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A two-domain approach is used to investigate the thermal convection of Poiseuille flow
in an anisotropic and inhomogeneous porous domain underlying a fluid domain. The
flow of the Newtonian fluid is regulated by Darcy’s law in the porous domain with the
implementation of the Beavers–Joseph condition at the interface. The impact of medium
anisotropy and inhomogeneity is inspected by virtue of linear stability analysis along with
other governing parameters such as depth ratio (ratio of depth of fluid domain to porous
domain), Darcy number, Reynolds number and Prandtl number concerning the stability
of the fluid–porous system. The neutral curves are found to be bimodal and unimodal in
nature with the anisotropy and inhomogeneity leaving its imprint on parametric variation.
An increase in anisotropy or decrease in the inhomogeneity parameter follows the modal
change from unimodal (porous) to bimodal (both porous and fluid). Also, it has been
identified that, irrespective of the considered variations in anisotropy and inhomogeneity,
the least stable mode for the depth ratio <0.05 is porous and for the depth ratio >0.16 is
fluid. Furthermore, energy budget analysis is carried out to classify the type of instability
and validate the type of mode. The instability is found to be thermal–buoyant in nature
with omission of low Reynolds numbers along with very low values of the ratio of
permeability in the horizontal to vertical direction, where thermal–shear instability is
witnessed. Likewise, secondary flow patterns in the context of the streamfunction and
temperature contour are analysed to validate the least stable mode and the type of
prevailing instability in the fluid–porous system. The presented numerical results find good
experimental support from the results of Chen & Chen (J. Fluid Mech., vol. 207, 1989,
pp. 311–321) in the limit of natural convection with an isotropic and homogeneous porous
domain.
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1. Introduction

The flow of a fluid overlying a porous domain has garnered much attention due to its
extensive use in various geophysical, engineering and industrial applications such as water
flow beneath the Earth’s surface (Discacciati, Miglio & Quarteroni 2002), oil flow in
underground reservoirs (Allen 1984), contaminant flow in ground and relatable fields
(Ewing & Weekes 1998), alloy solidification (Chen & Hsu 1991), flow in fuel cells
(Ehrhardt et al. 2008), cooling of electronic components (Yoshikawa, Akitomo & Awaji
2001), chemical vapour deposition (Evans & Grief 1991), etc. The production of composite
materials for aircraft and automobile industries (Blest et al. 1999a,b) also owes a lot to the
study of flow of a fluid overlying a porous medium.

The study of thermal convective instabilities in a fluid overlying a porous domain dates
back to the 1970s, with Sun (1973) being the first to delve into the convection in such
systems. Sun (1973) studied thermal convection in superposed fluid and porous layer from
experimental as well as theoretical perspectives. He carried out linear stability analysis
and observed a continuous decrease in the critical Rayleigh number with a simultaneous
increase in the thickness ratio of the fluid-to-porous-layer depth. However, his results for
the depth ratio >0.1 were flawed due to glitches in the boundary conditions. The onset of
finger convection in such superposed systems was investigated by Chen & Chen (1988).
With the aid of the produced linear stability results, obtained via the shooting method, they
discovered that the depth ratio plays a key role in convection and also identified that the
neutral curves were bi-modal in nature for low depth ratios. They also presented the correct
data for Sun (1973) for the depth ratio >0.1 and later on gave the experimental validation
of their linear stability results (Chen & Chen 1989). The convective instability in a fluid
overlying an anisotropic porous domain was studied by Chen, Chen & Pearlstein (1991).
They observed a significant impact of medium anisotropy for small depth ratios, whereas,
for large depth ratios, the instability was majorly confined within the fluid domain. In
parallel, in the same year, Chen & Hsu (1991) extended the work of Chen et al. (1991) by
adding inhomogeneity to the porous domain and found a weighty impact of the anisotropy
and inhomogeneity for depth ratios �0.1, which became less significant for depth ratios
�0.2. Further, the onset of convection in a fluid overlying a highly porous medium was
studied by Hill & Straughan (2009a) by means of linear and nonlinear stability analyses.
They investigated the instability thresholds and bounds for global nonlinear stability and
found perfect agreement between the linear and nonlinear stability results and thereby
concluded that the linear stability results were a good tool in perfectly determining the
physics of the onset of convection in a fluid overlying a highly porous domain.

Shear flows, viz. the Poiseuille and Couette flow instabilities in non-isothermal
superposed systems, received attention in the early 21st century only. Chang (2005) probed
the thermal convection in a superposed fluid and porous layer in regard to Couette flow
with the porous layer being isotropic and homogeneous. He considered both longitudinal
and transverse rolls for his study. He observed that the bimodal nature of the neutral curves
depends upon the depth ratio and also that the onset of convection prefers longitudinal
rolls. He used the oscillatory frequency as a criterion for defining the fluid and the porous
mode. In that event, the porous mode is the one where the local minimum along with
a smaller oscillatory frequency causes convection in the porous layer and fluid mode
is where the local minimum along with a large oscillatory frequency causes convection
in the fluid layer. Chang (2006) extended his work to Poiseuille flow and found pretty
much similar observations to Chang (2005). The implications of Poiseuille flow exerted
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Non-isothermal flow overlying anisotropic porous domain

stabilizing characteristics on the travelling transverse rolls and low propagating speed
amidst the porous layer inhabiting the critical transverse mode. More recently, the onset of
convection of a Jeffreys fluid in regard to plane Poiseuille flow in such a superposed system
was studied by Yin, Wang & Wang (2020). They found that, contrary to Newtonian fluids,
the thermal convection instability is more unstable and transverse rolls are preferred over
longitudinal rolls in the case of non-Newtonian fluids.

Isothermal Poiseuille flow was first studied by Chang, Chen & Straughan (2006) using
Darcy’s law in a porous medium. Solving the governing equations numerically, they
identified three instability modes, i.e. the porous-layer mode, the odd-fluid-layer mode
and the even-fluid-layer mode, each corresponding to a minimum on the neutral stability
curve. The porous medium controlled the stability of the system in the region of low
wavenumber, and hence they referred to it as the porous-layer mode. In the region of
high wavenumber, the perturbations in the flow were dominated by the fluid layer. Also,
the perturbed streamfunction was found to be antisymmetric about the central line in the
fluid layer and hence was referred to as the odd-fluid-layer mode. The third mode, referred
to as the even-fluid-layer mode, was the one where the instability occurred at moderate
wavenumber along with symmetricity about the central line in the fluid layer. A further
refinement of this model, by introducing a Brinkman transitional porous layer in between
the fluid and the Darcy-type porous layer, hence making it a three-layered model, was done
by Hill & Straughan (2008). Their results showed that, in such a system, there are two
types of instability modes, one being the fluid and the other being the porous. They also
found that the depth ratio between the fluid and the porous domain and the transition-layer
depth are the important parameters affecting the stability of the system. Liu, Liu &
Zhao (2008) carried out a similar stability analysis as was done by Chang et al. (2006),
the only difference was that the porous layer was modelled by the Brinkman equation.
They found that only two instability modes occur in such a system: the porous mode
and the even-fluid-layer mode. They concluded that the reason for the non-occurrence
of the odd-fluid-layer mode was the continuity of the velocity at the fluid–porous interface
leading to an even symmetricity for the basic and perturbed states. The stability analysis of
Poiseuille flow for a fluid over a highly porous domain was performed by Hill & Straughan
(2009b). To deal with the high porosity (χ = 0.79) of the porous domain, they adopted
the Darcy–Brinkman model for the porous layer. Contrary to the work done by Liu et al.
(2008), they did not neglect the nonlinear convective term in the momentum equation.
They found that the highly porous material allowed the porous medium to behave like
a pure fluid and, as a result, the instability of the porous material was much less. Silin
et al. (2011) studied the flow instabilities in planar flow semi-obstructed by an easily
penetrable porous medium from theoretical and experimental perspectives and found
good agreement between them. They observed the sensitivity of the depth ratio to the
stability of the flow. Deepu, Anand & Basu (2015) studied the effects of the anisotropy
and inhomogeneity parameters of the permeability on the stability of Poiseuille flow of a
fluid overlying a porous layer. They concluded that the increments in the depth ratio and
anisotropy parameter and decrements in the Darcy number and inhomogeneity parameter
were factors that stabilized the system. Further, Sengupta & De (2019a) performed stability
analysis via modal and non-modal approaches for Poiseuille flow of a Bingham fluid
in a fluid overlying an anisotropic and inhomogeneous layer. They witnessed that the
anisotropy and inhomogeneity in the porous layer showed stabilizing and destabilizing
effects, respectively. Much recently, the stability analysis of Couette–Poiseuille flow in
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a fluid overlying a porous medium has also become a topic of consideration amongst
researchers (Chang, Chen & Chang 2017; Sengupta & De 2019b; Samanta 2020).

Hitherto, studies have been either of isothermal plane Poiseuille flow in both isotropic
(homogeneous) and anisotropic (inhomogeneous) porous media or of natural convection
in both isotropic (homogeneous) and anisotropic (inhomogeneous) porous media. The
study of plane Poiseuille flow in non-isothermal cases subjected to mixed convection
in an anisotropic and inhomogeneous porous domain underlying a fluid domain is still
uninvestigated. From the literature, we observe that the depth ratio, anisotropy and
inhomogeneity play significant roles in determining the stability of fluid overlying porous
systems. Until now, the questions regarding the impact of parameters related to medium
anisotropy and inhomogeneity on the instability of fully developed mixed convective flow
(i.e. non-isothermal Poiseuille flow) in such superposed systems remain unanswered. The
questions that crop up from the literature also include: How do these parameters affect the
mode of instability and the pattern of secondary flow? What is the appropriate physical
mechanism behind the type of mode? Moreover, the experimental results of Sun (1973) and
Chen & Chen (1989) state that the critical Rayleigh number decreases with a simultaneous
increase in the depth ratio. So, whether this result still holds in the present circumstances
is again an interesting question. To seek answers for these questions and to enlighten the
study in this direction, the present study aims to scrutinize the stability of non-isothermal
flow in a fluid overlying a hydrodynamically anisotropic and inhomogeneous porous layer
subjected to plane Poiseuille flow via linear stability analysis.

The paper unfolds in the following manner. The physical problem and its governing
equations are presented in § 2. Section 3 consists of the results based on linear stability
analysis, the energy budget analysis and secondary flow patterns followed by conclusions
in § 4.

2. Problem formulation

2.1. The physical model
The present system of interest, with the geometrical representation depicted in figure 1,
comprises of a horizontal fluid domain of thickness d overlying a porous domain
of thickness dm, with the porous domain being hydrodynamically anisotropic and
inhomogeneous. The fluid in consideration is incompressible, Newtonian and satisfies the
Boussinesq approximation. We consider a Cartesian coordinate system with x and z (xm
and zm) signifying the mean flow direction and the vertical direction in the fluid domain
(porous domain), respectively. A permeable interface is taken into consideration to allow
the passage of the fluid from the fluid domain to the porous domain. The proper modelling
and maintenance of the permeable interface requires a two-domain approach (Hirata
et al. 2007, 2009). Furthermore, the two-domain approach provides good experimental
support for the existing theoretical results in view of thermal convection in superposed
systems (Sun 1973; Chen & Chen 1989). A deliberation on the equivalence of the one-
and two-domain approaches for stability analysis in fluid overlying porous systems can
be found in the work of Hirata et al. (2009). Consequently, the two-domain approach
is utilized in the present study. A constant pressure gradient in the mean flow direction
introduces the plane Poiseuille flow to the system, whereas the maintenance of constant
temperatures TU and TL (TL > TU), at the top and the bottom layers, respectively, makes
way for thermal convection in the system. The Navier–Stokes equations govern the flow
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T = To

T = TU

Tm = TL

Fluid domain

Interface

z = d

z = zm = 0

zm = –dm

Fluid saturated porous domain

Figure 1. Schematic diagram of the system under consideration.

in the fluid domain, whereas Darcy’s law is used to model the flow through the porous
domain. A note on the consideration of the Darcy model is given in Appendix A.

Following Khandelwal & Bera (2015) and Chang (2006), the dimensional governing
equations for conservation of mass, momentum and energy in the fluid domain are

∂u
∂x

+ ∂w
∂z

= 0, (2.1)

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

= − 1
ρo

∂p
∂x

+ ν�u, (2.2)

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

= − 1
ρo

∂p
∂z

+ ν�w − g[1 − αT(T − To)], (2.3)

∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

= α�T. (2.4)

Here, u and w denote the velocity components in the fluid domain along the x and
z-directions, respectively, p denotes pressure, T the temperature, ρo the density at
temperature To, Δ the Laplacian operator in two dimensions, ν the kinematic viscosity,
g the gravity, α the thermal diffusivity and αT the coefficient of thermal expansion. The
dimensional continuity, momentum and energy equations for the porous domain are given
as

∂um

∂xm
+ ∂wm

∂zm
= 0, (2.5)

1
χ

∂um

∂tm
= − 1

ρo

∂pm

∂xm
− ν

Kxηx
um, (2.6)

1
χ

∂wm

∂tm
= − 1

ρo

∂pm

∂zm
− ν

Kzηz
wm − g[1 − αT(Tm − To)], (2.7)

Gm
∂Tm

∂tm
+ um

∂Tm

∂xm
+ wm

∂Tm

∂zm
= αm�Tm, (2.8)

where the field variables having subscript m represent the respective field variables in
the porous domain, χ , Kx, Kz, ηx and ηz represent the porosity, permeability in the
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xm-direction, permeability in the zm-direction, inhomogeneity function in the xm-direction
and inhomogeneity function in the zm-direction, respectively. The inhomogeneity
functions, ηx and ηz, are taken to be functions of zm alone in order to avoid the
multidimensional nature of the basic flow solution (Deepu et al. 2015). Also, Gm =
(ρocp)

∗/ρocp and αm = κ∗/ρocp with the relationship

X∗ = χX + (1 − χ)Xm, (2.9)

where X can be replaced by ρocp or κ (the thermal conductivity of the respective material),
cp (the specific heat of the fluid) accordingly. The anisotropy parameter is defined as ξ =
Kx/Kz.

The boundary conditions for fluid and porous domains are as follows:
At z = d, i.e. the upper surface of the fluid domain,

u = w = 0, T = TU. (2.10a,b)

At zm = −dm, i.e. the bottom surface of the porous domain,

wm = 0, Tm = TL. (2.11a,b)

At z = zm = 0, i.e. the fluid–porous interface, the continuity of velocity, temperature as
well as stress gives rise to

w = wm, T = Tm, α
∂T
∂z

= αm
∂Tm

∂zm
, p − 2μ

∂w
∂z

= pm, (2.12a–d)

and
∂u
∂z

= αBJ√
Kxηx(0)

(u − um), (2.13)

where αBJ is the Beavers Joseph constant determined experimentally by Beavers & Joseph
(1967) and is widely taken as 0.1. Also, μ represents the dynamic viscosity of the fluid.

2.2. The basic flow
We assume that the basic flow is steady, fully developed and unidirectional. Based on these
assumptions, the basic flow solution for the plane Poiseuille flow along the x-direction is
given by

ū = A1

2
z2 + A2z + A3, w̄ = 0, (2.14a,b)

T̄(z) = (TU − To)

d
z + To, (2.15)

in the fluid domain, where To refers to the temperature at the fluid–porous interface, i.e.
z = 0. In the porous domain, we have

ūm(zm) = −A1Kxηx(zm), w̄m = 0, (2.16a,b)

T̄m(zm) = (To − TL)

dm
zm + To. (2.17)

In (2.14a,b) and (2.16a,b), the values of different constants are

A1 = 1
μ

∂p
∂x

, A2 = A1αBJ

2
[2Kxηx(0) − d2]√
Kxηx(0) + dαBJ

, (2.18a,b)

A3 = −A1d
2

[d
√

Kxηx(0) + 2αBJKxηx(0)]√
Kxηx(0) + dαBJ

. (2.19)
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2.3. Linearized perturbed equations
To study the stability of the above basic flow, the governing equations (2.1)–(2.8) are
non-dimensionalized using V, d, μV/d, d/V and (To − TU)ν/α as respective scales for
velocity, length, pressure, time and temperature in the fluid domain, where V stands
for the maximum of ū(z) and with Vm, dm, μVm/dm, dm/Vm and (TL − To)ν/αm as
analogous scales in the porous domain, where Vm = ūm(0). To non-dimensionalize the
basic velocities in the various domains, the aforementioned scales for velocities in the
respective domain are employed. To determine the linear stability of the considered basic
flow, the flow variables are decomposed into a basic flow variable and an infinitesimal
disturbance, as

(u, w, T, p) = (Ū(z), 0, T̄(z), P(x)) + (u′, w′, T ′, p′), (2.20)

for the fluid domain and

(um, wm, Tm, pm) = (Ūm(zm), 0, T̄m(zm), Pm(xm)) + (u′
m, w′

m, T ′
m, p′

m) (2.21)

for the porous domain. It is to be noted here that the basic quantities are non-dimensional.
The values of Ū and Ūm are given in Appendix B. Superposition of infinitesimal
disturbances to the basic state gives the linearized disturbance equations for the fluid
domain (after dropping the superscript) as

∂u
∂x

+ ∂w
∂z

= 0, (2.22)

Re
(

∂u
∂t

+ ū
∂u
∂x

+ w
∂ ū
∂z

)
= −∂p

∂x
+ �u, (2.23)

Re
(

∂w
∂t

+ ū
∂w
∂x

)
= −∂p

∂z
+ �w + Ra

Re
T, (2.24)

PrRe
(

∂T
∂t

+ ū
∂T
∂x

+ w
∂T̄
∂z

)
= �T, (2.25)

where

Re = Vd
ν

, Ra = gαT(To − TU)d3

να
and Pr = ν

α
(2.26a–c)

denote the Reynolds number, Rayleigh number and Prandtl number, respectively. On
similar lines, the linearized disturbance equations for the porous domain are

∂um

∂xm
+ ∂wm

∂zm
= 0, (2.27)

Rem

χ

∂um

∂tm
= −∂pm

∂xm
− um

δ2ηx
, (2.28)

Rem

χ

∂wm

∂tm
= −∂pm

∂zm
− ξwm

δ2ηz
+ RamTm

δ2Rem
, (2.29)

PrmRem

(
Gm

∂Tm

∂tm
+ um

∂Tm

∂xm
+ wm

∂T̄m

∂zm

)
= �Tm, (2.30)

where

Rem = Vmdm

ν
, Ram = gαT(TL − To)dmKx

ναm
and Prm = ν

αm
(2.31a–c)
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denote the Reynolds number, Rayleigh number and Prandtl number in the porous domain,
respectively. The perturbed boundary conditions are as given below.

At z = 1,
u = w = T = 0. (2.32)

At zm = −1,
wm = Tm = 0. (2.33)

At z = zm = 0,

Re w = d̂Remwm, d̂T = ε2Tm,
∂T
∂z

= ε
∂Tm

∂zm
, (2.34a–c)

∂u
∂z

= αBJd̂
δ
√

ηx(0)

(
u − d̂Rem

Re
um

)
, p = 2

∂w
∂z

+ d̂2Rem

Re
pm. (2.35a–c)

It is worth noticing that the parameters defined in (2.26a–c) and (2.31a–c) are related as

Rem = 8δ2ηx(0)

Fd̂
Re, Ram = δ2ε2

d̂4
Ra and Prm = εPr, (2.36a–c)

where δ = √
Kx/dm is the Darcy number, ε = α/αm is the ratio of thermal diffusivities,

d̂ = d/dm is the depth ratio and the constant F is defined in Appendix B. To eliminate
the pressure terms in (2.23)–(2.24) and (2.28)–(2.29), we take the curl of both equations
twice, separately for the fluid domain equations and the porous domain equations, and
obtain each w component of the resultant equations. The disturbances (w, T , wm and Tm)
are assumed to be two-dimensional (Chang et al. 2017) and are then decomposed using
the normal mode (Drazin & Reid 2004) as

(w, T) = [W(z), θ(z)] exp[−ισ t + ιax], (2.37)

(wm, Tm) = [Wm(zm), θm(zm)] exp[−ισmtm + ιamxm]. (2.38)

After substituting the normal mode form in the pressure eliminated equations, the
linearized disturbance equations for the fluid domain become

(D2 − a2 − ιaReŪ)(D2 − a2)W + ιaRe
d2Ū
dz2 W − Ra

Re
a2θ = −ισRe(D2 − a2)W, (2.39)

(D2 − a2)θ − ιaRePrŪθ + ReW = −ισPrReθ, (2.40)

and for the porous domain become(
D2

m

ηx
− ξa2

m

ηz

)
Wm + Ram

Rem
a2

mθm − DmWmDmηx

η2
x

= ι
σmRemδ2

χ
(D2

m − a2
m)Wm, (2.41)

(D2
m − a2

m)θm − ιamŪmPrmRemθm + RemWm = −ιPrmRemGmσmθm, (2.42)

where

D = d
dz

, Dm = d
dzm

, a = d̂am and σ = d̂2Rem

Re
σm. (2.43a–d)

Here, a (am) and σ (σm) denote the streamwise wavenumber in the fluid domain (porous
domain) and the complex wave speed in the fluid domain (porous domain), respectively.
The boundary conditions are as follows:

949 A44-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.783


Non-isothermal flow overlying anisotropic porous domain

At z = 1,

W = DW = θ = 0. (2.44)

At zm = −1,

Wm = θm = 0. (2.45)

At z = zm = 0,

ReW = d̂RemWm, d̂θ = ε2θm, Dθ = εDmθm, (2.46a–c)

D2W = αBJd̂
δ
√

ηx(0)

[
DW − d̂2Rem

Re
DmWm

]
, (2.47)

D3W − 3a2DW − ιaReŪDW + ιaRe
dŪ
dz

W + d̂4RemDmWm

δ2Reηx(0)

= −ισReDW + ισm
d̂4Re2

mDmWm

χRe
. (2.48)

The linearized disturbance equations (2.39)–(2.42) along with their boundary conditions
(2.44)–(2.48) are discretized in the interval [−1, 1] along the vertical direction at
Gauss–Lobatto points by implementing the Chebyshev spectral collocation method
(Canuto et al. 1988). In order to reconstruct the domain to [−1, 1], i.e. the domain of
the Chebyshev polynomials, the field variables are mapped (Khan & Bera 2020a) by
ζ = 2z − 1 in the fluid domain whereas the same are mapped by ζm = −2zm − 1 in the
porous domain. The linearized disturbance equations result in a generalized eigenvalue
problem of the form

AX = cBX , (2.49)

where A and B are complex matrices and c, X are the eigenvalue and eigenvector,
respectively. The eigenvalues of the eigenvalue problem are calculated by using the QZ
algorithm (Moler & Stewart 1973) inbuilt into the MATLAB software.

The validation of the linear stability results for mixed convection is performed by
comparing with the published results of Chang (2006) by setting ξ = 1 and ηx = ηz = 1
and for the natural convection case, it is carried out by comparing with the published
results of Chen & Chen (1988) and Sun (1973). The comparison is made for the critical
porous Rayleigh number, porous wavenumber and porous wave speed in tables 1 and 2.
The present numerical results are found to be in perfect agreement with the published
results. Apart from this, based on various numerical experiments, to preserve the accuracy
of the numerical results, the maximum order of the Chebyshev polynomial in the
approximation of the different field variables is considered as 50.

The experimental validation of the present study is carried out as a limiting case by
comparing with the experimental and theoretical results of natural convection in fluids
overlying isotropic and homogeneous porous media as done by Chen & Chen (1989). The
validation with the experimental results is made in the limit of Re → 0 (i.e. in the limit
of natural convection). Table 3 provides the comparison between our theoretical results
and the experimental results of Chen & Chen (1989) with the values in the fourth and
fifth columns representing the error percentages. The validation gives good experimental
support to the present study.
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d̂ Ram Ram am am −σm
r −σm

r

(Chang 2006) (present (Chang 2006) (present (Chang 2006) (present
study) study) study)

0.1 25.15 25.149 2.24 2.24 −0.2886 −0.28857
0.12 20.22 20.222 23.36 23.36 −1.2338 × 104 −1.2338 × 104

0.14 11.20 11.197 20.05 20.05 −1.3926 × 104 −1.3926 × 104

0.16 6.72 6.716 17.57 17.57 −1.5512 × 104 −1.5512 × 104

0.18 4.28 4.279 15.65 15.65 −1.7108 × 104 −1.7108 × 104

0.2 2.86 2.859 14.12 14.12 −1.8715 × 104 −1.8715 × 104

Table 1. Comparison of critical values of Ram, am and σm
r with the results of Chang (2006) for various depth

ratios and δ = 0.002, αBJ = 0.1, χ = 0.3, ε = 0.7, Gm = 10, Re = 10, Pr = 10.

d̂ Ram am Ram am Ram am
(present (present (Chen & (Chen & (Sun 1973) (Sun 1973)
study) study) Chen 1988) Chen 1988)

0.001 39.4182 3.14 39.422 3.14 39.426 3.14
0.01 36.7520 3.05 36.702 3.02 37.951 3.10
0.04 24.7207 2.34 24.772 2.35 26.331 2.50
0.10 19.1212 2.14 19.093 2.14 18.197 2.20
0.11 15.3028 23.99 14.294 23.41 17.284 2.20
0.12 10.5771 21.64 10.242 21.60 16.370 2.20
0.13 7.7783 20.10 7.535 20.05 15.426 2.20
0.33 0.2143 8.29 0.2069 8.29 — —
0.5 0.0425 5.56 0.0410 5.55 — —
1.0 0.0028 2.82 0.0027 2.82 — —

Table 2. Comparison of critical values of Ram and am with theoretical results of Chen & Chen (1988) and
Sun (1973) for various depth ratios and δ = 0.002, αBJ = 0.1, χ = 0.3, ε = 0.7, Gm = 10.

d̂ Ram Ram Error percentage Error percentage
(present study) (Chen & Chen 1989) (present and (theoretical and

experimental results experimental results
of Chen & Chen 1989) of Chen & Chen 1989)

0 39.48 40.07 1.3 1.5
0.025 28.14 31.82 11.5 4.3
0.1 19.16 17.57 9 21
0.2 3.46 3.95 12.4 31.3
0.5 0.177 0.159 11.3 24.5
1.0 0.0120 0.0124 3.2 12

Table 3. Comparison of critical values of Ram with the experimental results of Ram (Chen & Chen 1989)
(see table 1 in Chen & Chen 1989).

3. Results and discussion

In this section, the stability of the non-isothermal plane Poiseuille flow is analysed.
The analysis focuses majorly on the impact of anisotropy and inhomogeneity with
simultaneously varying depth ratio, Reynolds number and Prandtl number. As widely done
in the literature (Sun 1973; Chen & Chen 1988; Chang 2005, 2006), a few parameters
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have been fixed as αBJ = 0.1, χ = 0.3, ε = 0.7 and Gm = 10, which represents many
porous materials’ properties (Straughan 2002). In order to reduce complexities regarding
the directional inhomogeneities, the inhomogeneity parameters are defined as ηx = ηz =
eA(1+zm) (Deepu et al. 2015, 2016), where the permeabilities in the xm as well as the
zm direction increase and decrease vertically with positive and negative values of A,
respectively. As discussed in the work of Chen & Hsu (1991), the inhomogeneity function
in exponential form finds much more practical applicability than a linear form, which
is due to the fact that the particle size distribution in a porous medium follows a log–
normal distribution, i.e. exponential distribution (Perkins & Johnston 1963). Also, the
permeability in exponential form is in close proximity to the value of permeability
calculated in the experimental work of Chen & Chen (1991). Thus, we employ the
exponential definition of the inhomogeneity function in the present study. In the entire
numerical simulation, four different values 0.001, 0.1, 1, 10 of the anisotropy parameter
(ξ ) and three different values −1, 0, 1 of the inhomogeneity parameter (A) are taken into
consideration (Chen & Hsu 1991; Deepu et al. 2015). Note that when the value of all
other parameters are kept constant, a change in ξ is due to a change in permeability in
the z-direction only. Furthermore, the analysis in this section is based on two different
values 10−3 and 5 × 10−4 of the Darcy number (Deepu et al. 2016). In the following, we
have analysed the stability characteristics of the considered flow through neutral stability
curves.

3.1. Neutral stability curves: effect of anisotropy, inhomogeneity, depth ratio, Reynolds
number and Prandtl number

Figures 2(a)–2( f ) show the effect of variation of the anisotropy and inhomogeneity
parameter for d̂ = 0.1, δ = 0.001, Re = 10 and Pr = 10 on the neutral stability curve
along with the corresponding oscillatory frequency, σm

r. Figures 2(a), 2(b) and 2(c)
show the neutral curves of various values of anisotropy for A = −1, 0 and 1, respectively,
whereas, figures 2(d), 2(e) and 2( f ) show their corresponding oscillatory frequencies. It
can be observed that, depending on the values of the controlling parameters, the neutral
curves may be bimodal or unimodal.

The type of mode can be porous, fluid or a combination of both porous and fluid modes.
The porous and fluid modes are defined in the same manner as Chang (2006). Accordingly,
the lobe of the neutral curve with smaller oscillatory frequency σm

r represents the porous
mode and the lobe of the neutral curve with larger oscillatory frequency represents the
fluid mode. The modes discovered (porous or fluid) refer to the instability in the particular
domain, say for example, the fluid mode refers to the case when the instability in the
entire system is majorly confined to the upper part of the system, i.e. the fluid region. To
understand the role of σm

r in defining the mode of instability, we recall the fact that,
for complex wave speed, the wavelength is fixed. So, to make the system unstable, a
higher speed is required, i.e. a higher frequency is required (since speed is proportional
to frequency). In general, the high speed wave does not help the fluid to penetrate into
the porous bed, and so it is not in favour of causing instability in the porous domain.
Similar reasoning can be given for the appearance of the porous mode for small oscillatory
frequency.

For A = −1 and ξ = 0.001, the instability is completely dominated by a single porous
mode, also correspondingly verified from figure 2(d), since the oscillatory frequency,
σm

r, for ξ = 0.001 is sufficiently small. Now, on increasing the value of the anisotropy
parameter to 0.1, the number of modes changes to two and the neutral curve becomes
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Figure 2. Neutral stability curves with corresponding oscillatory frequency: (a,d) A = −1, (b,e) A = 0 and
(c, f ) A = 1, for different values of ξ with d̂ = 0.1, δ = 0.001, Re = 10 and Pr = 10.

bimodal. The fluid layer starts showing its impact on the instability along with the porous
layer and with the local minimum appearing in the porous mode. The corresponding
curve for oscillatory frequency shows the porous and the fluid modes for am ∈ [0, 10.4)

and am ∈ [10.4, 30], respectively (see figure 2d). On further increasing the value of the
anisotropy parameter to 1, i.e. the isotropic case, the magnitude of the impact of the porous
layer decreases with a simultaneous increase of fluid layer’s impact on the instability. In
this case, the global minimum lies in the fluid layer. The neutral curve is still bimodal with
the porous mode for am ∈ [0, 5.4) and the fluid mode for am ∈ [5.4, 30], as also obtained
from figure 2(d). The next increment in the value of the anisotropy parameter to 10 shows
the bimodal nature of the neutral curve, with the instability being dominated by the fluid
domain. The above results agree logically too, as an increment in ξ implies a decrement in
permeability along the vertical direction, hence causing hindrance to the flow towards the
porous domain. Henceforth, the instability varies from the porous to both the porous and
fluid modes with the assigned changes of values of the anisotropy parameter when other
parameters are fixed. Also, the critical Rayleigh number of the porous domain decreases
with a decrease in the anisotropy parameter, hence, criticality is observed earlier when
permeability along the z-direction is much higher than the same in the x-direction. Thus,
introducing the anisotropy into the porous domain helps in the early onset of convection
in comparison with the results of Chang (2006) for the isotropic case. For example, the
critical Rayleigh number found in the work of Chang (2006) for a depth ratio of 0.1 and a
Darcy number of 0.002 was 25.15. From the present study, on introducing anisotropy and
inhomogeneity and keeping the other parameter values same, the critical Rayleigh number
for an anisotropy of 0.001 is 3.1936.

Now, for the homogeneous case, i.e. for A = 0, from figure 2(b), the type of mode
for various values of the anisotropic parameter is similar to the case from figure 2(a)
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but the critical Rayleigh numbers are smaller for each anisotropic value than those from
figure 2(a). On increasing the inhomogeneity parameter from 0 to 1, the type of mode is
consistent with those in figure 2(b), but with a corresponding critical Rayleigh number
achieved earlier than those for A = 0 (see figure 2c). Also, the porous mode shows much
more impact here than its counterparts in figure 2(b).

Before proceeding further, it is important to mention here that, in the work of Deepu
et al. (2015), where they used anisotropic and inhomogeneous porous media but under
isothermal conditions, they observed the occurrence of instability at a Reynolds number
of 3275 for a depth ratio of 0.1, Darcy number of 0.001 and anisotropy of 0.001. For the
same parameter values, instability of the flow occurs at a very low Reynolds number (i.e.
Re = 10) even for a very small temperature difference between the upper and lower walls
of the fluid–porous system introduced in terms of the Rayleigh number (Ram = 3.0650) in
the present study.

Figures 3(a)–3( f ) present the neutral stability curves and corresponding oscillatory
frequency for δ = 0.0005 with the other parameters, fixed as in figure 2. Varying the
Darcy number may yield its effects on the stability of the system (Deepu et al. 2015)
and to investigate the inconclusive part, the influence of the Darcy number is studied.
From figures 3(a) and 3(d), for A = −1 and ξ = 0.001, the fluid mode steps in and
contributes in driving the instability, hence making it bimodal, contrary to the case for
δ = 0.001, where only the porous mode destabilizes the flow. For other values of the
anisotropic parameters with A = −1, the results are consistent with figure 2. Increasing
the inhomogeneity further to 0, the neutral curves become bimodal irrespective of the
value of the anisotropy parameter, as opposed to unimodal for δ = 0.001 and ξ = 0.001.
Further increasing the inhomogeneity to 1, i.e. increasing the value of the inhomogeneity
parameter to 1, although the results may be consistent with respect to the Darcy number,
if the inhomogeneity for ξ = 0.001 is changed, the fluid mode vanishes and only the
porous mode remains, resulting in the unimodal instability (i.e. porous mode instability).
Physically, an increment in the Darcy number, i.e. an increment in the porous medium
permeability, indicates that the fluid flow can easily seep into the porous domain. Hence,
the porous mode dominates the instability for a large Darcy number. The confirmation
of the type of mode is also done by plotting the oscillatory frequency (see figure 3d–f ).
It is important to note that, in the entire article, the confirmation of the type of mode is
validated based on the analysis of oscillatory frequency, however, to avoid the numerous
figures, from here onwards, the graphs of oscillatory frequency are dropped.

As observed in the literature (Chen & Hsu 1991; Chang 2005, 2006), the depth ratio
plays a significant role in governing the instability of thermal convection in fluid overlying
porous systems. To analyse depth ratio effects in this study, a comparison between
figures 2, 3, 4 and 5 is performed. Figures 4(a), 4(b) and 4(c) show the variation of the
neutral curve for respective values (−1, 0 and 1) of A with δ = 0.001, whereas figures 4(d),
4(e) and 4( f ) show the same variations for respective values of A with δ = 0.0005. To
highlight the impact of the depth ratio, only changes in the characteristics of the neutral
stability curves for d̂ for fixed values of ξ, A and δ are addressed in comparison with the
figures 2 and 3. It can be seen from figure 4(a), for ξ = 0.001, that the neutral curve
becomes bimodal with the introduction of the fluid mode. A similar characteristic is
observed for ξ = 0.001 and A = 1 (see figures 3c and 4f ). The nature of other neutral
curves remains consistent on changing the value of d̂ from 0.1 to 0.13 while leaving the
other parameters unchanged.
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Figure 3. Neutral stability curves with corresponding oscillatory frequency: (a,d) A = −1, (b,e) A = 0 and
(c, f ) A = 1, for different values of ξ with d̂ = 0.1, δ = 0.0005, Re = 10 and Pr = 10.
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Figure 4. Neutral stability curves for d̂ = 0.13, Re = 10 and Pr = 10: (a,d) A = −1, (b,e) A = 0 and (c, f )
A = 1 with (a–c) δ = 0.001 and (d–f ) δ = 0.0005.
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Figure 5. Neutral stability curves for d̂ = 0.2, Re = 10, Pr = 10 and δ = 0.001: (a) A = −1, (b) A = 0 and
(c) A = 1.

On further increasing the depth ratio, one may assume that the fluid mode will
completely dominate the system instability. However, this is not true in the present
scenario. The introduction of anisotropy and inhomogeneity may or may not support the
sole dominance of the fluid mode. To understand this, figure 5 is observed. For the present
case, the oscillatory frequency plots of the neutral curves are presented in order to provide
more clarity to the modal characteristic of the neutral curves. Figure 5(a) shows that, for
A = −1, d̂ = 0.2 and δ = 0.001, the instability is completely dominated by the fluid mode
irrespective of changes in anisotropy, i.e. value of the anisotropy parameter. On the other
hand, figures 5(b), (5c) show that, for ξ = 0.001, ξ = 0.1, ξ = 1 and A = 0 (ξ = 0.001,
ξ = 0.1, ξ = 1 and A = 1), the instability occurs in both the porous and fluid layers on
varying the wavenumber, but the interesting characteristic observed is the trimodal nature
of the neutral curve (see insets in 5b,c). The trimodal characteristic reflects a shift in the
least stable mode from fluid to porous and porous to fluid on increasing the wavenumber.
The validation of the trimodal characteristic via the analysis discussed in the subsequent
sections is shown in Appendix D for one such case. However, for ξ = 10, the instability is
unimodal (here, the fluid mode) for A = 0 and becomes bimodal for A = 1. The decrease
in the value of the Darcy number from 0.001 to 0.0005 results in a unimodal characteristic
of the neutral curve (here, the fluid mode) irrespective of changes in the anisotropy and
inhomogeneity parameter (figure not shown).

Also, for the parametric variation considered in the present study for anisotropy
and inhomogeneity, we have found that, irrespective of values of anisotropy and
inhomogeneity, the instability in the system is always dominated by the porous mode for
d̂ < 0.05 and by the fluid mode for d̂ > 0.16. Overall, it can be concluded that an increase
in the inhomogeneity and depth ratio, and a decrease in the anisotropy and Darcy number,
serve as the ideal conditions for early achievement of instability. It is worth noting that
the findings made for one parameter are based on the assumption that the other values are
kept constant. The conclusion drawn in reference to the depth ratio stating a decrease in
the critical Rayleigh number on increasing the depth ratio finds good support from the
experimental results of Chen & Chen (1989).

Furthermore, the interaction of the unstable modes along the interface is seen by
considering the impact of d̂, responsible for characterizing the interface. For example, if
the value of d̂ is 0.1 when all other parameters are fixed at ξ = 0.001, A = −1, δ = 0.001,
the depth of the fluid domain is 1/10 times the depth of the porous domain. By increasing
d̂ to 0.13 and 0.2, the depth of the fluid domain becomes 13/100 and 2/10 times the
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Figure 6. Neutral stability curves for different values of Reynolds number with d̂ = 0.1, δ = 0.001 and
Pr = 10: (a,d) A = −1, (b,e) A = 0 and (c, f ) A = 1 with (a–c) ξ = 0.001 and (d–f ) ξ = 0.1.

depth of the porous domain, respectively. As we increase d̂, we are basically increasing
the depth of the fluid domain and hence the interface shifts downwards on increasing
the same. Comparing the different locations of the interface, when the interface separates
the domain in such a way that the porous domain is much larger in depth than the fluid
domain, the type of mode is porous since the small depth of the fluid domain easily allows
the fluid to penetrate into the porous domain. Now, when d̂ increases to 0.13, the interface
shifts a little downward, increasing the depth of the fluid domain, and hence increasing the
instability in the fluid domain along with the porous domain. Increasing d̂ further to 0.2
shifts the interface more towards the porous domain and causes more flow instability in
the fluid domain, hence giving rise to the unimodal characteristic, i.e. the fluid mode on
the neutral curve.

Now moving to the investigation of the influence of the Reynolds number on the
anisotropy and inhomogeneity, we have plotted figures 6 and 7, which show the variation
of the neutral curves for different values of Re, A and ξ and fixing the values of d̂, δ

and Pr at 0.1, 0.001 and 10, respectively. To see the influence of the Reynolds number,
four different values 20, 50, 100 and 500 of it are considered (Chang 2006). Figures 6(a),
6(b), 6(c), (6d, 6e and 6 f ) depict the neutral curves for ξ = 0.001 (ξ = 0.1) with varying
Reynolds number and inhomogeneity. Similarly, figures 7(a), 7(b) and 7(c) are for ξ = 1
and figures 7(d), 7(e) and 7( f ) are for ξ = 10. It can be seen from figure 6, for ξ = 0.001,
that the porous mode prevails, thereby the impact of varying the Reynolds number and
inhomogeneity on the modes present is unaffected. However, for a small Reynolds number,
i.e. Re � 50, on increasing the value of ξ to 0.1 and varying the inhomogeneity parameter,
the fluid layer gradually comes into effect and makes the neutral curve bimodal, except in
the case corresponding to figure 6( f ), where the porous layer still dominates the system
instability (Re = 50). Also, for large Reynolds numbers, i.e. Re > 50, the porous mode
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Figure 7. Neutral stability curves for different values of Reynolds number with d̂ = 0.1, δ = 0.001 and
Pr = 10: (a,d) A = −1, (b,e) A = 0 and (c, f ) A = 1 with (a–c) ξ = 1 and (d–f ) ξ = 10.

continues to dominate. Figures 7(a), 7(b) and 7(c) show that, for Re � 100, the strength of
Poiseuille flow favours a bimodal structure of the neutral curve regardless of a change
in the inhomogeneity. A further increase in anisotropy to 10 gives rise to a bimodal
framework with the fluid layer governing the major part of the instability, except for the
case corresponding to figure 7( f ), where the instability for Re = 500 is still unimodal with
the porous mode.

Also worth noticing is the fact that, for ξ equal to 0.001 and 0.1, and irrespective of the
value of A, the critical mode is always the porous mode, which steadily shifts to the fluid
mode for ξ = 1 (Re = 20, A = −1, 0) and is completely dominated by the fluid mode for
ξ = 10 and with Re � 50. Moreover, the value of the critical Rayleigh number decreases
for decreasing values of the Reynolds number. Rationally speaking, an increment in the
velocity of the flow in terms of an increment in the value of the Reynolds number indicates
more movement of the flow in the porous medium and plays an active role in determining
the flow instability.

The implication of varying the type of fluid, i.e. the Prandtl number, along with
the anisotropy and inhomogeneity are presented in figures 8 and 9. The neutral curves
are plotted for four different values (0.01, 0.1, 10 and 100) of Prandtl number and a
fixed value 10 of Re (Chang 2006). The values of other controlling parameters are the
same as those in figures 6 and 7. As inspected, for anisotropy ξ = 0.001, regardless
of a change in the value of Pr and the inhomogeneity parameter, the variation of the
neutral curve in the (am, Ram)-plane attributes only to instability in the porous domain
(figure not shown). On further increments in the anisotropy parameter, the fluid layer
slowly appears and starts showing its dominance for ξ = 10, thus yielding the bimodal
nature of the neutral curve (see figures 8(a–c) and 9(a–f )). Subsequently, under the
former circumstances, the local minimum shifts from porous (for ξ = 0.1 with Pr =
0.01, 0.1, 1, 100 (A = 1), Pr = 0.1, 1, 100 (A = 0) and Pr = 100 (A = −1) and for ξ = 1
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Figure 8. Neutral stability curves for different values of Prandtl number with d̂ = 0.1, δ = 0.001 and
Re = 10: (a) A = −1, (b) A = 0 and (c) A = 1 with ξ = 0.1.
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Figure 9. Neutral stability curves for different values of Prandtl number with d̂ = 0.1, δ = 0.001 and
Re = 10: (a,d) A = −1, (b,e) A = 0 and (c, f ) A = 1 with (a–c) ξ = 1 and (d–f ) ξ = 10.

with Pr = 100 (A = −1, 0, 1)) to fluid (for ξ = 0.1 with Pr = 0.01, 0.1, 1(A = −1),
Pr = 0.01 (A = 0), for ξ = 1 with Pr = 0.01, 0.1, 1(A = −1, 0, 1) and for ξ = 10 with
Pr = 0.01, 0.1, 1, 100 (A = −1, 0, 1)). In addition, an increase in the inhomogeneity
parameter and Prandtl number and a decrease in the anisotropy parameter support the
early achievement of the critical Rayleigh number. Also, complying with the results of
Chang (2006), it is observed that, for small values of 0.01 and 0.1 of Pr, a continuous
pattern of oscillatory frequency is observed instead of any sudden/sharp jumps. However,
an interesting fact worth mentioning is that the same feature is also observed for Pr = 1
and irrespective of the values of the inhomogeneity parameter when ξ is fixed at 0.001 (the
graph of oscillatory frequency is not shown). It is important to raise a question about the
confirmation of the type of mode as well as the range of wavenumbers corresponding to
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the mode in the case when the graph in the (σm
r, Ram)-plane shows a continuous profile.

This will be further discussed in § 3.2.

3.2. Kinetic energy analysis
Linear stability analysis via neutral curves provides an insight into the modes prevailing in
the fluid overlying the porous domain, but the reason behind the modes is still unanswered
and what type of instability could be induced is still unexplored. In order to unravel the
physical mechanism behind the instability, an energy budget analysis is performed, as
considered by Hooper & Boyd (1983), Boomkamp & Miesen (1996), Sharma, Khandelwal
& Bera (2018) and Samanta (2020). To obtain the disturbance kinetic energy balance
(here onwards referred to as the KE balance), we have multiplied the perturbed velocity
vector on both sides of the linearized perturbed momentum equations (vector form of
the equations) and then integrated the equations over the volumes ([0, 1] × [0, 2π/a])
and ([−1, 0] × [0, 2π/am]) of the disturbance cell in the fluid and porous domains,
respectively. Therefore, the balance of KE (Bera, Kumar & Khalili 2011) is,

∂

∂t
(KE + KEm) = Es + Eb + Ed + I + Ebm + EDm. (3.1)

In the above equation, KE and KEm denote the mean perturbed kinetic energies in the
fluid and porous domains, respectively. The physical interpretation of different terms on
the right-hand side of (3.1) is as follows (Bera & Khalili 2002; Khan, Bera & Khandelwal
2019): the term Es represents the amount of shear stress required to transfer the energy
from the base state to the perturbed state. The terms Eb and Ebm represent the energy
transfer due to buoyancy in the fluid and porous domains, respectively. The designation
Ed denotes the viscous dissipation in the fluid domain, I the fluid–porous interfacial
stresses and EDm represents the dissipation of KE due to surface drag. The mathematical
expressions of the terms in (3.1) are given in Appendix C. The integrals in the disturbance
KE balance are computed numerically by the Gauss–Chebyshev quadrature formula with
the eigenvectors obtained from the linear stability analysis. The contribution of Es, Eb and
Ebm in the KE balance is used to describe the type of instability (Sharma et al. 2018; Khan
& Bera 2020b). The instability is defined along the lines that, if the contribution of term Es
(Eb or Ebm) is greater than 70 %, the flow is destabilized due to thermal–shear instability
in the fluid domain (thermal–buoyant instability in the fluid domain or thermal–buoyant
instability in the porous domain).

To validate the type of mode as well as to know the physical mechanism behind the
persistent type of mode, we have plotted the variation of different terms in the KE balance.
For this, we have chosen a set of values of the parameters such that, corresponding to
those sets, the linear stability theory either reveals the fluid mode or the porous mode or
both types of mode (i.e. bimodal nature of neutral curves). These variations are plotted in
figures 10 and 11. For the unimodal characteristics of the neutral curve, four sets of values
of (d̂, δ, A, ξ , Re, Pr) are (0.1, 0.001, −1, 0.001, 10, 104), (0.1, 0.001, −1, 0.001, 100, 10),
(0.1, 0.001, 0, 0.001, 20, 10) and (0.2, 0.001, −1, 10, 10, 10). For the first three sets, the
type of mode is the porous mode and for the fourth set of values of the parameters, the
type of mode is the fluid mode. Figures 10(a), 10(b), 10(c) and 10(d) are plotted for the
respective sets of values of the controlling parameters. For bimodal characteristics, two
sets (0.13, 0.0005, 0, 0.1, 10, 10) and (0.1, 0.001, 1, 10, 10, 0.01) of values of (d̂, δ, A, ξ ,
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Figure 10. Energy components Es, Eb, Ebm and EDm against the wavenumber am: (a) d̂ = 0.1, δ = 0.001,
A = −1, ξ = 0.001, Re = 10, Pr = 10, (b) d̂ = 0.1, δ = 0.001, A = −1, ξ = 0.001, Re = 100, Pr = 10, (c)
d̂ = 0.1, δ = 0.001, A = 0, ξ = 0.001, Re = 20, Pr = 10 and (d) d̂ = 0.2, δ = 0.001, A = −1, ξ = 10, Re =
10, Pr = 10.

Re, Pr) are chosen. Figures 11(a) and 11(b) are plotted for the respective sets of values
of the controlling parameters. It is also important to mention here that the variations of
different terms in the KE balance for the neutral stability curves obtained in § 3.1, are
more or less similar to either of the chosen sets. Our numerical experiments reveal that the
terms Ed, I and EDm are negative everywhere and hence act as the stabilizing factors for
the Poiseuille flow overlying the porous domain.

Figure 10(a) indicates that Es is positive in the range 4.2 � am � 25.4 and, except
this range, the same is negative, thus acting as a stabilizing factor for the flow. The
energy transfer due to the buoyancy effect in the fluid as well as the porous domain
remains positive throughout and consequently acts as a destabilizing factor. Also, the
most dominant term in the KE balance is Ebm, and hence the prevailing instability is
due to the buoyant effect in the porous domain. Thus, the instability is thermal–buoyant.
Additionally, as observed from the neutral curve for the same set of parameters, the porous
mode prevails in the system, which is hereby verified by the energy analysis. Further
analysis in the context of the secondary flow dynamics, i.e. streamlines and temperature
profiles, is also discussed in § 3.3. Figure 10(b) shows that all three terms Es, Eb and Ebm
act as destabilizing factors. The most interesting aspect for this set is the most dominant
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Figure 11. Energy components Es, Eb, Ebm and EDm against the wavenumber am: (a) d̂ = 0.13, δ = 0.0005,
A = 0, ξ = 0.1, Re = 10, Pr = 10 and (b) d̂ = 0.1, δ = 0.001, A = 1, ξ = 10, Re = 10 and Pr = 0.01.

nature of Es in the range am > 7.8 and, on that account, the thermal–shear instability is
witnessed. It is observed that, for this particular value of the anisotropy parameter, i.e.
ξ = 0.001, Re = 100 and irrespective of value of the inhomogeneity parameter, the type
of instability is always thermal–shear. A similar trend is observed when the value of Re
is replaced by 20 and A is fixed at 1 (figure not shown). For ξ , A other than 0.001, 1,
respectively, and Re equal to 10 or 20, the instability is thermal–buoyant (see figure 10c).
The figure 10(d) shows that the term Eb dominates in the entire range of wavenumber and
acts as a destabilizing factor for the flow, which also supports the predictions presented in
§ 3.1. The other terms are in favour of stabilizing the flow.

Figure 11(a) shows that, for am � 4, Ebm is dominant, while for am > 4, the same role
is played by Eb, thus, giving rise to thermal–buoyant instability in the porous domain
for the former range of am and the thermal–buoyant instability in the fluid domain for
the latter range of am. For the same set of values of the parameters, the term Es is
negative, which shows a loss of disturbance KE to the basic state in the fluid domain
(Khandelwal & Bera 2015; Khan & Bera 2020b). The neutral curve analysis of figure 9
gave information regarding the existence of the porous and fluid modes, but the exact
wavenumber corresponding to the change of mode from porous to fluid was still unclear
for Pr = 0.01, 0.1 and 1 when ξ = 0.001, where continuous oscillatory frequency patterns
were observed. To investigate an accurate range of wavenumber in which a particular type
of instability dominates, figure 11(b) is plotted for Pr = 0.01. The same figure shows
that the curves of Eb and Ebm cross-over and Ebm > Eb for am < 3, decisively yielding
thermal–buoyant instability in the porous domain when am < 3 and, except for these
values of am, thermal–buoyant instability in the fluid domain prevails. Identical patterns
are observed for the other two values 0.1 and 1 of Pr with the wavenumber in the ranges
of 0 < am < 3 and 0 < am < 3.2, respectively (figures not shown).

3.3. Secondary flow pattern
In order to validate the dominant mode of instability and understand the flow dynamics in
terms of the streamfunction and temperature contours at the critical level, figures 12 and
13 are analysed. These secondary flow patterns are of the dominant mode of instability at
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Figure 12. The streamfunction patterns for (a) d̂ = 0.1, δ = 0.001, Re = 10, Pr = 10, A = −1, ξ = 0.001,
(b) d̂ = 0.13, δ = 0.0005, Re = 10, Pr = 10, A = 0, ξ = 0.1 and (c) d̂ = 0.2, δ = 0.001, Re = 10, Pr =
10, A = −1, ξ = 10 with corresponding temperature profiles in (d–f ). The contour legends are shown
alternatively in the colour bar.

the critical point as observed in §§ 3.1 and 3.2. Thus, the parameter values are kept the
same as in § 3.2. In figures 12 and 13, (a–c) we present the streamfunction variation and
in (d–f ) the corresponding temperature contours. The vertical axis represents the porous
domain extension from −1 to 0 and the fluid domain extension from 0 to 1. The horizontal
axis is the critical wavelength, which is scaled by d̂ for the porous domain. Note that,
to understand the convection patterns at the critical point more clearly, we have scaled
the critical wavelength of the disturbance function in the porous domain such that the
wavelength of the fluid domain is the same as the scaled wavelength of the porous domain.
Furthermore, in the present study, the system is heated from below and TL > To > TU .
Before the onset of convection, heat transfer takes place from the bottom to the top through
conduction and sideways through fixed forced flow. Thus, in this situation, the fluid in the
porous domain is lighter than the same in the fluid domain. As the temperature difference
reaches a critical level in terms of the critical Rayleigh number, the heavier fluid tends to
roll down and generates convection rolls. This marks the onset of convection in the system.
In the present case, there are two factors that decide the flow patterns: one is the forced
flow and the other the buoyancy force. The distribution of the streamfunction consists of
alternatively clockwise (positive streamline) and counterclockwise (negative streamline)
rotating convective cells.

Figure 12(a) shows that the convection cells are confined to both fluid and porous
domains with a comparatively dominant nature in the porous domain, which shows that
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Figure 13. The streamfunction patterns for, (a) d̂ = 0.1, δ = 0.001, Re = 100, Pr = 10, A = −1, ξ = 0.001,
(b) d̂ = 0.1, δ = 0.001, Re = 20, Pr = 10, A = 0, ξ = 0.001 and (c) d̂ = 0.1, δ = 0.001, Re = 10, Pr =
0.01, A = 1, ξ = 10 with corresponding temperature profiles in (d–f ). The contour legends are shown
alternatively in the colour bar.

the porous mode dominates the flow instability. The corresponding temperature contour
presented in figure 12(d) shows the presence of convective cells in the entire porous
domain, whereas, in the fluid domain, these are limited to the vicinity of the interface
only. Thus, the role of the thermal–buoyant force in the porous domain in determining the
flow instability is expected. Figure 12(b) shows that the onset of convection is mostly
confined to the fluid domain with some flow penetration in the upper region of the
porous domain. It is to be noted that, in comparison with the previous case, where
the permeability along the vertical direction was 1000 times the permeability along the
horizontal direction, here, the same is only 10 times. Due to this restrictive nature of the
porous medium, the flow does not penetrate very far into the zm-direction. The temperature
contour for this case (figure 12e) shows a distribution of convective cells limited to
the fluid domain and indicates the thermal–buoyant instability in the fluid domain. A
similar geometric feature is also shown in the streamfunction in figure 12(c) and the
corresponding temperature contour in figure 12( f ). In figure 12(c), a very small portion
of the streamfunction penetrates into the porous domain due to the momentum diffusion
effect induced by the fluid domain. The corresponding temperature contour reveals the
spreading out of the convective cells in the entire fluid domain, implying instability in the
fluid domain. The convective cells in the fluid domain illustrate a nearly square pattern
for the streamfunctions whereas these are centro-symmetric about the horizontal axis
for the isotherms (figure 12b–c,e–f ). Figures 13(a) and 13(b) exhibit a similar pattern
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to figure 12(a), indicating that the porous mode is the dominant mode of instability, but
the tilted convective cells show the impact of shear, i.e. Re on the instability of the flow.
The temperature profiles (figure 13d,e) show the distribution of convective cells in the
lower part of the fluid domain, which indicates the impact of interface conditions over
the flow dynamics in the inhomogeneous porous medium. The streamfunction variation in
figure 13(c) is similar to that in figures 12(b) and 12(c), with a decrease in the values of the
Prandtl number and depth ratio, representing the dominant instability by the fluid domain
and a slight interfacial temperature disturbance in the porous domain (figure 13f ).

On the whole, for the temperature contours, the role of the interface is significant when
the instability is in the porous domain, whereas it is negligible for instability in the fluid
domain. The streamfunctions are distributed in either the entire fluid and porous domains
or occupy the fluid and upper region of the porous domain. Whereas the temperature
contours either occupy the entire fluid and porous domains or occupy the porous and lower
region of the fluid domain.

4. Conclusions

The current study delves into the thermal convection of a Newtonian fluid in an anisotropic
and inhomogeneous porous domain underlying a fluid domain enforced with plane
Poiseuille flow. A two-domain approach is adopted to execute a linear stability analysis of
the superposed system separated by an interface. The present study is also well validated
with the theoretical and experimental works of Sun (1973), Chen & Chen (1988), Chen &
Chen (1989) and Chang (2006). Investigation of linear stability subjected to infinitesimal
perturbations manifests the presence of the fluid mode, the porous mode and the bi-mode
(both porous and fluid modes) via the neutral curve plots on the criticality of the Rayleigh
number in the porous domain vs the wavenumber in the porous domain. The development
of various modes is observed for various values of the depth ratio, medium permeability in
terms of Darcy number, anisotropy, inhomogeneity, Reynolds number and Prandtl number.
It is observed that the introduction of anisotropy and inhomogeneity causes qualitative as
well as quantitative changes in the stability analysis of the present study. In contrast to
the existing literature results on isotropic and homogeneous porous domain (Chang 2006),
the conclusions drawn out from the linear stability analysis of the present study show that
an increase in the parameter value of the anisotropy and a decrease in the inhomogeneity
as well as the Darcy number, follow the shift from unimodal (here, the porous mode) to
bimodal (i.e. both porous and fluid modes). However, in general, increasing the value of
the depth ratio follows the shift from unimodal (i.e. porous mode) to bimodal and then
finally unimodal instability in terms of the fluid mode, which also depicts the interaction
of the unstable modes along the interface. It is important to mention here that a trimodal
instability is also observed for d̂ = 0.2, δ = 0.001, ξ = 0.001, 0.1, 1 and A = 0, 1. Also,
a decrease in the value of the Reynolds number follows the shift from unimodal (here,
the porous) to bimodal. The neutral curves for various Prandtl numbers demonstrate the
porous mode for low anisotropy and both the porous and fluid modes for higher anisotropy.
The neutral curves are independent with respect to a change in the Prandtl number for
fixed values of the inhomogeneity. For a low magnitude of the anisotropy, Darcy number,
Reynolds number and Prandtl number, and a large magnitude of the inhomogeneity and
depth ratio under consideration, it is also noted that instability is obtained sooner, i.e. the
critical Rayleigh number is small. The findings reached so far are based on the assumption
that, when one parameter is changed, the others remain constant. Further, irrespective of
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the anisotropy and inhomogeneity under consideration, it is found that the least stable
mode (dominant) is always porous for d̂ < 0.05 and fluid for d̂ > 0.16.

A look at the energy budget analysis aids in classifying the instabilities. The instability
is found to be thermal–buoyant with the exception of thermal–shear instability for low
Reynolds numbers with low anisotropy. The variation of streamlines and isotherms at the
dominant mode of instability are analysed to understand the instability mechanism and also
provide information regarding the secondary flow pattern. For the temperature contours, it
is observed that the interface plays a significant role when the instability is in the porous
domain and shows a negligible impact for instability in the fluid domain. Additionally,
the energy budget and secondary flow patterns add value to the validation of the modes
observed by the linear stability analysis.

It is anticipated that the present research will help to fathom the thermal convection
of shear flows in such superposed systems. Likewise, an attempt towards the nonlinear
stability analysis for such systems can be of great interest to gain possible clues regarding
transition to turbulence in terms of bifurcation as well as secondary flow patterns in
the transition regime. Furthermore, it is also possible that a short-time growth may
occur in these types of superposed systems (Sengupta & De 2019a). Thus, the transient
amplifications can also be understood by the non-modal analysis. These analyses are left
for our future studies.
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Appendix A. A note on the considered model

The incorporation of a viscous diffusion term into Darcy’s law, i.e. Brinkman’s correction,
remains argued in the literature. The most prominent findings in the literature related to the
appropriate choice of model for a porous domain show the validity of the Brinkman model
for a porous domain with high porosity (Nield 1991; Auriault 2009; Hill & Straughan
2009b; Nield & Bejan 2013). If the porous medium is highly permeable and highly porous
(i.e. porosity is >0.6), the Brinkman model is recommended, which is due to the fact that
the characteristic inter-pore distance in such systems is no longer insignificant compared
with the characteristic length scale associated with volume averaging. As a result, during
volume averaging, the viscous Laplacian terms for these systems become crucial and are
retained. This results in the Brinkman terms as viscous corrections to the Darcy model
(which can be safely ignored for low porosity, resulting in the Darcy model). However,
if the flow strength is increased, an averaged model with inertial corrections, such as the
Forchheimer equation, is expected to be valid and is welcomed.
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In the present study, we are interested in understanding the flow instability for a small
value of porosity. Accordingly, the chosen value of porosity in the manuscript is 0.3.
Hence, the classical Darcy law is employed in the present study.

Appendix B. Non-dimensional basic velocities

We have

Ū(z) = C1z2 + C2z + C3, 0 � z � 1, (B1)

Um(zm) = ηx(zm)

ηx(0)
, −1 � zm � 0, (B2)

where

C1 = −4d̂2

F
, C2 = 4d̂αBJ[d̂2 − 2δ2ηx(0)]

F[δ
√

ηx(0) + d̂αBJ]
, (B3a,b)

C3 = 4d̂δ[2αBJδηx(0) + d̂
√

ηx(0)]

F[δ
√

ηx(0) + d̂αBJ]
, (B4)

F = α2
BJ[d̂2 − 2δ2ηx(0)]2

[δ
√

ηx(0) + d̂αBJ]2
+ 4d̂δ[2αBJδηx(0) + d̂

√
ηx(0)]

[δ
√

ηx(0) + d̂αBJ]
. (B5)

Appendix C. Expressions in the KE balance

We have

KE = 1
2λ

∫ 1

0

∫ λ
0

(u2 + w2) dx dz, (C1)

KEm = 1
2λm

∫ 0

−1

∫ λm

0
(u2

m + w2
m) dxm dzm, (C2)

Es = −1
λ

∫ 1

0

∫ λ
0

uw
(

dŪ
dz

)
dx dz, (C3)

Eb = Ra
λRe2

∫ 1

0

∫ λ
0

Tw dx dz, (C4)

Ed = − 1
λRe

∫ 1

0

∫ λ
0

[
2
(

∂u
∂x

)2

+
(

∂u
∂z

)2

+
(

∂w
∂x

)2

+2
(

∂u
∂z

)(
∂w
∂x

)
+2

(
∂w
∂z

)2
]

dx dz,

(C5)

I = − 1
λRe

∫ λ
0

[
2w

∂w
∂z

+ u
∂u
∂z

+ u
∂w
∂x

]
z=0

dx, (C6)

Ebm = 1
λm

∫ 0

−1

∫ λm

0

χRamTmwm

δ2Re2
m

dxm dzm, (C7)

EDm = − 1
λm

∫ 0

−1

∫ λm

0

χ

Rem

[
u2

m

δ2ηx(zm)
+ ξw2

m

δ2ηz(zm)

]
dxm dzm. (C8)
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Figure 14. Neutral and energy components for d̂ = 0.2, ξ = 0.1, A = 1, Re = 10, Pr = 10 and δ = 0.001.

Appendix D. The trimodal stability in case of d̂ = 0.2

The plots of oscillatory frequency and the energy curves are shown to demonstrate
the trimodal nature of the instability in case of the parameters discussed in § 3.1. One
such case is d̂ = 0.2, δ = 0.001, ξ = 0.1, A = 1, Re = 10 and Pr = 10 (see figure 14 of
Appendix D). As can be seen from the neutral stability curve as well as the energy balance
curve, that there are three modes in the system, first the fluid mode for am < 0.24, then the
porous mode for 0.25 < am < 1.8 and then again the fluid mode for am > 1.8, hence, we
call it the trimodal instability.
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