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Abstract
The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency
than what was possible using the prior generation. Facilities requiring human intervention between laser repetitions
need to adapt in order to keep pace with the new laser technology. A distributed networked control system can enable
laboratory-wide automation and feedback control loops. These higher-repetition-rate experiments will create enormous
quantities of data. A consistent approach to managing data can increase data accessibility, reduce repetitive data-software
development and mitigate poorly organized metadata. An opportunity arises to share knowledge of improvements to
control and data infrastructure currently being undertaken. We compare platforms and approaches to state-of-the-art
control systems and data management at high-power laser facilities, and we illustrate these topics with case studies from
our community.
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1. Introduction

1.1. Shifts in high-power laser technology necessitate
revised digital infrastructure

High-power and high-intensity laser–plasma interactions
provide a versatile experimental platform. They can
produce extreme plasma environments, either for laboratory
astrophysics and fundamental plasma physics, or as a unique
source of secondary radiation. Secondary sources include
bright, keV–MeV X-rays[1], low-emittance and high-current
electron beams[2–4], GeV electron beams[5–8], ultra-short
MeV proton beams[9,10] and pulsed neutron sources[11].
These sources have demonstrated significant potential for
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applications[12] including rapid, high spatial resolution
X-ray tomography[13–15], free-electron lasing[16–18], FLASH
radiotherapy[19,20] and materials damage testing[21]. In order
to develop these sources for applications (e.g., optimizing
their stability and tunability), and in order for them to be
competitive with alternative sources, it is necessary for the
source repetition rate to drastically increase from sub-Hz to
hundreds of Hz (and beyond).

Tackling the obstacles to achieving multi-Hz repetition-
rate high-intensity laser–plasma interactions has been a focus
of the high-power laser community in recent years. Great
progress has been shown in laser technology[22], replenishing
targets[23–29] and online diagnostics[30–33]. The increasing
availability of experimental facilities compatible with high
repetition rates now highlights the need to adjust traditional
experimental practices, and control, in order to fully exploit
the opportunities offered by these systems[34]. Among these
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needed adjustments, new systems should enable automation
of scans of experimental and laser parameters, rather than
relying on repeated re-configuration through manual user
input. In addition, data from a large suite of diagnostics
should be acquired and collected at least at the repetition
rate of the slowest experimental component (e.g., laser,
target), ideally with the associated metadata to enable effi-
cient online analysis. Such systems can then be used for
automated communication between diagnostic elements and
control elements, enabling control without a human ‘in-the-
loop’[35]. In recent years this has been demonstrated in proof-
of-principle experiments[36–39], illustrating the deeper insight
and source enhancement that is enabled by such a shift in
methodology.

With a new generation of high-repetition-rate, high-
power lasers nearing completion, re-tooling is underway
in many areas linked to high-power laser facilities and
their experiments. These areas include targetry, scientific
instruments, data pipelines, mechatronics systems, analysis
software, data pipelines and data management. Recently, two
special issues of peer-reviewed journals have been dedicated
to ‘target fabrication’[40] and ‘the high repetition rate
frontier in high-energy-density physics’[41]. This manuscript
addresses a related topic – facility control systems and data
management – which is the digital infrastructure upon which
scientific experiments are designed and executed.

1.2. Approaches to tooling

An effective laboratory control system can enable facility-
wide communication among instruments, sensors, software
and humans. To clarify each category in the context of high-
power laser facilities, (1) instruments at high-power laser
facilities could include, for example, laser power meters,
laser contrast diagnostics, particle time-of-flight detectors
and electron spectrometers; (2) sensors could include, for
example, thermometers and pressure sensors; (3) software
could serve the roles of, for example, laboratory automation,

data storage, human interfacing and online data analysis;
(4) the humans involved could include, for example, facility
staff, principal investigators, graduate students, postdoctoral
scholars and visiting scientists.

One common approach to control in a high-power laser
facility is to leave various elements semi-isolated from one
another, with humans as the direct mediators of communi-
cation between various facility elements. Elements may be
computer-interfaced, for example, through vendor-provided
graphical software or through a custom LabVIEW interface,
but not in digital communication with one another. In this
approach, a person is responsible for synthesizing data inputs
from various elements, and making the appropriate system
re-configurations between repetitions (i.e., laser shots) (see
Figure 1(a) for an illustration). The increase in the repetition
rate of high-power laser facilities necessitates a need to move
beyond this human interfacing, towards digital interfacing.
This leads to the adoption of control methods that are man-
aged primarily in network-interfaced software (which itself
is configured by humans) (see Figure 1(b)). A distributed
networked control system[42] is one in which the laboratory
elements interact between one another (rather than to one
central person or even one central control hub), and it is
designed to be fault-tolerant and scalable. It may implement
strategies (such as redundancy) to ensure communication
and control can continue even when confronted by network
disruptions or other issues.

Data management is another area of digital infrastructure
in a laboratory where the approach may be organized, dis-
jointed or somewhere in between. One common approach
to data management in a high-power laser facility is to
maximize flexibility by utilizing humans at all stages of data
management. For example, team members might initiate data
collection on many computers separately and keep track of
the relationships between the data in a laboratory notebook.
Metadata – or the data that provides context for the data
itself – could include information such as environmental
parameters, laboratory configurations during data collection
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Figure 1. (a) Diagram of a high-power laser facility without a laboratory-wide control system. People tie the subsystems together. For example, a person
might adjust parameters on the laser amplifier subsystem in response to observations from the target-chamber subsystem. (b) Diagram of a facility with
a laboratory-wide control system. Consistent implementation throughout the facility opens new communication pathways between subsystems. These new
pathways enable laboratory-wide automation and control feedback loops without human mediation. Humans retain communication with all subsystems.
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and the experimental diagnostics settings. This metadata is
manually captured and recorded by a human operator, then
collected together with the data and labelled in such a way
that it can be re-associated with the relevant data. In this
approach, when other scientists wish to leverage that data
in analysis, people communicate the data and metadata to
collaborators via email, shared cloud folders or other means.

This approach to data management for high-power laser
facilities has relied on sufficient and accurate human-
described contexts associated with each element of data.
However, when lasers are pulsed/fired at many times per
hour, less time is available to capture the metadata – and
thus, there is more opportunity for mislabelled or missing
data. Human error is also an issue in low-repetition-rate
experiments, and so automated recording of metadata can
benefit even these less-frequent measurements. However, in
the most extreme cases of new high-power laser systems
capable of generating terabytes to petabytes of data in a span
of days or weeks, it is not even feasible to copy the raw
data onto a personal computer, let alone easily distribute it
in-full to colleagues. Isolated, fragmented copies of partial
datasets could be expected to result from person-to-person
distribution. We suggest that organized approaches to data
management for the next generation of high-power laser
facilities involve people stepping back from direct manipu-
lation and distribution of data. So, we propose approaches
to data management with systems that (1) reliably save data
with unambiguously associated metadata; (2) provide easy
access to the data from multiple users and institutions; and
(3) include modular software tools for analysing data.

Many laboratories in our community have already imple-
mented facility-level approaches to control systems and data
management. We share several examples as case studies
throughout this paper, and hope that the community can
seize this opportunity to learn collaboratively and maximize
the utility of the next generation of digital infrastructure.

1.3. Case study: the Draco laser at Helmholtz-Zentrum
Dresden–Rossendorf

This community example adds concreteness to the chal-
lenges of upgrading existing digital infrastructure, which
may be disparately organized.

How did multiple subsystems develop at this facility?
Helmholtz-Zentrum Dresden–Rossendorf (HZDR) was orig-
inally founded as a nuclear physics research centre in mid-
1950s and hosts nowadays, together with several other facil-
ities, the Draco laser system[43], in operation since 2007, and
the PEnELOPE system[44,45], in commissioning. Research
into relativistic plasmas was initiated at HZDR in the mid-
2000s. Laser systems were installed for synergy reasons
as additions to the existing accelerator-driven photon and
particle source called ELBE[46], sharing structural shield-
ing and building infrastructure, as well as the radiation

monitoring and interlock system of ELBE. Further control
systems are complete additions due to the higher flexibility
of a laser–plasma experimental arrangement compared to a
fixed accelerator machine. These systems were either newly
developed or were part of the corresponding subsystem itself
(e.g., the laser control system by Amplitude and Scarell). The
newly developed components were conceived as stand-alone
systems for the swift start of operations. Due to the external
development of the laser control system, an approach in
a single framework was not possible or desired. Instead,
subsystems were developed step-by-step in a historical pro-
gression, partly in parallel and partly by the vendor.

Subsystems were each developed to suit different needs.
For example, the vacuum control system in a laser–plasma
experiment can have less strict interlock requirements than
for a superconducting accelerator like ELBE, but it must
allow for frequent pump-down cycles with a simple user
interface. Likewise, in contrast to the more long-term fixed
setups found at a typical accelerator facility, actuators in
laser–plasma experiments are frequently re-configured and
assembled with new components.

Despite systems being based on different frameworks,
subsystems are partly interfaced to one another, and re-
usability and uniformity within a subsystem, where possible,
is implemented. As an example thereof, the laser–plasma
data acquisition (DAQ) is often done with cameras. The
software Laser Light Inspector[47] provides a common user
interface for various camera vendors with a number of live
analysis features, and was therefore chosen by HZDR for
camera acquisition control. It further provides a centralized
interface for remote control of the camera clients. This
reduces efforts for, for example, file path configuration,
significantly since the vast majority of detectors are operated
via this software, which leads to a high level of homogeneity
within this subsystem.

Likewise, acquired images are always stored locally at
each client, like the native vendor software does for other
detectors, such as optical spectrometers or oscilloscopes,
not being integrated in Laser Light Inspector. As a result,
dozens of acquisition PCs are deployed, each operating a few
cameras and/or other detectors and collecting data locally
for all detector types. Although imperfect, this methodology
does offer high flexibility and redundancy, since virtually any
camera or device can be connected to any nearby PC. Locally
stored data files are regularly copied over the network to a
central data repository by file synchronization software[48].

How do humans execute and process each shot? The above
operation mode, involving dozens of dedicated acquisition
computers, has led to quite efficient subsystems with a
high degree of flexibility, but requires significant human
interaction and consequently imposes a high work load on
scientists. There is no assigned staff operator crew to tie
together the local subsystems as one would find at a larger
accelerator facility.
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Figure 2(a) illustrates the flow of operations for laser-
driven ion acceleration experiments, typically done at the
shot-on-demand level, that is, about 1 shot per minute, and
the parameters are deduced from previous shots. Laser-
driven electron acceleration experiments operate similarly
but typically perform a series of shots at one point in
parameter space with repetition rates between 0.1 and 0.5 Hz,
before changing the parameters.

In the shot preparation phase, the numerous subsystems
are prepared by staff and scientists, partly in parallel. This
includes evacuation of experimental chambers, initializing
the detectors, searching and (inter)locking of the experimen-
tal rooms and preparation of the laser to operate at high pulse
energy.

The actual high-power laser shots are performed as a
sequence of steps (shown as a large circle in the centre
of Figure 2(a) and enumerated 1–7), coordinated by the
scientists, which partly transfer status information between
the subsystems but also process acquired information and
plan the course of action. First, the diagnostics need to be
checked and armed (e.g., save on trigger, correct destination
file path) and (2) the experiment must be in the correct
positional state (e.g., correct target and detector settings).
Then all facility and safety interlocks (3 and 4) must be
fulfilled. If everything indicates a ‘go’, a click in the laser
control software starts a shot sequence (5).

The laser shot sequence consists essentially of a well-timed
series of trigger signals (6), controlling processes within the
laser system (e.g., flash lamps and Pockels cells) to produce
the energetic laser pulse as well as triggering all detectors
at the experiment with the appropriate delay such that they
can record the ultrafast interaction. That trigger signal from
the laser to the experiment (blue dotted line in Figure 2(a))
is so far the only direct and automatic information transfer
between subsystems that is not mediated by scientists.

After that sequence, the immediate results can be viewed
(7) and the cycle can start again with a new target and refined
detector parameters. This step is not so much information
transfer between the systems like the other steps, but rather
information processing and decision making, where scien-
tists are mandatory.

As shown in Figure 2(a), subsystems do have automatic
saving or logging, but since they are all autonomous, each
subsystem’s storage is independent of the others and they
therefore need some relation to each other. In addition,
not everything can be automatically logged, for example,
observations and reasonings. Hence, there is the need for
a second layer of schematics for manual logging and tying
relationships. This is depicted in Figure 2(b), which com-
plements the right-hand part of Figure 2(a), where the
primary experimental data storing is shown; data from the
experimental environment, such as the vacuum system, is
rather secondary in this regard. Figure 2(b) shows, in partic-
ular, the importance of manual logging, that is, documenting

all work of the setup and calibration in an electronic lab
notebook (ELN), as well as documenting the shots in a shot
log. The shot log is very important for later analysis of
experiments as it documents the key experimental parame-
ters and observations, for example, diagnostic filter settings
or unexpected laser behaviour. It also provides, via shot
counts and timestamps, the relations between the automated
logs. Finally, the connection to further metadata, including
descriptors for the entire experimental run, happens at that
manual stage. However, those relations are to a large extent
only visible for humans.

The ELN, realized by a Mediawiki system[49], allows for
the full and rich documentation of the facility, in particular
the setup, development, maintenance and calibration works,
but can also store or link the experimental shot data.

Are there plans to move towards a facility-level control sys-
tem? HZDR’s laser experiments deploy a number of different
control systems, based on various software frameworks,
partly for historic reasons. The ansatz of HZDR is to arrange
the subsystems in a coherent way, rather than re-building
the system in a single framework. Coupling is currently
established via scientists and interfaces, and will always
be for the sake of flexibility. The goal for developments is
rather to add interfaces to the subsystems where necessary
and to add agents in between, as shown in Figure 1, such
that more and more automation can take place where the
established workflows allow for it. HZDR respects the fact
that there will always be some new development that should
be quickly embedded into experiments; hence, the systems
should have interfaces at very general, low-level tiers, such
that scientists can realize the changes of the control system.
The following are a few examples of existing plans by this
facility to reduce reliance on human interfacing between
subsystems and increase coherence.

• To reduce the work load of status monitoring during the
shot cycle, a handler could generate a joint signal from
the vacuum control system and radiation safety system,
which could be fed to the laser system to inhibit the shot
sequence if either subsystem is not in the proper state.

• The laser system could generate a common shot ID that
can be fed to the diagnostics. It might be necessary to
add an agent that could add that ID to all file names
of files generated from diagnostics. This would keep
the primary acquisition routine as is and add valuable
metadata to all kinds of detection.

• Upon synchronizing the files to a central repository,
they could be parsed to extract metadata, which is cur-
rently encoded in the file path and name. That metadata
could be sent to a database such as SciCat[50], and
that database could be joined with that of the shot log.
Again, such an approach would be independent of the
acquisition software and therefore very general.

https://doi.org/10.1017/hpl.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2023.49


Control systems and data management for high-power laser facilities 5

(a)

(b)

review results immediately

Figure 2. Engineers and scientists (represented with maroon and blue icons, respectively) manually conduct steps in the operational sequences for Draco at
HZDR. (a) Facility laser shot sequence diagram for ion acceleration experiments. Note the many steps in which people tie together subsystems. The central
blue circle indicates the laser shot sequence, executed and surveilled by scientists. Automated storage is part of many subsystems. (b) Manual logging to
complement and complete the data storage, to curate and enrich with the metadata.

https://doi.org/10.1017/hpl.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2023.49


6 Scott Feister et al.

• On individual diagnostic computers specialized analysis
scripts can be developed and deployed online during
the experiments. Analysed data can be forwarded via
messaging protocols to a flexible database such as Mon-
goDB[51] and visualized via Grafana[52] during experi-
ments. This can help to literally better see changes and
relations of otherwise tabular information.

These adaptations are a step in the right direction towards
reducing human interfacing. They will help streamline open-
loop operations at moderate repetition rates. However, with-
out a move to a distributed networked control system, such a
system is not ready for facility-level closed feedback loops.
In addition, although metadata has been considered, this
system relies on files passed across a network, and is not
configured with high-speed data analysis pipelines for high
data rates.

1.4. Digital infrastructure for next-generation facilities

The case study from HZDR shows that historically grown
control systems may operate efficiently and with high
flexibility at moderate repetition-rates. However, they
also become increasingly complex over time, requiring
significant human resources for interfacing between
individual parts. Higher data rates are a necessary step
forward to provide deeper insight into high-power laser–
plasma interactions and to produce competitive secondary
radiation sources for applications. However, moving towards
increasing number of diagnostics and higher repetition rates
pushes the boundaries of (too) heterogeneous approaches.
Instead of being monolithic, many modern control systems
are based on modular approaches, allowing them to scale up
while keeping complexity at a reasonable level and allowing
them to quickly adapt to changing requirements. The
modularity also allows for different levels of communication,
from low-level device access to high-level user interfaces.
However, the choice of an adequate, future-proof control
system is also a lasting one. Transitioning to a new control
system may take years and requires considerable effort.
Many facilities in our community are faced right now with
choices that will impact their operation for the next decades,
as they develop new digital infrastructure to meet the needs
of next-generation high-power laser experiments. In the
next sections, we compare platforms and approaches to
next-generation infrastructure for control systems and data
management at high-power laser facilities, and illustrate
these topics with case studies from our community.

2. Approaches to laboratory control

While there are clearly available strategies for develop-
ing control systems to make full use of multi-Hz DAQ
rates, realizing them can be a complex task in itself. Here

(Section 2.1), we illustrate this by considering opportunities
enabled by organized approaches to laboratory-wide control
and several very real challenges inhibiting adoption of these
new approaches within the high-power laser community
(Section 2.2).

2.1. Opportunities

2.1.1. Laboratory-wide automation
When controls are operating in isolation, a human being
is required to make adjustments to various systems within
the laboratory. When controls are integrated into a digital
control system that is organized throughout the laboratory,
automation across subsystems is possible. For example, a
laser intensity scan can be executed and may involve adjust-
ing pump laser diode timings in the amplifier, translating
a motorized stage in the compressor chamber, tilting a
mirror in the target chamber and increasing the image gain
setting on a scientific camera. Laboratory-wide automation
is important for scientists because it enables execution of
a planned shot sequence in which parameters are adjusted
across multiple laboratory subsystems, without pausing work
to wait for humans to make manual adjustments. As a con-
sequence, automation of a shot sequence can dramatically
speed up the overall scientific experiment and free up time
for tasks requiring the specialist skills of a scientist.

2.1.2. Laboratory-wide feedback control loops
A major opportunity of extensive automation is to ‘close
the loop’ across an entire experiment, enabling automated
control based on scientific data. Data acquired from mea-
surement of laser–plasma interactions can be piped into
the control system to make control decisions. Importantly,
with a control system implemented in an organized way,
scientists have wide flexibility to decide which controls will
be manipulated, and a common interface to make changes
to the control settings. With humans out of the control
loop, feedback-driven decisions can be made at much higher
repetition rates and with reduced human bias.

2.2. Challenges

2.2.1. Modularity and network bandwidth management
With abstractions in place between device hardware and con-
trol interfaces, one can more easily swap out low-level hard-
ware without breaking the high-level control interfaces. For
example, one might upgrade camera hardware and switch to
a different device driver, without impacting the software for
display interfaces or image analysis. This leads to increased
modularity of devices in the laboratory, since software for
display, storage and analysis can be isolated from the com-
plexities of device hardware.

When software systems for display, storage and analysis
are separated from one another and communicating via com-
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mon protocols, this allows for modularity in the software.
For example, multiple different analysis pathways can be
built that expose the same public interface, such that they
are interchangeable in the experimental data pipeline, to
allow for comparison and confidence in each analysis. This
provides flexibility, allows for re-use of software compo-
nents (e.g., data storage modules can be re-used with small
adaptations in similar subsystems) and can in some ways
bring more order to the system as there are fewer hidden,
unknown connections between software components than
that one might find in a monolithic codebase. However, it
also raises the challenges of organizing various versions
of these modules, and keeping track of changes to public
interfaces and how this affects dependent modules, since the
software modules are not kept globally in lockstep. Fortu-
nately, this challenge is common in non-scientific software
development, and there are software development best prac-
tices for managing dependencies and establishing versioning
to help manage the added complexity of interacting modules.
Separation of data display, storage and analysis across a local
network can result in high network data rates, especially if
large images are being streamed between multiple points
in a local network. One approach to mitigate this issue
without losing the benefits of modularity is to build modular
software components, communicating via public interfaces,
but have them running on the same computer (or a small
local subnetwork) so that laboratory-wide network band-
width is not an issue. A second approach is to send reduced
data across the network, for example, the polynomial fitting
coefficients to a curve. A third approach is to be selective
about which data is rejected and which data is transferred
or stored. Approaches to down-selecting data within the
data pipeline, including coordination of flagging certain data
as noteworthy across the entire laboratory, are utilized at
many large, data-heavy facilities. For example, the LHC
ATLAS experiment involves ‘trigger chains’ to reduce data
streams through multiple levels of decimation, starting with
hardware selection and ending with customizable software
selection algorithms[53–55]. As a second example, the LCLS-
II Data System[56] takes different approaches to configurable
in-line data reduction. Although the technology developed
for these experimental facilities may be oversized for many
in the high-power laser community, the ATLAS and LCLS-
II examples can provide inspiration for smaller-scale event-
selection techniques for data rate reduction, and provide
evidence that managing network bandwidth is possible even
with massive quantities of high-repetition-rate data.

At the level of challenges currently faced within the high-
power laser community, cameras acquiring digital images
at a high repetition rate present a unique challenge to a
networked control system, and require special care during
control system design to avoid overloading the network
with image-data traffic. For example, a single monochrome,
8-bit, 10-megapixel image may represent 10 megabits

(~1.3 megabytes) of data, and streaming images from two of
these cameras with no image compression at a repetition rate
of 50 frames per second would consume the entire theoretical
bandwidth of a 1 Gb/s network. One approach to managing
cameras (without sacrificing image storage through event
selection) is to store images locally, and only send limited
metadata about the stored image across the network (rather
than sending the full images). An elegant implementation
is found in the FACET-II system of SLAC[57], in which
camera data is acquired by a control computer and then
saved to network-attached storage that is proximate to the
control computer (the transfer occurs across only a single
network switch). In this way, all heavy image traffic stays
localized to the most-local network switch, and the overall
network (which includes many distributed network switches)
is not burdened. Similar to this approach, many single-board
computers (such as the Raspberry Pi 4, NVIDIA Jetson and
Beaglebone AI-64) are now powerful enough to provide
sufficient data processing for a single camera image stream,
with on-board GPU analysis of images, and to host large
storage devices, such as solid-state hard drives or external
USB hard drives. These single-board computers can be
configured to act as control computer, analysis computer
and network-attached storage, such that image data need
not stream across the network at all, not even to a local
network switch.

If common abstractions are adopted across multiple lab-
oratories in the high-power laser community, this enables
yet another opportunity to share devices across laboratories
with minimal modifications to the digital infrastructure. This
could facilitate travel to facilities with scientific instruments
that plug into the digital infrastructure at that facility and
work as they did at other facilities.

2.2.2. Learning curves and inflexibility
Unfamiliarity can impede the adoption of newer control
systems, as stakeholders continue to ‘use what they know’.
Systems with robust software engineering foundations can
require more advanced technical knowledge to develop,
modify and manage. Steep learning curves can reduce flex-
ibility, as stakeholders feel disempowered to modify their
own control system. New control systems can be especially
frustrating to team members who know how to build indi-
vidual controls with their own tools of preference, but do not
know how to integrate these into the control system. If these
challenges are unaddressed, a high-quality control system
architecture can inadvertently ossify the facility, serving as a
barrier to entry for new devices and new team contributions.

An idea for mitigating these challenges involving the
‘human factor’ is to follow human-centred design[58]. In
human-centred design, stakeholders are incorporated into the
design process. Here, we provide one usable example of
how human-centred design can be implemented to improve
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control systems in a high-power laser laboratory. At a facility,
a single person who is knowledgeable about the control
system software (whether that be a dedicated software engi-
neer, or a software-savvy graduate student) could block
off one day per month in their schedule for observations.
That software person could spend this one day per month
observing graduate students, scientists and technicians as
they perform regular laboratory tasks. To ensure operations
are not disrupted, the software person would take on an
important responsibility to stay ‘out of the way’ of stake-
holders, such that the other members of the facility could
continue using the facility as usual. Through observation,
the software person could identify core tasks that various
stakeholders need to do in the lab, which involve human–
computer interaction, and keep that list up-to-date with
each subsequent monthly observation. This document could
be shared and asynchronously edited by stakeholders, or
entirely ignored by stakeholders, depending on their prefer-
ences and schedules. The software person could furthermore
document findings and adjust future versions of the software
to fold in these observations. This repeated cycle of observa-
tion and improvement could result in overall improvement to
the control system over the course of many months or years.

An example of a practical avenue for asynchronous com-
munication of stakeholder needs would be building a single-
click issue reporting mechanism in the control software
(with this reporting system itself observed and streamlined
to reduce frustration), such that issues can be created and
then followed up on by the software person. Furthermore, the
software person can regularly have short, informal conversa-
tions about experiences using the control system with stake-
holders, and personally take on the burden of documenting
these issues and experiences (rather than putting that burden
on the stakeholders). Although implementing these ideas
will require some time in the software person’s schedule,
this time will be paid back by many small improvements to
daily operations for the entire team at the facility. If human-
centred design is implemented at multiple facilities in our
community, sharing notes at conferences can help identify
issues they may not have noticed, and sharing the methods
tried to solve stakeholder problems can help the community
converge towards common solutions to common problems.

Science at some laboratories requires more flexibility in
the control system than others, and building the same degree
of system inertia into control systems at two laboratories
with different science cultures will lead to different results.
Trade-offs between control system rigor and ease of proto-
typing can be considered for different scientific facilities,
bringing the conversation to the forefront with stakeholders.
Human-centred design at all stages of development will
help next-generation control systems meet the disparate
needs of stakeholders in high-power lasers, including when
compromises are required between stakeholder needs. At the
facility level, as large systems are being designed, involving

as many stakeholders as possible in the design stages of
a control system allows for specifying better engineering
requirements, which makes the control system better suited
to all stakeholders.

2.2.3. Timing and synchronization
Avoiding data synchronization errors at high repetition rates
(including ‘off-by-one’ data misalignment errors) requires
several elements to work together flawlessly. First, each data
element’s timestamp must be locally precise to a signifi-
cantly greater tolerance than the time between consecutive
laser shots. Second, each data element’s timestamp must be
globally accurate (across the entire laboratory), to similar
minimum tolerances. Third, any internal delays for scientific
instruments must be accounted for – as an example, consider
a camera stream that feeds image buffers that are off-by-one,
or instruments that return data at a longer delay than others.

Fortunately, timing and synchronization problems have
been deeply considered and solved at many accelerator
science facilities[59–62]. The high-power laser community can
learn from and adopt prior art in this area.

Two network timing synchronization protocols utilizing a
facility’s Ethernet infrastructure are the NTP (network time
protocol), which aims to provide up to a few-millisecond
precision over a wide-area network, and the PTP (pre-
cision time protocol, IE1588)[63,64], which aims for sub-
microsecond precision within a single local-area network.
For repetition rates up to about 1 Hz, time-stamping data
using the control computer’s time (synchronized via the
NTP for sub-second accuracy) is sufficient. For rates up to
approximately 100 Hz, and for networks with consistent ping
times less than 1 ms, time-stamping can still be feasible at
the control computer rather than within the DAQ hardware,
provided there is consistently fast processing of a consistent
data stream from the DAQ hardware. Specialized concurrent
networking approaches and tools such as zeroMQ[65] can aid
in synchronization.

For higher repetition rates, for example, high-power
lasers operating at 1 or 10 kHz, dedicated timing hardware
is commercially available[66,67], and the data is typically
time-stamped at the DAQ level (rather than relying on
the control-computer operating system). An alternative
solution to laboratory-wide time-stamping is to leverage
the trigger counting available on many DAQ devices (or to
write one’s own trigger counting firmware for inexpensive
microcontrollers), and to maintain a global laboratory trigger
count rather than a global laboratory time.

2.2.4. Legacy instrumentation
Existing equipment in laser–plasma facilities can present
friction to the adoption of a laboratory-wide control system.
This is particularly true of important legacy devices due to
incompatibility with modern software or operating systems.
However, this need not be the case.
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Possibilities include finding existing device drivers or
using vendor-supplied software development kit, which can
be used to integrate the device properly into the control
system. Alternatively, the legacy user interface (possibly a
vendor-provided interface) can continue to be used with a
patch between the legacy software and the laboratory-wide
control system. For example, a commercial user interface
for a camera may already permit saving images to a file,
and one could write an interface layer that reads the latest
image from the file and makes it accessible on a laboratory-
wide control system. A last option would be to maintain
legacy devices as they are, existing apart from the control
system. The latter two approaches might be especially apt
for devices requiring an old, insecure Windows computer
without a network connection.

3. Comparison of platforms for laboratory control

While some facilities can offer significant research software
engineering to support the development of control systems,
many labs, in particular university-based systems, must adapt
or develop their own systems. Importantly, these must be
manageable for researchers without a background in soft-
ware engineering.

To date, a number of experiment control systems based
either on expansion of previously existing experiment con-
trol systems at older laser facilities, or the adoption of control
systems from beyond the laser community (e.g., high-energy
physics and photon science) have been explored. This section
reviews the advantages and disadvantages of several of these,
as well as the unique challenges facing the high-power laser–
plasma community in control for future high-power laser
facilities through specific examples.

3.1. LabVIEW

3.1.1. Overview of LabVIEW
National Instruments (NI) LabVIEW is a graphical pro-
gramming environment, and is not itself a control system.
However, it is already utilized in some aspect for controls
at most high-power laser facilities in our community. Lab-
VIEW is highly accessible to beginners and experts alike,
and is widely used across many science domains. One major
feature of LabVIEW, in the context of control system design,
is the ease with which users can create interactive graphical
interfaces. A second major feature is a robust library of
instrument drivers. Many instruments used at high-power
laser facilities already ship with vendor-provided LabVIEW
drivers. A third major feature is a built-in infrastructure for
shared variables across a network. As a drawback relative to
open platforms, LabVIEW has licensing requirements that
must be navigated for each deployed instance. Also, since
it is a graphical programming language, code written in

LabVIEW does not easily mesh with schemes for text-based
version control.

Given the many LabVIEW users in our community, the
reader is likely familiar with many features and downsides
that have not been discussed in the preceding brief overview.
A very large number of existing control systems in our
community are based on LabVIEW. Some are built in a
consistent fashion throughout the laboratory so as to unlock
all the high-data throughput, interconnected benefits of high-
power laser facilities. The case study that follows illustrates
how LabVIEW was incorporated into a home-grown control
system architecture called GEECS at the BELLA Center.

3.1.2. Case study: BELLA Center at LBNL
Many labs, in particular university-based systems, adapt or
develop their own systems. The GEECS (generalized equip-
ment and experiment control system) provides an example
of a home-grown control system developed over a num-
ber of years at the BELLA Center, which is open and
modular. Here, the GEECS team describe their system and
considerations for others choosing to implement a home-
grown control system. At the forefront, GEECS is designed
to be manageable for researchers without a background in
software engineering.

What is the BELLA Center? The Berkeley Lab Laser
Accelerator (BELLA) Center focuses on the development
and application of laser–plasma accelerators (LPAs). It
houses four Ti:sapphire laser facilities. The highest peak
power laser system is the BELLA PW[68], providing up to
40 J on target in less than 40 fs with a repetition rate of
1 Hz. It has been utilized primarily for research on the high-
energy physics application of LPAs[6], and more recently for
ion acceleration studies and applications[69]. There are two
60 TW systems operating at up to 5 Hz, one of which couples
a sophisticated electron beamline including an undulator to
its LPA[70], and another with two beamlines designed for
MeV photon production via Thomson scattering[71]. Finally,
the BELLA kHz LPA facility consists of a few-mJ few-cycle
laser system operating at the kHz repetition rate, which can
produce few-MeV electrons that are of interest in a variety
of applications, including medicine and security. Each of
these facilities is controlled and monitored by the GEECS
developed in the BELLA Center, with typically dozens of
computers, hundreds of devices and thousands of process
variables (PVs).

What is GEECS and why is it well-suited for the BELLA
Center? GEECS is a complete software solution for con-
trol, monitoring, alarming and data logging of devices for
process control and experimentation. For LPAs this means
controlling laser, vacuum, timing, target and diagnostic sub-
systems, and synchronizing data collection for each laser
pulse. The GEECS architecture is shown in Figure 3 and
generally follows ANSI/IEEE-1471-2000[72], as described in
Ref. [73]. The GEECS framework is scalable, distributed
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Figure 3. Hardware and software overview of the GEECS control system, highlighting the layered modular approach. The hardware view is shown on the
left, with multiple devices attached to a given computer, the number of which is determined by the system resources. The software running on the computers
is shown on the right, which sends data and receives commands through the network infrastructure. The GUIs and the database receive data continuously,
with the latter limited to scalar data. The file server receives scan data (which includes scalar, vector and image data) when the user initiates a ‘scan’, which
can be linear, from a script, or via the GEECS Python API. All devices are controlled by an instance of the same executable, which calls device-specific code
in a plugin architecture. GUIs are custom executables, but share the same communication code to receive data and send commands.

and modular, exhibiting a philosophy similar to well-known
platforms such as EPICS, with particular attention to making
it easy to install, learn, use, customize and expand. It was
developed for the BELLA PW system[68], but has been the
control system for all BELLA Center facilities for over a
decade.

The DAQ system begins with the hardware devices, such
as cameras and motion controllers. GEECS aims to make
the job of both the developer and user as easy as possible.
For the developer, the software engineering effort for adding
a new device type is minimized by limiting the effort to the
code specific to that device, eliminating the need to write
new user interfaces and configuration mechanisms for each
new device type.

GEECS follows the object-oriented programming
paradigm, which means that device types or ‘classes’
inherit from the general device class as well as from each
other, minimizing coding effort for adding a new device
class. For example, this means the communication systems
are automatically implemented for a new device class.
Device classes also automatically have common methods,
such as ‘acquire’, ‘power off’ or ‘load configuration’. The
general device class is compiled into a single executable
‘device.exe’. Any device launched uses this executable file,
which then calls any device-specific code required from
source distribution folders.

New features can typically be added to individual devices
without modifying the shared base executable. For the user,
adding a new device is performed through a user inter-
face that communicates with an SQL database describing

the experimental configuration (the configuration database).
Once a device is added to the database, it can be launched
and controlled via a graphical user interface (GUI) named
Master Control (MC). A few examples of the features of MC
are that it can perform the following: start and shutdown all
devices, computers and GUIs associated with an experiment
with a single click enabling rapid ‘switch-on’ (or off) of
an experiment; control any device on the system; perform
scans of single or multiple variables; save configuration
snapshots; and report system alarms. GEECS also includes
GUIs for each type of device, which makes configuration and
viewing of data convenient. For example, the camera device
type GUI allows for image viewing customization (such as
colormaps, spatial smoothing and perspective correction)
and quick access to typical controls. In addition, users may
develop custom GUIs in a few minutes without the need for
programming knowledge using LabVIEW and the GEECS
publish/subscribe architecture, which is designed to reduce
the dependencies between user interfaces and devices as
much as possible. It should be noted that although the
majority of code in GEECS is written in LabVIEW, Python
is increasingly being used to control and monitor GEECS
devices, and has proven particularly useful for leveraging
various machine learning (ML) tools.

Advantages of using LabVIEW. Compared with traditional
programming environments, the LabVIEW programming
environment offers a number of advantages, such as reduced
programming effort for many tasks, such as interfacing with
hardware and taking measurements, the same environment to
develop desktop and real-time applications, natural parallel
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processing, easy field-programmable gate array (FPGA)
programming and ease of data visualization. There are
disadvantages also, including the need to purchase some
of the plugins that reduce coding effort (e.g., NI Vision).
The reason why we chose LabVIEW for the BELLA
control system in 2009 is that the task of completing a
full control system in a lower-level language is significant,
and abstraction in LabVIEW allows for rapid generation of
code, whether it be the communication layer or hardware
interface. This abstraction also allows the control system to
quickly adapt to new technologies.

Control system architecture. Although we found certain
advantages of using LabVIEW, the GEECS control sys-
tem architecture is more important than the programming
language used. By following standard practices such as
ANSI/IEEE-1471-2000, coding effort is minimized and the
system becomes far more adaptable. For example, the com-
munication layer currently uses a mix of a custom trans-
mission control protocol (TCP) and user datagram protocol
(UDP), but could easily be re-written with abstractions to
take advantage of a standardized message-passing library
(such as ZeroMQ), since this layer is separate from others.
Our choice of object-oriented programming also brings
advantages. Adding a new type of camera becomes straight-
forward since only the code specific to that type of camera
needs to be written, while other features are inherited.

Challenges and development path. The biggest challenge
encountered has been the limited personnel effort available
to develop the control system. Although a critical element
to the success of modern LPA experiments, control systems
have typically not been a priority. The choice to develop our
own control system has allowed us to quickly add new device
types with minimal effort, but at the same time it comes with
some disadvantages. Although the framework does ensure
some level of organization of the code, individual parts
(especially the device-specific code) are often rushed to get
to a working state and never quite finished or polished. The
most critical issue is that the documentation is insufficient.
If the main developer ceases to work on this, it would be
a challenge for a new developer to take over without help.
User documentation is also a challenge, but this is one
that can be addressed by encouraging users to contribute.
Finally, the lifetime of GEECS is dependent on the continued
development and support of LabVIEW by NI.

GEECS for others. Since the framework is based on standard
best practices, the philosophy of the control system is similar
to that of more widely used platforms. Those platforms could
adapt some of the features of GEECS, especially the idea that
a fully functional control system can be installed easily and
configured quickly with simple GUIs, and that customization
and new device classes can be made with little programming
knowledge.

3.1.3. Further resources for LabVIEW
The control system from the case study, GEECS, is open
source and freely downloadable through the GEECS GitHub
page[74]. A link to a GEECS installation guide[75] is also
found in this paper’s references. The NI Learning Center[76]

provides professionally written resources for getting off the
ground with LabVIEW. Also, NI has written a whitepaper on
getting started with its Distributed Control and Automation
Framework (DCAF)[77] (which is not used by GEECS).

3.2. EPICS

3.2.1. Overview of EPICS
EPICS (Experimental Physics and Industrial Control
System) is an open-source framework for developing
SCADA (supervisory control and data acquisition) systems.
Originally developed at Argonne National Laboratory, it
is based on applications communicating over the network
using named PVs. As well as the core EPICS framework, the
community has developed interfaces and drivers to support
a wide variety of devices.

EPICS has depth of use and proven rigor in the parti-
cle physics, magnetic fusion and astronomy community[78].
EPICS is in use globally by many dozens of major scientific
research facilities. Example facilities where EPICS is used
today include high-energy-physics beamlines (e.g., Diamond
Light Source, SLAC National Accelerator, Advanced Photon
Source), astronomy and astrophysics observatories (e.g.,
W.M. Keck Observatory, LIGO) and magnetic confinement
fusion facilities (e.g., KSTAR, ITER). The EPICS collabo-
ration hosts annual meetings and code-athons welcome to
anyone using EPICS[79].

One challenge of building EPICS systems for high-power
laser facilities is a relatively small number of examples in
our own community, especially for university-scale high-
power laser facilities. Another challenge for members of our
community in adopting EPICS is the need to develop device
drivers for those scientific instruments not already in use in
the broader EPICS community. Developing new drivers for
devices in existing high-power laser systems may be a source
of frustration for science teams, especially for small teams
who are accustomed to relying on vendor-provided drivers or
vendor-provided GUIs to control their scientific instruments.
Fortunately, EPICS contains high-level tools to build new
drivers and many abstractions that make this work easier
(for an example of a versatile device driver for cameras, see
areaDetector[80]).

There are often many ways to accomplish the same task
in EPICS. For example, there are many alternate tools to
display data, many alternate approaches to building data
processing pipelines, two official communication protocols,
several alternative techniques to remotely manage devices
and a variety of pathways to creating device drivers.
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A distributed community of EPICS developers over the
past 30 years has created many interacting and overlapping
solutions and toolsets. The number of choices among tools,
and the deep and decentralized knowledge in the EPICS
community, might be considered a long-term feature that
also leads to a steep learning curve for new users.

EPICS is designed for control systems and control feed-
back loops involving PVs (e.g., valves, pumps and pressure
sensors), not specifically for scientific DAQ (e.g., high-
repetition-rate streak camera data). However, the latest ver-
sion of EPICS, EPICS v7, includes a new network protocol
(pVAccess) with data structures and network performance
that are suitable for scientific DAQ[81].

One major institution in the high-power laser community
currently using EPICS is the Central Laser Facility (CLF)
at Rutherford Appleton Laboratory (RAL). We present their
experience with EPICS in the following case study.

3.2.2. Case study: Central Laser Facility at RAL
EPICS has been adopted fairly recently by the CLF. It has
been incorporated into the control system for the Gemini
laser, was used to build the new control systems for HiLase
and D100-X and is being used to build the control system
for the new Extreme Photonics Application Centre (EPAC)
facility[82].

EPICS in Gemini. The Gemini Control System (Figure 4)
was originally commissioned in 1997 for what was then
the Astra laser facility. Since then, it has undergone a
number of upgrades, the most notable being the addition of
twin Quantel lasers in 2009 when the facility was renamed

Gemini. Since then, the control system has been re-written
in .NET, and now uses EPICS.

There are several applications within the control system
suite:

(1) the main control system handles the orchestration of
triggers, control of various devices and (in conjunction
with the interlock safety system) the hand-over of
control from one laser area to another;

(2) four target area control systems provide an interface to
allow users of the facility to visualize the status of the
beamline and to control devices appropriate to them;

(3) a laser area control system allows Gemini operators to
visualize the status of the beamline from an operations
point-of-view, and to set some of the main operational
parameters.

These applications communicate using EPICS PVs. Each
PV is a piece of data, usually small, that can be read and
sometimes written by other applications. The main control
system makes available over 100 PVs. Examples include the
laser operating (energy) mode, the status of the wall shutters
and a 20-second countdown to the next shot. Applications
monitor these PVs for various reasons, including changing
device settings depending on the laser energy mode and
acquiring data on shot.

Other applications are used to control individual devices
in the facility. These also communicate using EPICS PVs,
and most of them host their own PVs. For example, the
controller for a motorized stage may have a PV that can
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Figure 4. Architecture of the Gemini Control System. EPICS input/output controllers (IOCs) are software + hardware layers providing an abstraction
between low-level device hardware and high-level control system software. Legacy hardware is connected into the system through a legacy interface, Control
Interface #2. A differentiation is made between EPICS-interfacing components and connections (in blue) and bespoke components and connections (in
orange). Clients for device data include human control interfaces, informational laboratory displays, automation software and archival data collectors.
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be written-to to move the stage, and another that can be
read-from to find its current position. Controllers for ther-
mometers, pressure gauges, oscilloscopes and other devices
all make their data available through EPICS PVs in a similar
way.

Any EPICS-aware software on the network can read and
write EPICS PVs, so new instruments and applications can
be added to the system without disrupting laser operations.
Because writing to certain PVs could damage laser systems,
Gemini operates within a private network and an EPICS
channel access gateway allows read-only access from other
parts of the site, operations can be monitored from the office
without fear of inadvertent interference.

Diagnostic and metrology data from the laser are collected
and stored in a data cataloguing system called ICAT provided
by STFC’s Scientific Computing Department. The data are
then made available to staff and users via a web interface
called eCAT, which also provides facilities to filter and
analyse the data more fully, to display traces and camera
images in detail and to download the data if required.

Experimental automation and DAQ. In contrast to the main
operational diagnostics, those in the target area often change
with each experiment, so a more flexible DAQ solution is
needed. This has not been adapted to use EPICS. The main
method used is a custom application called ‘Mirage’. Diag-
nostic software saves data to separate files – one file per laser
pulse per diagnostic. Mirage then collects these files and
saves them centrally, organized by diagnostic name, by run
name and by shot number. This makes it a simple operation
to collect all the data for a single laser pulse. Mirage is
also able to collect data from EPICS PVs. This is currently
limited to environmental data, collected immediately before
the laser pulse, but is invaluable for recording experimental
settings.

Mirage offers several important features. It displays a
summary of which diagnostics are acquiring data and allows
users to perform a ‘trigger test’, to ensure the system is
working properly before a laser shot. It can also integrate
with other systems. For example, by writing a short Python
script, data can be analysed and the results can be plotted in
real time.

A more recent feature is the ‘experiment automation sys-
tem’. This allows users or staff members to write Python
scripts to control aspects of the experiment. These scripts
can move (some) motors, adjust (some) laser parameters and
fire laser pulses. Although this system is still considered
experimental, it has already been instrumental in some
experiments requiring a high degree of automation[38].

EPICS in EPAC. EPAC will build upon the experience and
the lessons learned in Gemini while taking advantage of a
dedicated team of software engineers to build more robust
solutions that are more suitable for scaling to greater levels of
complexity and higher data rates. It will also be able to take
advantage of the wide variety of drivers developed by the

EPICS community, as well as CLF’s experience developing
EPICS-based control systems from the ground up for HiLase
and D100X.

The control system for EPAC has some key differences
from Gemini – notably device drivers are mostly imple-
mented with standard EPICS frameworks (such as ‘areaD-
etector’ for cameras and ‘epics-motor’ for motion control).
There are also some similarities, with most of the higher-
level control system logic being implemented in .NET, which
is more suitable for rapid prototyping of complex functional-
ity than the native EPICS alternatives. A comprehensive user
interface will be provided for laser operators, with a more
limited version for facility users. These will be based on the
Blazor framework, opening up the possibility of providing
access through a web browser or on tablets and phones. This
will be combined with user interfaces built with the widely
used Control System Studio.
DAQ and management in EPAC. While DAQ will be per-
formed by EPICS device drivers, a data management system
is needed to collect and organize data into HDF5 files,
which could be based on NeXus or any other standard
format. This system is still under development, with key
challenges being the high overall data rate (greater than
1 GB/s expected) and the need to identify which laser pulse
each piece of data is associated with.

The key technology for the data management system will
be Apache Kafka, a distributed system for handling streams
of data. Data will be sent to Kafka either by an EPICS-Kafka
forwarder, or by plugins embedded into areaDetector drivers.
Any system needing access to the data will be able to access
a real-time stream, or recall it during a limited retention
period. The latter may be particularly useful after a fault has
occurred.

The aim is for a single file to contain all the data for a
single sample or scan, as well as all the necessary metadata.
Users will be able to access the data through DAaaS (data
analysis as a service, see Section 4.3.2), and new systems
will be provided for data archiving.

Notably, the greater use of EPICS and standardized inter-
faces within the EPAC control system should make it sim-
pler for experiment automation systems to control various
devices and system parameters. To take advantage of this,
we intend to adopt Bluesky, an open-source framework for
experiment automation.

Our experience with EPICS. The use of EPICS was a
considerable technological leap for the Gemini facility that,
until 2018, was based mostly on UDP messaging. Other
beamlines within CLF had already started the move; so too
had STFC’s ISIS, reassured that EPICS was championed
by the Diamond Light Source on campus and other large
facilities around the world. Like any software system EPICS
has its quirks, and we were warned on many occasions that
the learning curve was steep. This has proved to be painfully
true, but the advantages that it has brought in terms of the
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flexibility and the ease of integration of new devices and
applications have been considerable.

Another advantage is the wide community support. Many
of the device drivers needed for EPAC already existed,
substantially reducing the amount of custom code that must
be written and supported. In addition, EPICS support is
available for a wide variety of languages, including Python,
MATLAB and LabVIEW, allowing users to create custom
applications to interact with the control system.

3.2.3. Further resources for EPICS
The EPICS webpage provides a variety of official and com-
munity support resources[83] for new members. Notably for
members of our community who have never tried this control
platform, EPICS can be explored on a virtual machine
(VM)[84] to sidestep a lengthy configuration, or integrated
into a mockup physical control system built with low-cost
Raspberry Pis[85].

3.3. Tango Controls

3.3.1. Overview of Tango Controls
Tango Controls is a free open-source software toolkit[86]

for building object-oriented SCADA systems. It was orig-
inally developed at the European Synchrotron Radiation
Facility (ESRF)[87] 20 years ago and has now been adopted
by many scientific facilities and, in particular, telescopes,
accelerators, light sources and associated beamlines around
the world. Tango Controls can either be used as the main
toolkit for their control system, for a subsystem or together
with commercially acquired systems in a local distributed
network. Tango Controls relies on an active community[88]

of developers and users and is independent of an operating
system, supporting a core composed by libraries and API
definitions in C++, Java and Python[89].

Tango Controls aims to provide object-oriented program-
ming for distributed heterogeneous systems. The Tango Con-
trols software communication layer is based on Common
Object Request Broker Architecture (CORBA)[90]. CORBA
brings a standard interface for all the objects and services
available using an interface definition language (IDL)[91]. An
interoperable object reference (IOR) identifies each object
(Figure 5). One of the advantages is that it is not necessary
to recompile when adding a new object. Since version 9
of Tango Controls, event-based communications use the
zeroMQ library[92].

Before going further in the description of a representative
system for the laser–plasma community, let us introduce
some language elements specific to Tango. A device is
something that needs to be controlled. It can be equip-
ment (e.g., a camera, a motor controller), a set of software
functions or an ensemble of equipment (e.g., a deformable
mirror and a wavefront sensor). Then we have three tightly

Figure 5. Illustration of the relation between the client and device server
and the Tango database running on the TANGO_HOST. This simple system
constitutes the minimal Tango configuration.

Figure 6. Illustration of the standard Tango device structure between
the Tango Controls software communication bus and the hardware. The
interface is common to all the devices for all the device classes and can
be generated using the POGO tool[93]. The hardware driver part code has
to be written by the developer on the top of an existing driver, software
development kit or communication protocol.

intertwined concepts. The Tango class defines the interface
and the implementation of the device control, as shown in
Figure 6: commands, attributes and properties. The com-
mands act on the device (e.g., ON, OFF, RESET), the
attributes set/get physical values of the device and properties
are the configuration parameters (e.g., IP ADDRESS, PORT
NUMBER). The Tango device is an instance of a Tango class
giving access to the services of the class. The Tango device
server (DS) is the process in which one or more Tango
classes are running, each one implementing a device. A
hierarchical naming scheme is used for devices. Each device
is identified by a fully qualified domain name[94], such as
/DOMAIN/FAMILY/MEMBER.

The DS configuration is stored in the Tango database
identified as the TANGO_HOST server. The device number
and names for a Tango class are defined within the database,
while the Tango classes that are part of the DS are defined in
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the Tango database and in the source code of the DS. The
Tango database is associated with a special Tango device
performing a centralized storage for the control system
configuration parameters and for persistent data. The Tango
database is based on a MariaDB database engine. The Tango
database is also the service for establishing connections
(IOR) between the client and server on the control system.
So, the minimum configuration Tango Controls system can
be a computer unit running a MariaDB database server, the
Tango database device and a DS. On the same computer we
can then run a DS for a camera (LIMA[95]), a DS control-
ling a tip-tilt mirror and a DS being a software function
steering a laser beam far field to a given position on the
camera.

The device attributes are of various types[86] and support
three formats: scalar, spectrum (1D array) and image (2D
array). Attributes can be set in three access modes: read,
write and read & write. Each device attribute is defined by
its properties, which are fixed to five types in which one
can find the data information, range value and two essential
properties for a distributed control system: alarm and event
parameters. When implementing Tango devices in a control
system, a hierarchy has to be set starting from the hardware
with a low-level device, then a device encompassing the
relations between several low-level devices and then higher-
level devices with processes and calculations on the sub
device attributes data. The communication between DSs is
of two main types: the client/server communication, which
can be asynchronous or synchronous or event-based with
the push/subscribe method. The most used and simple asyn-
chronous type is the polling mode mechanism. It allows
the Tango DS to decouple the real device from the client’s
requests. The Tango DS has specific polling threads that
can be configured for polling attributes or commands. The
polling results are stored in a buffer with a configurable
depth. This implementation helps to monitor the health
status of the DS. Since Tango Controls 8, push/subscribe
event communication has been available for the attributes.
The main categories of pushed events are the change event
(absolute or relative change of the attribute that can be
configured), a periodic event or an archive event being a mix
with the periodic event as the change of value is checked at
the polling period. For further details on alarms and logging
specific Tango devices, we invite readers to look at the Tango
documentation[86].

Several systems in our high-power laser community,
particularly European facilities[96], are contributing to the
Tango Controls platform, for example, APOLLON[97], ELI-
ALPS[98], ELI-BEAMLINES and CALA[99]. Below, we
present a case study from one of them: the PALLAS project
of the CNRS National Institute for Nuclear and particle
physics (IN2P3) hosted at Laboratoire de Physique des 2
infinis Irène Joliot-Curie (IJClab).

3.3.2. Case study: PALLAS
What is the PALLAS project and why is Tango Controls well-
suited for this work? The PALLAS (prototyping accelerator
based on laser–plasma technology) project hosted at Irène
Joliot-Curie Lab (ICJLab) – also known as IJCLab – is
developing a laser–plasma injector test facility with the
goal of producing electron beams with 200 MeV, 30 pC,
less than 5% energy spread and 1 mm·mrad emittance at
10 Hz with comparable stability and reliability to more
conventional radio-frequency (RF) accelerators. The project
has three main axes of investigation for the laser–plasma-
based injector: (1) advanced laser control; (2) develop-
ment of plasma targetry; and (3) development of a compact
electron-beam characterization beamline for studies explor-
ing accelerator staging and beam transport. A state-of-the-
art control command and acquisition system is mandatory
to achieve the optimizations and systematic studies on the
reliability and stability of laser–plasma injectors. Based on
the experiences of ICJLab groups on the ThomX project[100]

and at neighbouring facilities (ESRF, SOLEIL, APOLLON)
who are actively involved in the development of Tango
Controls, the choice of Tango Controls has been made for
the PALLAS project. A limitation for projects based on
laser–plasma acceleration is the diversity of instruments and
their use compared to conventional RF particle accelerators,
especially for the whole laser-driver control part.

How is Tango Controls integrated into PALLAS? The
global architecture of the PALLAS control command and
acquisition system is as follows. The laser driver is a cus-
tomized commercial 40 TW laser system running its own
distributed control command system based on the commer-
cial ElliOOs libraries on a separated local network. A Tango
gateway between the local distributed network of the laser
system and the main PALLAS local network allows the
control of pre-selected features of the laser system. The laser
features currently accessible are the laser status, main shutter
for laser firing, energy, spectrum and beam position and
profile at the various stages of the laser system up to the
last amplifier. All the hardware of the laser–plasma injec-
tor, including the laser transport and compression, is inte-
grated under Tango Controls. The vacuum pumps, gauges,
valves and radiation safety system are controlled by a pro-
grammable logic controller (PLC) with a Modbus/TCP inter-
face for Tango Controls supervisory control integration. The
hardware for the laser-driven plasma accelerator includes
motors, area detectors, photo-diode detectors, magnet power
supplies, a digitizer and various DAQ cards. The total num-
ber of DSs for hardware control is currently 23 without
including the DS for archiving operations and accelerator
control or optimization.

The laser-driver local network is a 1 Gb/s network with a
special link at 10 Gb/s between the main network switch and
the data server laserix-arch, while the accelerator network
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Figure 7. Schematic of the PALLAS control command and acquisition system. System elements are represented by coloured rectangles (colour legend in the
lower-left corner), with links between elements represented as coloured lines. Green lines show Tango communication pathways, black lines indicate wired
Ethernet connections, yellow lines show wired USB-3 connections and grey lines indicate wired RS232 connections. For better readability, some hardware
is not shown. The system can be divided into four parts: (1) the main Tango server units (light blue), the heart of the system running the Tango database,
archiving system and webservers; (2) the embedded computer units (light grey) running some Tango device servers (sometimes located adjacent to scientific
hardware due to limited cable lengths for USB-3 or RS232 device connections); (3) the hardware motor controllers (dark blue), the PLCs (green) and the area
detectors (dark yellow); (4) examples of clients, pyTango and Taurus, which need Tango Controls software installed on a client machine, and WebClients,
which requires only a web browser and a connection to the local network. Below the coloured rectangle for each server unit or embedded computer unit,
device servers running on that unit are indicated in italic font within white-filled rectangles. These are named LimaCCD, eoGENTENC, mrcLSB. . . and
represent device servers openly developed and available for download[101,102]. The laser system has three connection points into the PALLAS local network:
the laserix-arch where laser data are stored, the shotCounter that uniquely identifies laser shots and the TangoGateway running a device server that gives
Tango access to certain laser controls. The laser system has its own separated network. As shown in the upper-right corner, some of the webservers can be
accessed from either side of the PALLAS local network through a gateway, and data storage is done outside the local network for easier and broader data
sharing.

has a speed of 10 Gb/s (see Figure 7). The laser system
has its own data logging system based on a MariadB back-
end. The event subscriber DSs, or archivers, will be able to
gather selected attributes and data from the Tango DS with
a unique shot identification and time-stamping given by the
‘ShotCounter’ system at 10 Hz.

On the accelerator part, the archiving system is currently
under development and will be based on the archiving Tango
system HDB++[103] with a TimescaledB back-end and the
ShotCounter system for event building based on a unique
laser shot identification number (64-bit integer) and a config-
urable laser and system status. The ShotCounter, supplied by
the Amplitude Laser, is composed of an embedded PC and an
NI PCIe 6320 card[104] with 16 analog and digital I/O associ-
ated with a 100 MHz digitization allowed by an NI-STF3[105]

counter/timer. The embedded PC of the ShotCounter runs

a ZeroMQ[106] server configured in publisher mode that can
distribute the event time-stamping and shot identification at
up to 100 Hz depending on the triggering configuration of
the hardware to both the laser-driver and accelerator local
network. The 16 analog inputs of the ShotCounter allow
the recording of laser system states (energy level, amplifier
injection, opening of the shutter to the accelerator, etc.)
by applying a threshold. All the logic is set within the
SHOTRECORDER DS, as shown in Figure 8. The recording
of attributes can be set depending on the DS communication
type and then all the attribute data are pushed by the EVENT
SUBSCRIBER DS to the various time series databases.

The data flux is expected to vary between 50 and 250 MB/s
depending on the EVENT SUBSCRIBER DS configuration
and the number of attributes to be stored. The database
architecture is based on a high-availability scheme with write
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Figure 8. Timing and event generation system for the time and shot
stamping of the data. A transistor-transistor logic (TTL) signal can be tuned
from –10 to 40 ms around each laser pulse at 10 Hz. The ShotCounter
generates a unique 64-bit shot identification. The ZMQ message contains
the SHOTID and STATUS of the 16 analog inputs of the NI-PCIe 6320
card. Archiving data is set by the SHOTRECORDER device server (DS)
and then an archiver (EVENT SUBSCRIBER DS) stores the data to the
target database.

to master database and read to replica for the accelerator
beamline and for the laser-driver system.

Tango Controls has a rich graphical client framework. Out
of the box tools for Tango Controls include Astor[107] (a
graphical tool allowing distant management of DSs without
needing to use ssh), Jive[108] (a graphical tool for brows-
ing tango_host database and to configure devices), ATK-
Panel[109] (allowing a default or developed GUI to control
a device), Pogo (to generate devices), Taurus[110] (to generate
and develop a GUI) and Taranta[111] or Waltz[112] (for web
GUIs). For the PALLAS project, we foresee leveraging
these various graphical clients to suit different needs (such
as web interfaces for broad accessibility on mobile and
Python for broad integration with other software). First,
for the operational user interface of the laser system, laser
transport, compression, focal spot characterization and opti-
mization and vacuum system control, we plan to use a cross-
platform web-based dashboard with Ada webserver and
Plotly libraries[113,114], and an API-REST Tango interface[115].
Second, for scanning and optimization of the laser–plasma
injector, Python-based scripts will be developed. Third, for
monitoring of the whole system (infrastructure temperature,

relative humidity, cooling water flow, gas pressure distribu-
tion, main laser-driver parameters, vacuum levels, radiation
levels, etc.), we will use Grafana[52] on top of the archiving
system. This will give us a distributed dashboard accessible
from anywhere, including staff offices and various client
posts within the laboratory.

Challenges. One of the challenges for the laser-driven
plasma accelerator is the extensive use of large area detectors
and the necessity of data reduction/compression before the
data is sent to the global network of the Tango Controls
system. The laser-driver system uses 20 charge-coupled
device (CCD) cameras at 1 and 10 Hz, distributed across
two network switches, and two embedded PCs for image
processing to determine the laser spot centroid, size and
orientation. The accelerator part of the system, including
laser transport, optical compression and focusing, as well
as full characterization of the laser pulse in the interaction
region, includes a total of 25 area detectors for laser beam
diagnostics, the electron-beam profile and spectrometers.
Most of the laser diagnostics are being integrated into the
Tango Controls system with standardization of the client–
server configuration with the REST-API protocol between
embedded computer units, for example for laser diagnostics
such as FROG[116] and 2D spectrometers. This configuration
allows for 2D data-array processing and retrieval software in
the embedded computer units sending only reduced scalar
data and processed image to the Tango DS on request.

3.3.3. Further resources for Tango Controls
Tango Controls provides extensive official documenta-
tion[86], an active community forum[88], a searchable archive
of a mailing list that preceded the community forum[117]

and a Slack channel[118]. Each of these is accessible to
new users. Notable for those wishing to quickly try out
Tango Controls, a fully configured VM is available[119] for
local installation or in cloud server services. Furthermore,
the PALLAS project is participating as much as possible
in Tango Controls development, favouring an open-source
annex API. All the DSs developed to support PALLAS are
made available to the community within IN2P3’s public
GitLab repositories, under ‘NOliProg/instrument’[102].

3.4. Intersections and further alternatives

Facility-level approaches to laboratory control can utilize
a mix of strategies and technologies while retaining their
high-level organization. Planning for a mix of strategies and
technologies may particularly benefit the high-power laser
science community for two reasons. First, scientists in the
high-power laser community often travel and repeat similar
experiments at different facilities. When traveling, scientists
often bring their own equipment to various facilities. Plan-
ning strategies in advance that integrate (rather than isolate)
foreign subsystems will strengthen the scientific flexibility
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of a facility that accommodates traveling scientists. Second,
planning for heterogeneity in technologies (rather than rigid
uniformity) allows for quick adoption of advances made by
other facilities without completely repeating their develop-
ment effort. For example, EPICS and Tango Controls devices
could be graphically controlled by clients running LabVIEW
or Taurus[110], or an EPICS client could be patched into the
Tango Controls system. Network formats can be translated
and adapted between control platforms. Custom Python
control code, or low-level C++ instrument drivers, could
be interfaced into any of a variety of control platforms.
Further alternative control platforms exist, and we have given
only a short overview of three that were discussed at a
recent workshop on control systems for high-power laser
systems[120].

4. Laboratory data management

By coupling the increased access to multi-Hz laser systems
with control systems that can maximize the DAQ rate, next-
generation experiments will create orders of magnitude more
output data than prior generations. Similarly, the explosion
in available computing power has enabled greater simulation
capability, permitting simulations with higher complexity to
be performed within reasonable timescales. In both cases,
this data is accompanied by a multitude of metadata that
is equally important to the accurate processing and long-
term curating of the data. Without the development, or
integration, of new approaches to data management and
access, the advantages of this increased data rate cannot be
realized.

The traditional approach to high-power laser experimental
data is very much rooted in ‘single shot’ experiments. During
such experiments, groups of researchers might realistically
expect to take a few hundred shots, with some small number
of these shots repeated at the same point in the experimental
parameter space to provide a measure of stability. The
data from all the experimental diagnostics would be stored
locally totalling a few tens of Gbits, and copied to portable
drives to be transported to different institutes for independent
analysis. Within the established approach to simulations,
several low-dimension simulations may be run to optimize
the simulation setup and scan the parameter space with a
limited number of high-cost ‘hero’ simulations performed
at discrete points of interest. Given the low volume of data
it is possible for analysis to be strongly customized for
individual shots/simulations. In the new systems, with ter-
abytes to petabytes of data, this methodology of independent
distributed copies of data, and individually tailored analysis,
may not be as effective at leveraging facilities’ capabilities in
producing the highest impact science. The approach taken to
store and interact with data may benefit from adaptation.

The very individual nature of experiments (and simula-
tions) with varying diagnostics, file formats, file structures

and analysis requirements also presents a challenge when
attempting to combine or compare data between facilities
or between different simulation codes. In order to increase
efficiency, facilitate data comparison and comply with open
access requirements, it is necessary to determine ways in
which data can be standardized and usefully accessed by
the community. These goals can be advanced by considering
the re-use of diagnostic and analysis tools, standardized data
formats and cloud-based processing.

In this section, we describe approaches for addressing the
challenges of data storage and access.

4.1. Opportunities

4.1.1. Facilitating data access and tooling re-use: F.A.I.R
The term F.A.I.R. is often used together with data and meta-
data. The acronym stands for findable, accessible, interop-
erable and reusable[121,122]. In brief, the four letters describe
how to enable automated access to and processing of data
and metadata.

• Findable: use a globally unique and persistent ID for
each set, describe data with rich metadata, metadata
must include that ID and register the IDs at a searchable
source.

• Accessible: access to data and metadata via the ID by
using an open and free protocol, also with authentication
methods if necessary.

• Interoperable: use a formal/accessible/shared language
for knowledge representation, use vocabularies, cross-
referencing.

• Reusable: provide also attributes for usage license and
data provenance, establish and use community stan-
dards.

F.A.I.R. data and ‘open science’ should not be confused
despite the usual meaning of the terms ‘fair’ or ‘fairness’
referring to humanity and ethical behaviour. F.A.I.R. data
rather relates to machine-assisted research methods, and
therefore also allows for restricted access in cases where
this is demanded by policy. The F.A.I.R. principles basically
address the needs for automated data processing but do
not prescribe to which extent data and metadata must be
publicly and freely available. These aspects are left to be
determined by the owner. However, as soon as data acces-
sibility is defined to follow the F.A.I.R. principles – which
basically imply machine readability and compliance with a
community-wide vocabulary – the step towards open science
is relatively small.

A number of the technical requirements listed in the
outline above have known solutions. For example, several
methods exist to generate globally unique and persistent
IDs, for example, DOI, URN or hdl (handle). These sys-
tems also register the respective IDs and provide access
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protocols. Similarly, several languages for knowledge rep-
resentation exist, including Web Ontology Language[123],
ClearTalk and CQL. Yet, the F.A.I.R. principles also suggest
that domain-specific, community-wide accepted standards
should be jointly defined. This comprises, in contrast to the
aforementioned protocols, a consensus across the commu-
nity about terms and their meaning, that is, a vocabulary
of the respective research field. Standardization is therefore
an essential step towards F.A.I.R. and such standardization
of data, vocabulary and behaviour has been adopted within
other research communities, for example, the astrophysics
community[124,125].

One significant example of adoption of the F.A.I.R. frame-
work in the high-power laser community is at the Extreme
Light Infrastructure (ELI). An ELI data policy document[126]

speaks to the rationale and implementation of F.A.I.R. prin-
ciples in the context of high-power lasers, and can serve as
motivation for further adoption in our community. A variety
of general F.A.I.R. case studies can also be read online and
are linked in our bibliography[127–129].

4.1.2. Definitive data sources and shared tools
One opportunity in having a consistent laboratory approach
to data management is to facilitate remote access to original
data. Having an accessible, definitive source for original data
can be helpful in avoiding mislabelled data or fragmented
datasets that might result from passing data from person to
person. Furthermore, facilities can provide access to contex-
tual information (such as room temperature and humidity)
that typically would not be requested by experimenters,
except when hindsight leads to the need.

A data management approach might also involve non-local
analysis of the remote datasets using shared analysis tools.
Cloud software and cloud environments, configurable and
shareable between stakeholders, could leverage distributed
data access and high-performance analysis on large datasets
that a local computer with a local copy of the data would
not. Shared cloud resources for data analysis might lower
the barrier to entry for new team members, and strengthen
collaboration within and between teams.

Finally, definitive data sources and shared tooling have
positive implications for scientific reproducibility. Others
can re-trace steps in data analysis more easily, leading
to more reproducible scientific analysis. Furthermore, with
copious metadata and facility context, researchers can re-
trace facility conditions and instrument configurations to
reproduce scientific experiments with better fidelity.

4.2. Challenges

Formalizing approaches to data, and increasing accessibility,
leads to questions of ‘who sets our standards’ and ‘who has
access’.

‘Who has access?’ When each element of data is treated
individually, this question is managed on a case-by-case
basis by scientists and facility members. However, with
automated structures in place for data management by the
facility, data access questions are raised more explicitly and
involve the facility to a higher degree. Choices of who
does (and does not) have access to data may depend on the
scientist preference or facility needs. It may be desired to
share certain experimental data to all facility users. Or, it may
be desired to limit data to just the facility team, or a single
scientific team. One might also decide to limit data access
to one group prior to a certain date. Understanding typical
science data access patterns among facility stakeholders is
important, so that facilities can set up access control tools
that are technically capable of enabling these patterns. Best
practice is to plan out access control prior to taking data
through conversations between the experiment team and the
facility team. There is no one solution to access control for
all experimental runs.

‘Who sets and updates the standards?’ In the past,
researchers working in isolation have been able to maintain
their notes without oversight, leading to huge variations in
style and detail. This modus operandi is not compatible
with transparency and open access, and is especially not
compatible with machine processing of metadata. While
standards are necessary to support high data loads and open
access, there is a new challenge of supporting heterogeneous
instruments and data needs within a common framework –
and of bringing stakeholders to consensus on this framework.

Existing structure can make certain elements of creating
new device data easier, but other elements less flexible.
If data standards are too rigid, they can hinder scientific
flexibility and may be ignored, weakening the effect of the
standards. This particular challenge can be partly mitigated
through use of open formats and flexible standards that allow
for optional metadata fields and quick new definitions of
formats.

4.3. Case studies

We now discuss three concrete examples in our community
of tackling the challenges of scientific data management:
openPMD, DAaaS and the Michigan Cloud Computing Plat-
form.

4.3.1. OpenPMD, software tools and metadata standards
based on F.A.I.R.
As an example for the laser–plasma domain, openPMD[130]

is an open meta-standard initially designed for particle-mesh
data originating from particle-in-cell (PIC) simulations.
Meta-standard means it defines how data shall be stored
and organized, where ‘storing’ includes a description of
the data. Hence, in openPMD a number of properties are
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standardized, such as a self-description and data structuring,
while others remain flexible. This has proven to be quite
powerful since openPMD has recently been adopted[131] by
a number of widely used PIC codes, including PIConGPU,
Warp, WarpX, FBPIC, Wake-T, SimEx platform, LUME,
ParaTAXIS, OSIRIS, UPIC-Emma, Sirepo/Warp PBA,
Sirepo/Warp VND, HiPACE++, ACE3P and CarpetX.
Using a common format then allows for common analysis
tools that gather in an ever-growing software ecosystem
around openPMD. However, while openPMD stores
simulation output, it does not store the input. Input files are
of course much more dependent on the simulation package;
hence, the portability is not required from a technical
point-of-view. However, for scientific reasons, inclusion of
simulation input – ideally in an abstraction layer – would
not only enable comparisons across simulation packages,
but would also increase the comprehensibility of the output
because it would be set into an intelligible context. This is a
goal of the PICMI standard[132].

The situation for experimental data is even more compli-
cated. Many diagnostics fielded in laser–plasma experiments
record some kind of 2D data in the form of an image. This
can be a laser beam profile or laser focus image, but also
an image of a particle beam profile converted via a scintil-
lator. More complex in processing are images of data from
spectrometers, either dispersing photons or particles, where
the spatial coordinates depend, among other parameters, on
the energy of the particle/photon. As of now, openPMD is
able to ingest the raw images with the help of its CCD image
plugin[133]. Once stored, further openPMD tools can be used.
However, detector properties and experiment geometry are
crucial for analysis of raw data and must be included for
compliance with F.A.I.R. This is the point where further
standardization of domain-specific terms comes into play
in order to achieve interoperability. The definition of such
vocabularies must be done carefully with inclusion of the
community to ensure wide validity and acceptance.

In addition, experimental parameters, such as target
parameters, are decisive for the interpretation of processed
data. A problem emerging hereof is the flow of data and
metadata: sometimes, targets are characterized beforehand
and often do not exist after the interaction. Broadening this,
it can be expensive to automate the annotation of everything
of importance that occurs throughout the day in a laboratory.
Examples include targets that are characterized entirely
outside of the control system, or the unplanned manual
adjustment of a mirror. Experiment geometry and detector
parameters can be recorded all along an experimental
campaign but may change in between shots. Raw data, in
contrast, occurs only upon the shots. These are challenges
for metadata, and require an experimentalist to help keep the
metadata up-to-date. Including these asynchronous changes
and DAQs into openPMD would be a significant effort.
However, for experimental data from the photon and neutron

(PaN) science community there already exists a similar
meta-standard, called the NeXus Data Format[134]. It is
possible that there might be sufficient analogies in data and
metadata structure between laser–plasma experiments and
PaN experiments to conceive a F.A.I.R. standard building
upon openPMD and NeXus.

4.3.2. Data analysis as a service at the Central Laser
Facility
DAaaS was originally developed for users of the ISIS neu-
tron and muon source to analyse the data produced by
their experiments. By bringing together experimental data,
computing resources and specialized analysis software, it
aims to remove the need for users to set up their own analysis
environments. By providing everything needed for analysis
as well as shared storage, DAaaS reduces the effort needed
to add a new collaborator.

DAaaS is made up of VMs running in the STFC cloud.
Software is automatically preinstalled, and the VMs have
access to shared storage containing experimental data.
Access to this shared storage is controlled, so that a user
can only see data for experiments in which they are involved.
Users log into the system through a web browser and select
which kind of ‘workspace’ they require. This determines
the computing resources (CPU, GPU, RAM) available to the
VM, as well as the preinstalled analysis software. The system
then obtains a freshly installed VM from a pool. The user
can then access the desktop of the VM (the XFCE desktop
environment, running on Linux) through their web browser.

The VM provides access to a per-user persistent home
directory, as well as read-only storage for experimental
data and a read–write shared drive for analysis scripts and
outputs. This allows users to collaborate with other users on
the same experiment, by sharing their analysis work.

DAaaS is managed by STFC’s Scientific Computing
Department, and has now been rolled out across the
CLF. Experimental data can be uploaded to the system
through dedicated file servers. In Gemini, this can be done
automatically by Mirage. This allows DAaaS to be used to
analyse data immediately after it has been acquired.

Since being introduced, DAaaS has become popular
among the CLF user community and has been used to
build ML models of experimental data[135], highlighting
its suitability for data management and analysis.

4.3.3. Michigan Cloud Computing Platform for data
management
The Michigan Cloud Computing Platform is a unified cloud
platform for data management from numerical or physical
experiments being developed by researchers at the University
of Michigan. The platform seeks to enable F.A.I.R. princi-
ples of data management, as discussed previously, for small
academic research teams and, therefore, to greatly lower the
barrier to entry for performing ML on collected data.
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The platform is built on MLFlow[136], an open-source
software developed for managing ML experiments, and the
infrastructure-as-a-service tools provided by the public cloud
vendors for example, Amazon Web Services. There are two
distinct usage patterns to the platform that cover the initial
data gathering and subsequent analysis, as follows.

• Usage pattern 1 – at data collection time, the researcher
is able to use a secure API to communicate (physical or
numerical) experimental data to the server, which then
organizes the data within the remote database and object
storage.

• Usage pattern 2 – data can be accessed, analysed
and downloaded securely via the web using the built-
in GUI within MLFlow. The platform also has the
ability to launch Jupyter Lab environments with flexible
computing power (4–192 CPUs, 4 GB–1 TB of RAM)
within the secured virtual private network. This enables
researchers to perform data transformations and visual-
ization from anywhere where they can access the web.

We find that for our use case of storing, with redundancy,
simulation and experimental data for a small academic group
that amounts to approximately 25 TB, the storage costs are
approximately 500 USD/month, and the server and database
cost approximately 200 USD/month. If cloud data storage
costs are prohibitive, MLFlow can also hook into other arti-
fact stores (see https://mlflow.org/docs/latest/tracking.html#
artifact-stores) such as a typical network file system (NFS)
mount, or even a Hadoop Distributed File System.

Advantages of MLFlow. The difference between local data
management and cloud-based data management is primarily
in the amount of work needed to build, deploy and maintain
the infrastructure, as well as in the ability to distribute access
across varying geographic regions. The primary infrastruc-
tures of any data management platform are servers, databases
and object storage mechanisms, as well as the networking
and security layers.

The public cloud providers have infrastructure-as-a-
service capabilities for networking, security, servers,
databases and object storage. This takes the ‘undifferen-
tiated heavy-lifting’ of building, deploying, securing and
maintaining these constructs away from the scientific group.

Now, the scientific group is primarily charged with
customizing the data structure and adapting their existing
workflow. Using a pay-as-you-go approach also provides the
scientific group with the freedom to upgrade/downgrade
their hardware requirements as they wish. This helps
mitigate possible restrictions from previous purchases and
contracts that lock research groups into specific toolkits and
hardware constraints. In addition, it enables the scientific
research group to be able to leverage the latest technology,
for example, GPU accelerators for training neural networks.

Access to these services is provided through well-
developed, performant and stable software that is managed
by the cloud companies. In fact, there exists a whole
ecosystem of companies vying for market-share in this
space alone. These well-developed software tools ensure
the scientific group’s accessibility to the data stored in the
cloud. In a final note on data accessibility, the public cloud
vendors also invest heavily in redundancy in their systems.
In fact, they advertise that their systems, when configured
properly, only lose data very infrequently (better than one
part in a billion) and rarely have outages in service.

It is also important to consider the data security needs of
an academic research group. Using a cloud-based approach
enables the research group to leverage the significant invest-
ments made by the cloud companies in order to court
high-data-security industries, such as the financial services
industry. This ensures that the data-security needs of a
small–medium-scale scientific research group are met with
relatively little overhead by simply just using the standard
workflows and permissioning schemes prescribed by the
cloud provider. Data, by default, is not publicly accessible,
but rather, is made available to access by the person or team
given the authority to manage the permissions.

It is likely that larger labs and companies that use cloud-
based-solutions for (computational or physical) scientific
data management have internal solutions that do something
similar to our proposed solution but broader in scope. How-
ever, at this time, it is not clear to us whether there are
easily accessible, alternative cloud solutions for scientific
researchers that can be maintained by one or two cloud
engineers. This is why we propose our solution. The primary
advantages are that it is with relatively low-budget, is easy-
to-implement and maintain in an academic research setting
and can be scaled up or down, resource-wise, as is neces-
sary.

A clear disadvantage is using MLFlow as a layer between
the user and the database. This is not the most performant
implementation but is much more user-friendly. As the data
management effort scales up and teams can be tasked with
maintaining the platform, it is likely that a more performant
and scalable implementation does not have the MLFlow
layer as an intermediary and uses an alternative for acces-
sibility, such as a GUI.

Challenges of MLFlow. The primary challenge we have
encountered so far is to convince researchers to adapt their
existing workflow and use the platform in order to derive
benefits from it over the medium to long term.

Historically, the typical researcher was incentivized to
extract what they aimed for out of the data and discard
the data. While the platform discussed here decreases the
friction of collecting and using data over a medium-to-long
term, it still remains a challenge to incentivize researchers
and decrease the friction with regards to adoption in the short
term.
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This challenge is partially addressed by the draw of
big data and ML. As the high-power laser community
develops novel methods and performs research using
ML, the data management strategy for each individual
research group becomes increasingly important. This is
because ML requires data management principles in two
flavours.

First, and most obviously, running the ML algorithms,
at scale, on a dataset requires the dataset to be organized,
cleaned and easily accessible. This is a primary principle
behind the development of this platform.

The second flavour of data management required for ML
comes from a more subtle point. Each instantiation of the
ML algorithm over a dataset can be considered a numerical
experiment. In this case, much like with a simulation, it is
also important to track the different parameters provided to
the ML experiments and be able to easily correlate those to
the outcome of the numerical experiment.

For these two reasons, the draw of developing ML tech-
niques in high-power laser research provides an incentive
to the small-group researcher to improve data management
principles in the short term.

At small-to-medium-scale facilities, the people running
the facility may find it useful to collect data over many
experiments, months and years in order to better understand
the performance and behaviour over time. This can also drive
an interest in having a platform that can collect and organize
this data.

Another challenge is having the right expertise in place
to be able to deploy such a platform for a small academic
research group or facility. While cloud platforms offer a
GUI that can help launch the right servers, networking tools,
databases, etc., it can be quite cumbersome to repeat this task
as well as debug it if something goes awry. To address this,
we have developed the platform using an infrastructure-as-
code approach. This effectively means that there is a code-
base that, when run, deploys the entire platform readily into
different cloud environments, for example, each belonging
to a different team or group. This reduces the time required
to replicate the deployment of the platform from days to
minutes.

Community input. One of the central beliefs behind devel-
oping our platform is that over the lifetime of a (numerical
or physical) experiment, data generated by researchers can
often get ‘siloed’. With the growing applications of algo-
rithms that can provide data-driven insights, the ‘siloed’ data
represents potentially useful information that is effectively
lost.

To be able to best utilize these data in downstream, ML-
related tasks, it would behove researchers to approach data
collection and management as a longer-term effort than just
the short time spent performing and analysing the numerical
or physical experiment. Our platform hopefully lowers the
barrier to entry for such an effort.

We are currently using the platform as a test-bed for
managing experimental data for a user facility, for manag-
ing simulation and ML data within an academic research
group[137] and for ML experiment management.

How can I try MLFlow? Most current open-source ML
experiment managers can run locally on a personal computer
where the object and database storage are also hosted locally.
This configuration can be installed as a Python package in
the typical manner (using the Python package management
software ‘pip’) and executed from the command line. How-
ever, the experiment manager system can also be deployed in
a more scalable manner onto a remote server with long-term
object storage and a database. In this case, it is preferable
to build a Docker container to deploy on the remote server.
At the time of this writing, we prefer using MLFlow as our
experiment manager, but there are many other similar open-
source experiment managers that serve a similar purpose.

5. Conclusion

The high-power laser community is at a critical moment
in laying down new, long-lasting digital infrastructure for
its facilities. Through this manuscript, which addresses a
pressing community need, we hope to facilitate open and
efficient future collaboration. We aim to spearhead this
by supporting knowledge-sharing of the work being done
to develop both control systems and data management to
meet the needs of the next generation of high-power laser
experiments. A distributed networked control system can
facilitate laboratory-wide operational speeds and closed-
loop approaches, which humans cannot achieve. A consistent
approach to managing data can increase data accessibility
to scientists and external partners, increase the reliability
of metadata and increase the re-usability of data analysis
software. In this manuscript, we explored considerations for
practical facility-level decision making in these areas, and we
highlighted several specific control systems and approaches
to data management from our community. By taking steps
now to communicate and synchronize, our community can
access the benefits, and mitigate the challenges, of our next-
generation-facility digital infrastructure.
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