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Abstract

John Conway's analysis in 1968 of the automorphism group of the Leech lattice and his discovery
of three sporadic simple groups led to the immediate speculation that other Z-lattices might
have interesting automorphism groups which give rise to (possibly new) finite simple groups.
(The classification theorem for the finite simple groups has since told us that no new finite
simple groups can arise in this or any other way.) For example in 1973, M. Broue and M.
Enguehard constructed, in every dimension 2" , an even lattice (unimodular if n is odd) whose
automorphism group is related to the simple Chevalley group of type Dn . This family of
integral lattices received attention and acclaim in the subsequent literature. What escaped the
attention of this literature, however, was the fact that these lattices had been discovered years
earlier. Indeed in 1959, E. S. Barnes and G. E. Wall gave a uniform construction for a large class
of positive definite Z-lattices in dimensions 2" which include those of Broue and Enguehard
as special cases. The present article introduces an abstracted and generalized version of the
construction of Barnes and Wall. In addition, there are some new observations about Barnes-
Wall lattices. In particular, it is shown how to associate to each such lattice a continuous,
piecewise linear graph in the plane from which all the important properties of the lattice, for
example, its minimum, whether it is integral, unimodular, even, or perfect can be read off
directly.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 11 E 12, 11 E 25,
11 H 06, 11 H 31, 11 H 55.

I wish to add a personal salute to Tim Wall on the occasion of his retirement. With the very
elevated level of his research and with the distinguished quality of his character he has made a
profound and lasting contribution to Australian mathematics.
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[2] Coset lattices of Barnes and Wall 419

It was already pointed out that the substance of the work of Broue and
Enguehard [2] is contained in Barnes and Wall [1, 13]. Figures 1 and 2
below illustrate how the lattices of Broue and Enguehard fit into the bigger
picture considered by Barnes and Wall. However, [2] is completely inde-
pendent and also establishes the connections between Barnes-Wall lattices
and Reed-Muller codes. Refer to [4] and its vast bibliography for the ex-
tensive and interrelated theories of integral lattices, error correcting codes,
and sphere packings. The references of this article add a few entries to this
bibliography. I thank the referee for pointing out the articles of Forney [5]
and [6]. These papers are of particular interest in the present context since
they are based to significant degree on the work of Barnes and Wall already
referred to. Incidentally, the "coset construction" in [5] and [6] is completely
unrelated to that of the present article. The terminology, notation and basic
facts used below will follow O'Meara [10], in particular Part IV. See also
Milnor and Husemoller [8].

1. Basic concepts and coset lattices

Let V be a k (finite) dimensional vector space over Q and let

b: V x F - + Q

be a symmetric bilinear form on V. We assume throughout that b is pos-
itive definite, that is, that the completion (V, b) of (V, b) to K satisfies
b{x, x) > 0 for all x in V with x / 0. For any basis X = {x{, ... , xk}
of V and any positive r in Q, a positive definite symmetric bilinear form
b on V is defined by setting b(xt, Xj) — 0 for i ^ j and b{xt, xt) = r.
The notation

C 3 ( r ) l - l ( r ) in X

means that b has been constructed in this way. Let L be a Z-lattice in
V. So L is a finitely generated Z-module contained in V with operations
induced from V. Since L is torsion free, L is free. If L spans V over Q
we say that L is on V. In this case, rankz L = dimQ V — k. The set

L* = {y e V\b{x ,y)eZ for all x in L}

is also a Z-lattice in V. It is called the dual lattice of L. The lattice L is
called integral if b(x, y) € Z for all x and y in L, that is if L c L*, and
L is called unimodular (or non-singular) if L = L . If L is integral, then L
is called even if b(x, x) e 2Z for all x in L, and odd otherwise. Assume
now that L is on V. Let X — {x{, ... , xk} span L over Z . Since it spans
V over Q, X is a basis of L. The k x k matrix A — {b{xt, Xj)) is called
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the matrix of L in the base X. We write L ~ A in X. Observe that L is
integral if and only if all entries of A are in Z. The element det A e Q is
independent of the choice of X and we define det L = det A . One finds that
detL* = (detL)"1. If L is integral, then detL is a positive integer and

[L#:L] = detL.

An integral lattice L is called p -elementary if the Abelian group L*/L is
an elementary p-group. If N and M are submodules of L such that L =
N®M and b(x, y) = 0 for all x in TV and y in M, we write L = N ± M
and refer to this as a splitting of L. If L has such a splitting with both N
and M non-zero, L is called decomposable, L is called indecomposable if it
is not decomposable. A theorem of Eichler asserts that any L has a splitting
L = Ll L ••• L Lm into indecomposable lattices in V which is unique up
to the order of the components. The smallest value in {b{x, x)\x ^ 0 in
L) is denoted min L. We will call a vector x e L a minimal vector if
b{x, x) = minL. The lattice L is called perfect, if h : V x K —> Q given
by A(JC , j>) = 0 for all x and y , is the only symmetric bilinear form on V
such that h(x, x) — 0 for all the minimal vectors x of L. It is not hard to
see that if L is perfect, then L is indecomposable.

A general method of constructing positive definite Z-lattices follows. Let
G be a finite set of k elements. Let e be a distinguished element of G and
fix an ordering G — {e = g0, g{, ... , gk_{} of G. For the moment G and
e will be arbitrary, but soon G will be taken to be a multiplicative group
and e its identity element. Let C be a collection of non-empty subsets of
G containing {e} . Let N be the set of positive integers and let k : C -»• N
be any function that satisfies:

(1) card C < cardD => k{D) <k{C),
(2) cardC| card/) =• k(D)\k(C).,

Note that cardC = card/) implies that k(C) = k(D), and that k(C)\k{e)
for all C in C. Denoting the set of (positive) divisors of k(e) by divk(e)
we see that A : C —> divA(e). Let F be a vector space over Q with basis
{e = gQ, g{, ... , gk_i} and define a positive definite b on F by

F S

in the basis {^0, . . . , gk_{} • When emphasizing the role of k we will denote
the form b by bx and F by FA. For any non-empty subset S of G denote
by v5 the vector
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[4] Coset lattices of Barnes and Wall 421

in V. Let L(G,X) be the Z-lattice in V spanned by {A(C)vc|C € C} .
EXAMPLE 1. The terminology, notation and theorems cited in this example

come from [4, Chapter 10]. Let G = {e = oo, 0, 1, 2, . . . , 22} be the
projective line over the field F2 3 . Let C consist of {e} and the special
octads. Define A on C by X(e) = 8 and A(C) = 2 for any special octad
C. Let C' consist of C and G and extend A to a map A' on C' by setting
X'(G) = 1. Note that L(G,X') = ZvG + L(G,A). The lattices L(G,X)
and L(G, A') are closely related to the Leech lattice. The connection is as
follows: let Ao be the sublattice of L{G,X) spanned by all the X(C)VC with
C ^ {e} . This is the lattice Ao (scaled by | ) of [4, Chapter 10]. Clearly,
L{G, A) = Z8ve+Ao. By Theorem 24, [L(G, A): Ao] = 2. The Leech lattice
is the lattice A = Z(vG-4v^)+A0 . It is unimodular. By Theorem 25, L(G, A)
is contained in A. So L(G, A) is integral and it follows that L{G, A') is
integral also. By Theorem 24, [A : Ao] = 4 , and therefore [A : L(G, A)] = 2 .
Again by Theorem 24, 2vG e Ao. So [L(G, A') : L(G, A)] is 1 or 2. By
Theorem 25, \G £ A, so this index must be 2. Note that L(G, A)* contains
L(G, A') and A. Since A is unimodular and [A : Ao] = 4 , [(Ao)

# : \] =
16. In brief, we have

(Ao)#

L(G,X')

L(G,X)

where all the indicated indices are equal to 2 . Note that L(G, A') is uni-
modular (and odd), and that L{G, A') and A are neighbor lattices. See [9],
particularly Section 8 of II.

From now on G will be a (multiplicative) group of finite order k and e
will be its identity element. Let C be the set of all the cosets (relative to all
the subgroups) of G and

A : C ^ N

any function that satisfies (1) and (2) above. By Lagrange's theorem and (2),
A(G)|A(C) for all C in C. Without essential loss of generality, we therefore
normalize A and assume that X{G) = 1. Let G c C be the set of subgroups
of G. Note that in order to define a function A on C, it suffices to define
A on G. Since it contains the vectors X(gi)gi = X{e)gi for 1 < / < k, the
lattice L(G,X) is on Vx .
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LEMMA 1.1. Let gH and g K, with g and g in G and H and K in
G, be elements in C. Assume that gH n g K ^ 0 , and put gh — g'k for
some h in H and k in K. Then gHng'K = gh(H nJf) .

PROOF. Since g = ghk~l, gH n g'K = gH n ghK. If gh' = ghk' is
an arbitrary element in this intersection, then h' = hk', so k' e H r\K. So
gh' = ghk' is in gh(H n K). This provides one inclusion. The other is
trivial.

)*PROPOSITION 1.2. L(G, k)* = {x = J2geG
a

gS e V\HC)J2g€c
a

g
 e *(e)z

for all C in C}.

PROOF. Let x e V and put x = Y,g€G
a
g8 • T h e n xeL(G,X)* if and

g g
only if b(^2geGagg, k(C)\c) e Z for all C in C. Since

gee v ; gee

x e L{G, X)* if and only if X{C) J2g€C
 ag G ^ z f o r a11 c i n c •ag

PROPOSITION 1.3. 77ie lattice L(G, X) is integral if and only if

A(e)\A(H)i(K) card(// n K)

for all H and K in G.

PROOF. For C and D in C arbitrary,

b(HC)vc, k(D)yD) - A(C)A(D) card(C n D)-^ .

So F is integral if and only if this element is in Z for any C and D in
C. It remains to prove that if this element is in Z for any H and K in G,
then this is so for any C and D in C. But this is an easy consequence of
Lemma 1.1 above.

COROLLARY 1.4. If L{G, X) is integral, then A(e)|A(C)cardC for all C
in C. In particular, A(e)\cardG.

Assume that G is Abelian. So for each divisor of m of card G there is
a subgroup H of G of order m. It follows that for any subgroup H of
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[6] Coset lattices of Barnes and Wall 423

G there is a subgroup / / ' of G, such that card// • card// ' = cardG. Set
k'(H) = k(e)/k(H'). Note that k'(H) is independent of the particular / / '
chosen. We have defined k' : C ^ N. Clearly, k\e) = k(e), k'{G) = 1,
and k' satisfies defining property (1). It also satisfies (2). To check this,
it suffices to consider C and D in G and to assume that C c D. Put
card/) = wcardC. Note that cardC' = wcardZ)'. So k(C')\k(D'), and
hence k'(D)\k'(C). Since k'(e) = k(e), L(G,k') is also a lattice on the
quadratic space Vx.

EXAMPLE 2. Suppose G - Gp is the cyclic group of prime order p . So
card(7 = k = p. Set k(G) = 1 and k(e) = p. By Corollary 1.4, k(e) = p
is the only choice if L(G, k) is to be integral and non-trivial. It is clear
that L{G, k) is spanned by X = {v G ,pg j , . . . ^gfr^}. Hence X is a
basis of L(G, k). Easy computations show that in the basis Y — {vG, pgx -
v G , . . . ,pgk_{ - v c } , L(G,k) ~[l]±A, w h e r e A is t h e {p - I]|x (p - 1)
matrix

'p-\ -1 . . . -1
-1 p-\ ... - 1

-1 -1 p - l m

Row and column reducing A appropriately shows that detL(G, k) — p ( p ~ 2 ) .

EXAMPLE 3. Let G = Gp x Gp be the product of two cyclic groups of

prime order p. So k = p1. Set k(G) = 1, k(e) = p2 and k(H) = p for
any subgroup H of order p . Since G is a 2-dimensional vector space over
the field Fp , there are exactly (p2 - \)/{p - 1) = p + 1 subgroups of order
p. Fix a subgroup H of order p and observe that there are p — 1 cosets
of the form gH with gH ^ H. As / / varies over the p + 1 subgroups of
order p, we get {p + l)(p - 1) = p2 - 1 such cosets by Lemma 1.1. Denote
them by Cl, C2, ... , Ck_,. Put X = {vG, p\c , ... , pvc } . We claim
that X spans L(G, k). It is clear that p\H is in the span of X for any
subgroup H of order p. Now fix g in G. There are exactly p + 1 cosets
(including subgroups) of order p containing g; their union is G. This
follows by translation from the case g = e. Denote them by C, , . . . , Cp+l.
By Lemma 1.1, these p cosets intersect pairwise in the element g only. It
follows that

1=1

So p2g = k(g)g is in the span of X. So X spans L(G, k) and is therefore
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a basis of L(G, X). Clearly, Y = {\G, pvc -vG, ... , pvc -\G} is also
a basis of L(G, X). Let H and K be distinct subgroups of order p and
let C = gH and D = g'K be arbitrary cosets. Since G is Abelian and
G = HK, it follows easily that C n D / 0 . So by Lemma 1.1, CnD is a
point. Let / / , , . . . , Hp+l be the distinct subgroups of order p, and reorder
the non-trivial cosets C{, C2, ... , Ck_{ in such a way that C , , . . . , Cp_1

belong to H{, and Cp, ... , C2p_2, belong to H2, and so on. Reorder the
elements in Y accordingly. A routine computation shows that in this basis,

L(G,X)~[l]±A±---±A,

where A is the (p - 1) x (p - 1) matrix of Example 2, repeated p + 1 times
in the decomposition. Observe that L((7,/l) is integral. Since detA = pp~2,
detL(G,X)=p{p-2)U>+l).

Are the lattices in Examples 2 and 3 p-elementary? Does the pattern ex-
hibited in Examples 2 and 3 continue for /j-groups of larger orders? What
happens for other choices of X ? Is an integral L(G, X) p-elementary when-
ever G is an elementary p-group?

2. The lattices of Barnes and Wall

We now turn to the lattices of Barnes and Wall. This is the situation where
the group G is taken to be an elementary Abelian 2-group. Note that any
elementary Abelian 2-group is a vector space over F2 in a natural way, and
conversely. The subspaces are the subgroups.

DEFINITION. The lattice L(G,X) is a Barnes-Wall lattice if
(i) G is a (finite) elementary Abelian 2-group,
(ii) X(e) is a power of 2 , and
(iii) X : C —> divA(e) is onto.
By Corollary 1.4, an integral L(G, X) is a Barnes-Wall lattice if and only

if (i) and (iii) hold. Note that X{G) = 1 follows from (iii) and does not have
to be assumed.

For the rest of the paragraph we fix an elementary Abelian 2-group G
of order k = 2". Any coset in G has cardinality 2r, 0 < r < n. The
typical such coset will be denoted by Cr. We begin by showing that the def-
inition above is equivalent to that of [1]. Suppose that X with the indicated
properties is given. Set X(Cr) = 2X"-'. Note that 1 = X{G) = 2A° and that
X{e) = 2A". In view of the defining properties (1) and (2),

0 = Ao < A, < • • • < A. < • • • < kn
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[8] Coset lattices of Barnes and Wall 425

is the complete set of images of k. Since k is onto, it follows that ki—kj_i <
1. The exponents k( therefore satisfy conditions (3.1) of [1]. Note that
kn < n. Conversely, given any such sequence, and denning k(Cr) — 2 --'
and, in particular k(e) — k(CQ) — 2X", provides a surjective function k : C —•
div k(e). It remains to note that the lattice A(A) of [1, Section 3] is precisely
the lattice obtained by scaling L(G, k) by k(e). Observe that the lattice
L(G, k') of Section 1 is also a Barnes-Wall lattice. The associated scalars are
k\ = kn- kn_i. This is the scaled version of the lattice A(A') of [1].

We now describe some of the important results of [1]. Note that the
Barnes-Wall lattices that are considered here differ from the original versions
in that we have scaled by -^ = 2~k". The formulation of the results below
differs accordingly.

Let L(G, k) be a Barnes-Wall lattice. Since the 2-group G is determined
uniquely (up to isomorphism) by its order, we denote L(G, k) by Lk(k).
Of course, rankzLfc(A) = k. As above, we set k(Cr) = 2X"~r. So k(e) =
k(C0) = 2Xn. It is clear that there are elements {xx, ... , xn} in G such that
every g in G is uniquely of the form

where e( is either 0 or 1. In vector space terminology X = {xx,... , xn} is
a basis of G over F 2 . Including the empty set, there are exactly 2" subsets
of X. Let H be the collection (there are of course 2") of subgroups of G
that are generated by these 2" subsets. If H in H has order 2r, we denote
Hby Hr.

THEOREM 2.1. (1) Lk(k') = Lk(kf,

(2) B = { 2 ^ - ^ \Hr G H} is a basis of Lk(k), and

(3) detBLi(A) = 2"^»+2^"=o^(").

Note that k = 2n = Er"=0 (?) •

PROOF. This is [1, Theorem 3.1]. We sketch the proof. It is easy to
k(k') c Lk(see that Lk(k') c Lk(kf. Let Y be the Z-lattice spanned by the basis

{e = g0, gx, • • • , ,?£_,} of Vk. Note that detT = (2 /n) = 2 kA*. It is not
very hard to show that {\H \Hr e H} is a basis of F . So the determinant of

the matrix of the form bx in this basis is 2~kX" also. Now arrange the vectors
in B so that the indices r occur in non-decreasing order and denote by iV
the Z-lattice spanned by the vectors in B. Note that N CLk(k)cr. Using
[10, §82E], one checks that the volume of N is the ideal of Z generated by
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Let B' be the set of vectors obtained by replacing Xn_r by X'n_r and let
N' C Lk(X') be the analogue of N. The volume of N1 has an expression
analogous to that of N and a routine computation shows that the product
of these volumes is Z . By [10, §82F], N* and N' have the same volume.
Since N' C Lk{k') C Lk(X)* C N* , N1 C N*. Soby [10, §82:1 la], N* = N'
and hence N' = Lk(X') = Lk(X)* = N* . So Lk(k) = N. This proves (1) and
(2). Computing the volume of Lk(k) in the basis B provides (3).

COROLLARY 2.1 A.

= £ agg G V\ £ ag 6 2*'Z /or a// Cr in C

PROOF. By 2.1, Lk(X) = Lk(k'f . Now apply Proposition 1.2.

COROLLARY 2. IB. Let Cr be a coset in G. Then 2'\c e Lk(X) if and
only if i > Xn_r.

PROOF. Since X{Cr) = 2K~', 2'vc G Lk(k) if / > kn_r. Now let 2'vc e
Lk{X). Let D = Ds be any coset contained in C = Cr. Put C = g # and
Z) = g'AT with K and if in G. Since #' e C, C = g'H. So K is a
subgroup of H. Let iV be a complement of H in G and consider the coset
E = Et = g'KN. Note f = s + n-r. By Lemma 1.1, Cf)E = g'Hng'KN =
g'{Hc\KN) =D.So 2*2'' G 2x°+"-'Z by Corollary 2.1 A. This is so for any s

with 0 <s <r. Taking 5 = 0 , shows that / > Xn_r.

Consider the sequence 0 = Xo < X{ < ••• < Xt < ••• < kn given by k.

For any i, 0 < / < n , set I ; = / - kt. Let i < j . Since A; - A,- < j - i,

Xt = i-Xt < j-Xj = Xj . Since Xi+l-Xi < 1, Xi+1-Xt = (i+i)-l.+l-(i-Xj =
1 - (^,+i - A-i) < 1 • As noted earlier, the sequence 0 = k0 < A, < • • • < kt <
• •• < Jn — n - kn defines a surjective function 1: C —> div2"~ " and hence
a Barnes-Wall lattice Lk(X).

k)#
THEOREM 2.2. The lattices Lk(k) and Lk(k)# are isometric.

The rank of a non-zero vector x in Lk (k) is denned to be the largest i,
0<i<n, such that all coordinates of x in the basis {e = gQ, gx, ... , gk_,}

of V are divisible by 2X>. Let w^ be given by

m, = min (2A, — / ) .
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[10] Coset lattices of Barnes and Wall 427

THEOREM 2.3. minL^A) = 2"1A+("~/1") . The minimal vectors of Lk(k) of

rank r are precisely the vectors in Lk(k) of the form J2g€s(sg2X')g > where

0 <r < n, 2Xr - r - mx, S is a subset of G of order 2n~r, and e = ± 1 .

Let r, with 0 < r < n, satisfy 2Xr - r — mx. Which of vectors

T,g€s(eg2*r)8 a r e actually in Lk(k)l In [13, Section 3.1] it is shown that
this is the case if and only if S is a coset and if the function / : S —* Z2

given by f(g) — eg satisfies certain properties. This characterization of the
minimal vectors of Lk(X) can be used to find a formula for their number.
See formula (5.10) of [1].

Suppose r satisfies 0 < r < n and 2Ar - r — mx. Consider the set Mr

of all the vectors of the form 2X'vr and 2X'\r - 2X'\n , where
Cn_r_l and Dn_r_x are distinct cosets belonging to the same subgroup. It
is not difficult to see that the set Mr is a subset of Lk{X). So it consists
entirely of minimal vectors of Lk{X).

The final result relevant for our purposes asserts that the lattice Lk(X) is
perfect if such an r exists.

THEOREM 2.4. Suppose that r satisfies 0 < r < n and 2Xr - r = mx. If
h : V x V -» Q is a bilinear form such that h(x, x) = 0 for all x in Mr,
then h(x, y) — 0 for all x and y in V. In particular, Lk{k) is perfect and
hence indecomposable.

The lattice Lk{X) is in fact extreme whenever the hypothesis of the theo-
rem above holds. Refer to [1] and [13] for this and additional information.

3. The graph of the lattice Lk{k)

Fix n > 1. A sequence, in present context, is defined to be any ordered
n-tuple of O's and l's. Let S = [e,,..., e j be a sequence. We denote
by S* the sequence S* — [en, ... ,e{], and by -S the sequence -S =

As in Section 2, we fix an elementary Abelian 2-group G of order k = 2"
and let Lk(k) = L(G, A) be a Barnes-Wall lattice on Vx . Let 0 = Ao < A, <
••• <kn be the scalars determined by A. The sequence sqLk(k) of Lfc(A) is
[el, ..., e j defined by

p — i — 2 p — 2 — 2 F — 2 — 1
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So every Barnes-Wall lattice determines a sequence. Conversely, every se-
quence S = [ e , , . . . , e j determines a Barnes-Wall lattice Lk(X) with X
denned by the scalars X. = t.-\ h et.

PROPOSITION 3.1. sqLk(X)* = (sq Lk(X)j* .

PROOF. By Theorem 2.1, Lk(X)# = Lk(X'), where X\ = Xn - Xn_l.. If
5 = [e,, . . . , en] is the sequence of Lk(X), then the sequence of Lk{X') is
S' = [e[, ... , e'n], where e[ = X',-^ = (A B -X n _ i ) - (X n -X n _ i + i ) = ew_/ + 1 .

So 5' = 5# .

PROPOSITION 3.2. sqLfc(I) = - sqLk(X).

PROOF. Recall, I, = i - Xl,. So I - X,_, = J - A,• - (/ - 1 - A(._,) =

Suppose that Lfc(A) is the lattice that corresponds to [0, . . . , 0]. So all
Xj are equal to zero. It follows that {e = g0, g{, ... , gk_{} is a basis of
Lk(X) and that in this basis Lk(X) ~ Ik , the k x k identity matrix. If Lk(X)
corresponds to [1, . . . , 1], then by Theorem 2.2 and Propositions 3.1 and
3.2, Lk(X) ~ Ik in some basis. The lattices corresponding to [0, . . . , 0] and
[1, . . . , 1] are called the trivial lattices and are denoted Ik .

Let S = [el, ... , en] be a sequence. For 1 < i < n, denote by pt and qi

the number of l's and 0's in [el, ... , et]. Consider the set of n + 1 points

(0,0),(I,pl-ql),...,(n,pH-qn)

in the x-y plane. The graph grS1, of 5 is defined to be the continuous,
piecewise linear curve obtained by connecting (0,0) to (1 , px -ql), (1 , px -
q{) to (2, p2 - q2), and so on. Note that grS lies in the wedge 0 < x < n,
-x < y < x. Consider the midpoint {n/2, [pn - qn)/2) of the segment
determined by the points (0,0) and (n, pn-qn) • We define (grSf to be the
graph obtained by reflecting grS through this point. It is not difficult to see
that (grS)# = gr(5#). If grS = (grS)# , in other words if grS is symmetric
about the point (n/2, (pn - qn)/2), then (n/2, (pn - qn)/2) lies on grS
and is called the midpoint of grS. Note that gr(-5) = - (g rS) , the graph
obtained by reflecting grS across the line x = 0. We write grS < grS1, if
the graph of 5 lies below that of S'.

The graph of Lk(X) is the graph of the sequence of Lk(X). We denote it
by grLk(X). Let Lk(n) be another Barnes-Wall lattice relative to G.

PROPOSITION 3.3. Lk(X) c Lk(/i) if and only if grLk(X) > grLk(n). In
particular, Lk(X) = Lk(fi) if and only if grLk(X) - grLk(n).
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PROOF. By use of Corollary 2.IB, Lk(k) C Lk(fi) if and only if kt > nt

for all i. This is the same as saying that for all / , the pt for Lk{k) is greater
than or equal to the pt for Lk(fi), or equivalently, that the qt for Lk(X) is
less than or equal to the qt for Lk{k). The rest is clear.

PROPOSITION 3.4. If gr Lk(/i) - -(gr Lk(k))*, then Lk(n) is isometric to
Lk(k). So if Lk(k) is unimodular and gr Lk(fi) = -grLk(k), then Lk(/i) is
isometric to Lk(k).

PROOF. It suffices to prove the first statement. Using Propositions 3.1 and
3.2, we get

-{gr Lk{k)f = -(gr Lk(k)f = (grL,(I))# = gr(Lfc(I)
#).

So by Proposition 3.3, Lk(/i) = Lk(Xf . Now apply Theorem 2.2.

The following two propositions are easy consequences of Propositions 3.1
and 3.3 and the discussion above.

PROPOSITION 3.5. Lk{k) is integral if and only if &Lk{k) > (gvLk{k))*.

PROPOSITION 3.6. Lk{k) is unimodular ifand only ifgr Lk(k) = (gr Lk(k)) .
So Lk(k) is unimodular if and only if the graph of Lk(k) is symmetric about
the point (n/2,(pn-qn)/2).

The next two statements are translations of facts from Section 2.

PROPOSITION 3.7. Let 0< i <n. Then Lk(k) has minimal vectors of rank
i if and only if the graph of Lk(k) has an absolute minimum at x = i.

PROPOSITION 3.8. If grLk(k) has an absolute minimum at x = i, with
0 < / < « , then Lk(k) is perfect and hence indecomposable.

Recall the parameter mx defined prior to Theorem 2.3. Since 2ki - i —
2Pi - (Pi + Qi)= Pi - Qi. we find

PROPOSITION 3.9. The minimum y-coordinate of the graph of Lk(k) is
mx.

Note that pn = kn is the number of segments of the graph with slope +1
and that this number determines the bilinear form on Vx . Since pn+qn = n,
qn = n - pn = n - kn. Since qn is the number of O's in the sequence of
Lk(k), qn is the number of segments in the graph of Lk(k) with slope - 1 .
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Translating Theorem 2.3, we find that

PROPOSITION 3.10. minLk(X) = 2m'+q».

PROPOSITION 3.11. Suppose Lk{k) is integral. Then Lk(X) is even if and
only if minLk(X) > 2.

PROOF. Since {2x—i\c\Ci is a subgroup of G} spans Lk(X), Lk(X) is

even if and only if 6(2A"-'vc , 2A- 'vc) 6 2Z for all i, 0 < i < n , and all
subgroups Ci of G. Since

-'vCj, 2* - 'T C ( ) = 22X"-'b{yc , \c) = 22A"-2'2~*",

Lk{X) is even if and only if 2Xn_i + i-kn > 1 for all / . But, 2kn_i + i-kn =
2Xrl_j - (n - i) - Xn + n . So Lk(k) is even if and only if mx - Xn + n > 1,
which holds if and only if mx- pn+pn + qn> 1. Now apply 3.10.

PROPOSITION 3.12. If Lk(X) is non-trivial and unimodular, then Lk(X) is

even.

PROOF. By the proof of the proposition above, Lk(X) is even if and only
if 2Xn_i + i-Xn > 1 for all i . Since Lk(X) is unimodular, Xn_i = Xn-Xr So
Lk(X) is even if and only if Xn + i > 2Xt + 1 for all i. Since it is always the
case that Xn > Xt and i > Xt, Lk{X) is even unless j = A and Xn = X- for
some j . If ;' = 0, then Xn = 0. So all Xj are 0, and sqLk(X) = [0, . . . , 0].
So assume that j > 1. It follows that Xt - i for i < j , and Xt = Xn

for all i > j . So Xn_i = 0 for all i > j . It follows that j = n. So

Consider the lattice Lk(X) corresponding to [ 1 , 0 , 0 , . . . , 0 , 1 ] . In view
of the propositions above, this lattice is unimodular, even, indecomposable
and has minimum 2. Let V be the quadratic space V = (1) 1 •• • _L (1) in
{̂  = £o' #i»• • • ' %k-\) • ^ follows from the discussion on pages 331 and
332 of [10] in combination with Proposition 1.2, that the isometry x -> \x
from the scaled space F 1 / 4 onto V injects Lk(X) into Ofc. Since Lk(X)
is unimodular and &k indecomposable, it follows that Lk(X) is isometric
to Ofc. We denote both Lk(X) and the isomorphic copy of Lk(X) (see
Proposition 3.4) corresponding to [0, 1, 1, . . . , 1, 0] by Ofc .

Figure 1 shows the graphs of the lattices considered by Broue and Engue-
hard (for n even). It also includes the lattice O t and the two trivial lattices.
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Broue-Enguehard Lattices

/"\ A.

\
V

L2"

FIGURE 1

Note, in view of 3.6, that the lattice of Broue and Enguehard is unimodular
only for odd n .

Figure 2 shows the graphs of all (up to the isomorphism provided by Propo-
sition 3.4) the even, unimodular Barnes-Wall lattices in dimension 27 = 128
which have minimal vectors of ranks between 1 and 6. All these lattices are
perfect and hence indecomposable. The lattice (a) is O12g and has minimum
2. The lattice (d) is the lattice of Broue and Enguehard and has minimum 8.
The lattices (b), (c), and (e) all have minimum 4. Counting the number of
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FIGURE 2

minimal vectors (see formula (5.10) of [1]) shows that they are not pairwise
isometric. The points o are the respective midpoints of the graphs. Their
x-coordinates are \ .

We conclude with some questions. It is observed in [1] that if Lk(X) is
perfect and has minimal vectors of ranks 0 or n only, then k = 4 and the
sequence of Lk(X) is either [0, 1] of [1 ,0 ] . Are, however, the non-trivial
Lk(X) all of whose minimal vectors have ranks 0 or n indecomposable? We
have already pointed out that there is no overlap (in the sense of isometry)
among the lattices sketched in Figure 2. Is it true that all the overlap among
the Barnes-Wall lattices is accounted for by Proposition 3.4? Barnes and
Wall seem to think so (see [1, page 57]). Finally, and most importantly,
are there choices of G (other than elementary 2-groups), X and C which
lead to interesting lattices? For example, are there interesting lattices between
L'(G, X) and L'(G, A)*, where L'{G, X) is the lattice of rank p2-\ spanned
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by the vectors {pvc - \G, ... , p\c - \G} of Example 3? Refer to the
"gluing" procedure in Section 3 of Chapter 4 in [4].
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