to n. If y lifts this point, we have that Gal(Kn/K) ∼= Gal(Kn,y/Kx). The

result follows from Lemma 6.10.

Theorem 6.13 Suppose that G has a splitting field with field of constants k and k

contains all roots of unity dividing the order of M. Then there is a natural isomorphism

X
1(K, M̂) ∼= X

1(Kn, M̂).
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Proof We have an inflation-restriction sequence inducing the diagram

0

��

H1(Kn/K, M̂)

��

H1(K, M̂)

��

l
// ∏

x∈X H1(Ky, M̂)

��

H1(Kn, M̂)

��

ln
// ∏

y∈Xn
H1(Ky, M̂)

H2(Kn/K, M̂)

The previous lemma shows that we have an injection X
1(K, M̂) →֒ X

1(Kn, M̂).

Let α ∈ X
1(Kn, M̂). Also by the lemma we can lift α to α̃ ∈ H1(K, M̂). We need to

show that α̃ is in the subgroup X
1(K, M̂) modulo the image of H1(Kn/K, M̂). Let

l(α̃) = (βx)x∈X. Choose for each x ∈ X a lift x̃ ∈ Xn. Since α ∈ X
1(Kn, M̂) we have

that βx ∈ H1(Kx̃/Kx, M̂) for every x. The hypotheses imply that M̂(k̂(x̃)) is trivial as

a Gal(k̂(x̃)/k̂(x))-module. So we may think of each βx as a homomorphism

βx : Gal(Kx̃/Kx) → M̂(Kx̃).

We have an inclusion of Abelian groups M̂(Kn) = M̂(K̄ s)Gal(K̄s/Kn) →֒ M̂(Kx̃). As

each βx comes from α̃, the above homomorphisms factor through M̂(Kn). Define a

homomorphism α0 : Gal(Kn/K) → M̂(Kn) by F 7→ α̃(F), where F is the Frobenius

and we are choosing a representing cocycle for α̃ in the above expression. Now an

easy diagram chase shows that α̃− α0 is in X
1(K, M̂).

Corollary 6.14 Under the hypothesis of the theorem and assuming Weil’s conjecture

for the universal cover of G, we have τn(G) = τ(G). for every n.

Proof Combine the theorem with Theorem 6.1 and Proposition 6.11.
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