APPROXIMATION BY A SUM OF POLYNOMIALS OF DIFFERENT DEGREES INVOLVING PRIMES

MING-CHIT LIU

(Received 20 March 1977; revised 7 March 1978)

Communicated by J. Pitman

Abstract

Let $\lambda_{j}(1 \leqslant j \leqslant 4)$ be any nonzero real numbers which are not all of the same sign and not all in rational ratio and let p_{j} be polynomials of degree one or two with integer coefficients and positive leading coefficients. The author proves that if exactly two \mathfrak{p}_{j} are of degree two then for any real η there are infinitely many solutions in primes p_{j} of the inequality $$
\left|\eta+\sum_{j=1}^{4} \lambda_{j} p_{j}\left(p_{j}\right)\right|<\left(\max p_{j}\right)^{-\beta}
$$ where $0<\beta<(\sqrt{ }(21)-1) / 5760$.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 J 15, 10 F 15, 10 B 45.

1. Introduction

Let $\lambda_{1}, \ldots, \lambda_{s}(s \geqslant 3)$ be any nonzero real numbers which are not all of the same sign and not all in rational ratio. Baker (1967), pp. 166-167, introduced a new kind of approximation analogous to Davenport and Heilbronn (1946), p. 186, by proving that if $s=3$ then for any positive integer N, (1.1) has infinitely many solutions in primes p_{j} :

$$
\begin{equation*}
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}\right|<\left(\log \max p_{j}\right)^{-N} . \tag{1.1}
\end{equation*}
$$

Recently, Vaughan (1974a), p. 374, improved (1.1) and a result of Ramachandra's (1973), Theorem 3, by showing that for any real η, (1.1) can be replaced by

$$
\begin{equation*}
\left|\eta+\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}\right|<\left(\max p_{j}\right)^{-1 / 10}\left(\log \max p_{j}\right)^{20} \tag{1.2}
\end{equation*}
$$

(1.2) has been extended (Vaughan (1974b), p. 386, and Liu (1978), Theorems 1, 2) to polynomials $\mathfrak{p}_{j}(x)$ of the same degree $k \geqslant 2$ with integer coefficients and positive
leading coefficients, namely if $s \geqslant s_{0}(k), 0<\gamma<\gamma_{0}(k)$ then (1.3) has infinitely many solutions in primes p_{j}, where $s_{0}(k)$ and $\gamma_{0}(k)$ depend on k only (in particular, $\left.s_{0}(2)=5\right)$:

$$
\begin{equation*}
\left|\eta+\sum_{1}^{s} \lambda_{j} p_{j}\left(p_{j}\right)\right|<\left(\max p_{j}\right)^{-\gamma} \tag{1.3}
\end{equation*}
$$

In this paper we shall modify the methods of Schwarz (1963) and Vaughan (1974) and prove

Theorem 1. Let $\lambda_{j}(1 \leqslant j \leqslant 4)$ be any nonzero real numbers which are not all of the same sign and not all in rational ratio. Let \mathfrak{p}_{j} be polynomials of degree one or two with integer coefficients and positive leading coefficients. If exactly two \mathfrak{p}_{j} are of degree two then for any real η there are infinitely many solutions in primes p_{j} of the inequality

$$
\left|\eta+\sum_{j=1}^{4} \lambda_{j} p_{j}\left(p_{j}\right)\right|<\left(\max p_{j}\right)^{-\beta}
$$

where $0<\beta<(\sqrt{ }(21)-1) / 5760$.

Remark. Since all preliminary lemmas in Section 3 are valid for \mathfrak{p}_{j} of degrees $k_{j}>2$, the above theorem can be extended with no difficulty to $s>4$ polynomials \mathfrak{p}_{j} of different degrees k_{j} with $\max k_{j}>2$. This kind of generalization will certainly lead to a complete improvement of the results in Liu (1977), p. 199. For polynomials of hıgher different degrees, a more interesting problem is to obtain a better (or smaller) value of $s_{0}(k)$ where $k=\max k_{j}$, for which (1.3) has infinitely many solutions in primes p_{j}. This problem seems to require a new idea.

In the following proof we shall see that the hypothesis in Theorem 1 that exactly two p_{j} are of degree two is needed only in the proof of Lemma 9 . So by the same proof we can extend Theorem 1 to the case that exactly three p_{j} are of degree two provided that $\lambda_{i} / \lambda_{j}$ is irrational for at least one pair $\mathfrak{p}_{i}, \mathfrak{p}_{j}$ which are both of degree two. That is

Theorem 2. Let $\lambda_{j}(1 \leqslant j \leqslant 4)$ be any nonzero real numbers which are not all of the same sign and let $\lambda_{1} / \lambda_{2}$ be irrational. Let \mathfrak{p}_{j} be polynomials of degree one or two with integer coefficients and positive leading coefficients. If $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and exactly one of $\mathfrak{p}_{3}, \mathfrak{p}_{4}$ are of degree two then for any real η there are infinitely many solutions in primes p_{j} of the inequality

$$
\left|\eta+\sum_{j=1}^{4} \lambda_{j} p_{j}\left(p_{j}\right)\right|<\left(\max p_{j}\right)^{-\beta}
$$

where $0<\beta<(\sqrt{ }(21)-1) / 5760$.

The author wishes to thank the referee for his valuable comments and suggestions which brought improvement in the presentation of the paper and for pointing out that Theorem 2 can be obtained simultaneously.

2. Notation

We shall only give a proof for Theorem 1. Throughout, n and p with or without suffices denote positive integers and primes respectively; x is a real variable and [x] is its integral part. We write $e(x)=\exp (i 2 \pi x) . k_{j}$ and $\alpha_{j}(\geqslant 1)$ are the degree and the leading coefficient of p_{j} respectively. For the given β, let α be some positive constant satisfying

$$
\begin{equation*}
192 \beta<\alpha<(\sqrt{ }(21)-1) / 30 \tag{2.1}
\end{equation*}
$$

Without loss of generality let $\lambda_{1} / \lambda_{2}$ be irrational and $\left|\lambda_{1}\right| \leqslant\left|\lambda_{2}\right|$. Then it is known (Hardy and Wright (1960), Theorem 183) that there are infinitely many convergents a / q with $(a, q)=1,1 \leqslant q$ such that

$$
\begin{equation*}
\left|\frac{\lambda_{1}}{\lambda_{2}}-\frac{a}{q}\right|<\frac{1}{2 q^{2}} \tag{2.2}
\end{equation*}
$$

Put

$$
\begin{align*}
P & =q^{1 /(1-2 \alpha)}, & L & =\log P \tag{2.3}\\
Q_{j} & =P^{1 / k_{j}}, & L_{j} & =\log Q_{j} \tag{2.4}
\end{align*}
$$

We always choose P (that is, q) to be large and ε small so that all inequalities in Sections 3-5 hold. If $X>0$ we use $Y \ll X$ (or $X \gg Y$) to denote $|Y|<K X$, where K is some positive constant which may depend on the given constants $\alpha_{j}, \lambda_{j}, \varepsilon$ only. Let

$$
\begin{align*}
\tau & =P^{-\beta}, \tag{2.5}\\
K_{\tau} & =K_{\tau}(x)= \begin{cases}\tau^{2} & \text { if } x=0 \\
(\sin \pi \tau x)^{2} /(\pi x)^{2} & \text { otherwise }\end{cases}
\end{align*}
$$

Obviously, we have

$$
\begin{equation*}
K_{\tau} \leqslant \tau^{2} \tag{2.6}
\end{equation*}
$$

Let

$$
\left\{\begin{array}{l}
g_{j}=g_{j}(x)=\sum_{\varepsilon Q_{j} \leqslant p \leqslant Q_{j}} e\left(x p_{j}(p)\right) \\
I_{j}=I_{j}(x)=\int_{\varepsilon Q_{j}}^{Q_{j}} e\left(x p_{j}(y)\right) / \log y d y \tag{2.8}\\
A
\end{array}=(\sqrt{ }(21)-1) / 10, \quad \sigma_{0}=1-A . ~ \$\right.
$$

We use $\rho=\sigma+i t$ to denote a typical zero of the Riemann zeta function $\zeta(s)$ and $\sum_{j}^{*}\left(\right.$ or \sum_{ρ}) to denote the summation over all those zeros ρ with $|t| \leqslant Q_{j}^{A}$ and $\sigma \geqslant \sigma_{0}$. It is known (Ingham (1940) that

$$
\begin{equation*}
\sum_{j}^{*} 1 \ll Q_{j}^{A 3\left(1-\sigma_{0}\right) /\left(2-\sigma_{0}\right)} L_{j}^{5} \ll Q_{j}^{A} . \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
G_{j}(x, \rho)=\sum n^{-1+\left(\rho / k_{j}\right)} e\left(x\left[p_{j}\left(n^{1 / k_{j}}\right)\right]\right) / \log n \tag{2.10}
\end{equation*}
$$

where summation is over all n such that $\left(\varepsilon Q_{j}\right)^{k_{j}} \leqslant n \leqslant P$;

$$
\begin{align*}
J_{j} & =J_{j}(x)=\sum_{j}^{*} G_{j}(x, \rho), \tag{2.11}\\
\Delta_{j} & =\Delta_{j}(x)=g_{j}+J_{j}-I_{j} . \tag{2.12}
\end{align*}
$$

3. Preliminary lemmas

The proof of Lemmas 4, 5, 8 is similar to that of Lemmas 9, 10, 13 in Liu (1978).
Lemma 1. For any real y we have

$$
\int_{-\infty}^{\infty} e(x y) K_{\tau}(x) d x=\max (0, \tau-|y|)
$$

Proof. This follows from Lemma 4 in Davenport and Heilbronn (1946).
Lemma 2. Let $k=\max _{1 \leqslant j \leqslant m} k_{j}$. If $m \geqslant 2^{k-1}$, then

$$
\int_{-\infty}^{\infty} \prod_{j=1}^{m}\left|\sum_{\varepsilon Q_{j} \leqslant p \leqslant Q_{j}} e\left(x \lambda_{j} p_{j}(p)\right)\right|^{2} K_{\mathrm{r}}(x) d x \ll \tau\left(\log \max Q_{j}\right)^{c} \prod_{j=1}^{m} Q_{j}^{\left\{2-\left(k_{j} / m\right)\right\}}
$$

where C is a positive constant depending on k only.
Proof. This can be proved by the same argument as Lemma 4 in Liu (1977), since Theorem 4 in Hua (1965) (that is Lemma 3 in Liu (1977)) is valid for polynomials with integer coefficients.

Lemma 3. (a) Suppose that $2 \leqslant Y \leqslant Q_{j}$. Then

$$
\sum_{p \leqslant Y} \log p+\sum_{j}^{*} Y^{\rho} \rho^{-1}-Y \ll Q_{j}^{\sigma_{o}} L_{j}^{2}
$$

where D is some large positive constant.

$$
\begin{equation*}
\sum_{j}^{*} Q_{j}^{\sigma} \ll Q_{j} \exp \left(-L_{j}^{1 / 5}\right) \tag{b}
\end{equation*}
$$

Proof. (a) can be proved by the same argument as that of Lemma 3 in Vaughan (1974a), p. 376. (b) can be shown by the same proof as that of Lemma 8 in Vaughan (1974a), p. 379.

Lemma 4. We have

$$
\Delta_{j}(x) \ll Q_{j}^{\sigma_{0}} L_{j}^{6}(1+|x| P),
$$

where D is the same positive constant in Lemma 3(a).

Proof. For simplicity, in the following proof we shall drop all suffices j whenever there is no ambiguity. Without loss of generality we replace εQ_{j} and $\left(\varepsilon Q_{j}\right)^{\boldsymbol{k}}$ in (2.7), (2.10) simply by 2 . Let

$$
\begin{align*}
& a_{n}= \begin{cases}\log n+\sum^{*} n^{-1+(\rho / k)} & \text { if } n=p^{k} \text { for some } p \leqslant Q \\
\sum^{*} n^{-1+(\rho / k)} & \text { otherwise }\end{cases} \tag{3.1}\\
& b_{n}=e\left(x\left[p\left(n^{1 / k}\right)\right]\right) / \log n \text { and } b_{n}^{\prime}=e\left(x p\left(n^{1 / k}\right)\right) / \log n .
\end{align*}
$$

Then by (2.7), (2.11) we have

$$
\begin{equation*}
g(x)+J(x)=\sum_{2 \leqslant n \leqslant P} a_{n}\left(b_{n}-b_{n}^{\prime}\right)+a_{n} b_{n}^{\prime}=S_{1}+S_{2}, \quad \text { say } \tag{3.2}
\end{equation*}
$$

As for any real y

$$
e(x[y])-e(x y) \ll|x|
$$

and $p(n)$ is integral valued, we have

$$
\begin{align*}
& S_{1}=\sum^{*} \sum_{2 \leqslant n \leqslant P} n^{-1+(\rho / k)}\left(b_{n}-b_{n}^{\prime}\right) \tag{3.3}\\
& \leqslant|x| \sum^{*} Q^{\sigma} \ll|x| Q \exp \left(-L^{1 / 5}\right) .
\end{align*}
$$

The last inequality follows from Lemma 3(b).
We come now to consider S_{2}. Note that by Abel's partial summation,

$$
\begin{aligned}
\sum_{n \leqslant z} n^{(\rho / k)-1} & =[z]^{\rho / k}-\sum_{n \leqslant z-1} n\left\{(n+1)^{(\rho / k)-1}-n^{(\rho / k)-1}\right\} \\
& =[z] z^{(\rho / k)-1}+\int_{1}^{z}(1-\rho / k)[y] y^{(\rho / k)-2} d y
\end{aligned}
$$

But if $z \leqslant Q^{k}, \sigma_{0} \leqslant \sigma<1,|t| \leqslant Q^{A}$, then

$$
\left|\int_{1}^{z}(1-\rho / k) y^{(\rho / k)-2}([y]-y) d y\right| \leqslant(1+(\sigma+|t|) / k) \int_{1}^{2} y^{(\sigma / k)-1} y^{-1} d y \ll Q^{A} L .
$$

Hence

$$
\begin{equation*}
\sum_{n \leqslant z} n^{(\rho / k)-1}-z^{\rho / k}(k / \rho) \ll Q^{A} L . \tag{3.4}
\end{equation*}
$$

It follows from (3.1), (3.4), (2.9) and Lemma 3(a) that for any $z \leqslant Q^{\boldsymbol{k}}$

$$
\begin{align*}
\sum_{n \leqslant z} \frac{a_{n}}{k}-z^{1 / k} & =\sum_{p \leqslant z^{1 / k}} \log p+\sum^{*} z^{\rho / k} \rho^{-1}-z^{1 / k}+O\left(Q^{A} L\right) \sum^{*} 1 \tag{3.5}\\
& <Q^{\sigma_{0} L^{2}+Q^{A} L^{6} Q^{A 3\left(1-\sigma_{0}\right) /\left(2-\sigma_{0}\right)} \ll Q^{\sigma_{0} L^{6}}} .
\end{align*}
$$

The last inequality follows from (2.8). Putting $A(z)=\sum_{\mathrm{n} \leqslant z} a_{n} / k$ and using Abel's partial summation (Theorem 421 in Hardy and Wright (1960)) we have

$$
\begin{aligned}
S_{2} & =k A(P) \frac{e\left(x p\left(P^{1 / k}\right)\right)}{\log P}-\int_{2}^{P} k A(z) \frac{d}{d z}\left\{\frac{e\left(x p\left(z^{1 / k}\right)\right)}{\log z}\right\} d z-a_{1} b_{2}^{\prime} \\
& =\frac{k P^{1 / k}}{\log P} e\left(x p\left(P^{1 / k}\right)\right)-\int_{2}^{P} k z^{1 / k} \frac{d}{d z}\left\{\frac{e\left(x p\left(z^{1 / k}\right)\right)}{\log z}\right\} d z+O\left(Q^{\sigma_{0}} L^{6}(1+|x| P)\right) .
\end{aligned}
$$

The last equality follows from (3.5) and (2.9) by which $a_{1} b_{2}^{\prime}<\sum^{*} 1 \ll Q^{A}$. Then

$$
\begin{equation*}
S_{2}=I(x)+O\left(Q^{\sigma_{0}} L^{6}(1+|x| P)\right) \tag{3.6}
\end{equation*}
$$

on integrating by parts and changing the variable to $y=z^{1 / k}$. Lemma 4 follows from (3.2), (3.3) and (3.6).

Lemma 5. Let

$$
\begin{equation*}
\delta=P^{-1+a} \tag{3.7}
\end{equation*}
$$

We have

$$
\begin{align*}
& I_{j}(x) \ll Q_{j} \min \left(1,(|x| P)^{-1}\right), \tag{3.8}\\
& \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|J_{j}(x)\right|^{2} d x \ll Q_{j}^{2-k_{j}} \exp \left(-2 L_{j}^{1 / 5}\right), \\
& \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|I_{j}(x)\right|^{2} d x \ll Q_{j}^{2-k_{j}} \\
& \int_{-\delta}^{\delta}\left|\Delta_{j}(x)\right|^{2} d x \ll Q_{j}^{2-k_{j}} \exp \left(-2 L_{j}^{1 / 5}\right), \\
& \int_{-\delta}^{\delta}\left|g_{j}(x)\right|^{2} d x \ll Q_{j}^{2-k_{j}}
\end{align*}
$$

Proof. In the proof we shall drop all suffices j. (3.8) follows from (2.7) by partial integration. By (2.11) and Hölder's inequality,

$$
\begin{align*}
\int_{-\frac{1}{2}}^{\frac{1}{2}}|J(x)|^{2} d x & \leqslant \sum_{\rho_{1}} \sum_{\rho_{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|G\left(x, \rho_{1}\right) G\left(x, \rho_{2}\right)\right| d x \tag{3.13}\\
& \leqslant \sum_{\rho_{1}} \sum_{\rho_{2}}\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|G\left(x, \rho_{1}\right)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|G\left(x, \rho_{2}\right)\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\left(\sum_{\rho}\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}|G(x, \rho)|^{2} d x\right)^{\frac{1}{2}}\right)^{2}
\end{align*}
$$

Note that for any large positive integers m, n with $|m-n| \geqslant 2$, we have

$$
\left[p\left(m^{1 / k}\right)\right] \neq\left[p\left(n^{1 / k}\right)\right]
$$

since when y tends to infinity, $(d / d y) \mathfrak{p}\left(y^{1 / k}\right)$ tends to the value of the leading coefficient of \mathfrak{p} which is not less than one. Let $H(n)=n^{-1+(\sigma / k)}(\log n)^{-1}$. Then by (2.10), Parseval's identity and $\sigma<1$

$$
\begin{align*}
\int_{-\frac{1}{2}}^{\frac{1}{2}}|G(x, \rho)|^{2} d x \ll \sum_{(\varepsilon Q)^{k} \leqslant n \leqslant P}\left\{H(n)^{2}+\right. & H(n) H(n-1) \tag{3.14}\\
& +H(n) H(n+1)\} \ll Q^{-k+2 \sigma} L^{-2}
\end{align*}
$$

Then (3.9) follows from (3.13), (3.14) and Lemma 3(b).
(3.10) follows from (3.8) and the partition of the interval $|x| \leqslant 1 / 2$ at $\pm P^{-1}$.

By Lemma 4, (3.7), (2.4) we have

$$
\int_{-\delta}^{\delta}|\Delta(x)|^{2} d x \ll Q^{2 \sigma_{0}} L^{12} \delta^{3} Q^{2 k} \ll Q^{2 \sigma_{0}+3 \alpha k-k} L^{12}
$$

Then (3.11) follows since by $k \leqslant 2$, (2.1) and (2.8) we have

$$
2 \sigma_{0}+3 \alpha k<2 \sigma_{0}+2 \mathrm{~A}=2
$$

(3.12) follows from (2.12), (3.9), (3.10), (3.11) easily. This proves Lemma 5.

4. Contribution of the integrals over E_{1}, E_{2}, E_{3}

Let

$$
\begin{equation*}
\Psi=\Psi(x)=\prod_{1}^{4} g_{j}\left(\lambda_{j} x\right), \quad \Psi^{*}=\Psi^{*}(x)=\prod_{1}^{4} I_{j}\left(\lambda_{j} x\right) \tag{4.1}
\end{equation*}
$$

(4.2) $E_{1}=\left\{x| | x \mid \leqslant P^{-1+\alpha}\right\}, \quad E_{2}=\left\{x\left|P^{-1+\alpha}<|x| \leqslant P^{\alpha}\right\}, \quad E_{3}=\left\{x| | x \mid>P^{\alpha}\right\}\right.$;

$$
\begin{equation*}
S=\left(\sum_{j=1}^{4} 1 / k_{j}\right)-1 \tag{4.3}
\end{equation*}
$$

Lemma 6. We have

$$
\int_{E_{1}}\left|\Psi(x)-\Psi^{*}(x)\right| K_{\tau}(x) d x \ll \tau^{2} P^{s} \exp \left(-L^{1 / 5}\right)
$$

Proof. By (4.1), (2.12)

$$
\begin{equation*}
\Psi-\Psi^{*}=\sum_{j=1}^{4}\left(\Delta_{j}\left(\lambda_{j} x\right)-J_{j}\left(\lambda_{j} x\right)\right) \prod_{1}^{j-1} g_{h}\left(\lambda_{h} x\right) \prod_{j+1}^{4} I_{h}\left(\lambda_{h} x\right) \tag{4.4}
\end{equation*}
$$

where $\prod_{1}^{0} g_{h}=\prod_{5}^{4} I_{h}=1$. It follows from (4.4), (2.6) and $\left|I_{j}\right|,\left|g_{j}\right| \leqslant Q_{j}$ that

$$
\begin{align*}
& \int_{E_{1}}\left|\Psi-\Psi^{*}\right| K_{\tau} d x \ll \tau^{2}\left\{\int_{E_{1}}\left(\left|\Delta_{1}\right|+\left|J_{1}\right|\right)\left(\left|I_{4}\right| Q_{2} Q_{3}\right) d x\right. \tag{4.5}\\
&\left.+\sum_{j=2}^{4} \int_{E_{1}}\left(\left|\Delta_{j}\right|+\left|J_{j}\right|\right)\left(\left|g_{1}\right| \prod_{h \neq 1, j} Q_{h}\right) d x\right\}
\end{align*}
$$

Then Lemma 6 follows from (4.5), Hölder's inequality and Lemma 5.
Lemma 7. Suppose that a and q are integers such that $q \geqslant 1,(a, q)=1$ and $|x-a / q| \leqslant q^{-2}$. If

$$
\log V>2^{\left(6 k_{j}-2\right)}\left(2 k_{j}+1\right) \log \log Q_{j}
$$

where

$$
\begin{equation*}
V=\min \left(Q_{j}^{1 / 3}, q, P / q\right) \tag{4.6}
\end{equation*}
$$

then

$$
\sum_{p \leqslant Q_{j}} e\left(x p_{j}(p)\right) \ll Q_{j} V^{-\mu_{j}},
$$

where $\mu_{j}=\left(\left(k_{j}+1\right) 2^{2\left(k_{j}+1\right)}\right)^{-1}$.
Proof. This lemma is a direct consequence of the theorem in Vinogradov (1938), p. 5 .

Lemma 8. Let $j=1,2$, and $x \in E_{2}$. If there are integers a_{j}, q_{j} with $\left(a_{j}, q_{j}\right)=1$ and $q_{j} \geqslant 1$ such that

$$
\begin{equation*}
\left|\lambda_{j} x-a_{j}\right| q_{j} \mid \leqslant \varepsilon q_{j}^{-1} P^{-1+\alpha} \tag{4.7}
\end{equation*}
$$

then either $q_{1}>P^{\alpha}$ or $q_{2}>P^{\alpha}$.
Proof. We first show that $a_{2} \neq 0$. For if $a_{2}=0$ then by (4.7), we have $x \notin E_{2}$. This is impossible.

Next, suppose that both

$$
\begin{equation*}
q_{1} \leqslant P^{\alpha} \quad \text { and } \quad q_{2} \leqslant P^{\alpha} . \tag{4.8}
\end{equation*}
$$

By (4.7), (4.8) and $x \in E_{2}$

$$
\begin{align*}
\left|\frac{a_{2}}{q_{2}} \frac{1}{\lambda_{2} x}\right| q_{1} q_{2}\left|\lambda_{1} x-\frac{a_{1}}{q_{1}}\right| & \leqslant\left(\left|\lambda_{2} x\right|+\varepsilon q_{2}^{-1} P^{-1+\alpha}\right)\left|\lambda_{2} x\right|^{-1} q_{2} \varepsilon P^{-1+\alpha} \tag{4.9}\\
& \leqslant\left(P^{\alpha}+\varepsilon\left|\lambda_{2}\right|^{-1}\right) \varepsilon P^{-1+\alpha} \leqslant 2 \varepsilon P^{-1+2 \alpha} .
\end{align*}
$$

Similarly since $\left|\lambda_{1}\right| \leqslant\left|\lambda_{2}\right|$ we have

$$
\begin{equation*}
\left|\frac{a_{1}}{q_{1}} \frac{1}{\lambda_{2} x} q_{1} q_{2}\left(\lambda_{2} x-\frac{a_{2}}{q_{2}}\right)\right| \leqslant 2 \varepsilon P^{-1+2 \alpha} . \tag{4.10}
\end{equation*}
$$

It follows from (4.9), (4.10), (2.3) that

$$
\begin{equation*}
\left|a_{2} q_{1} \lambda_{1} / \lambda_{2}-a_{1} q_{2}\right| \leqslant 4 \varepsilon P^{-1+2 \alpha}<\frac{1}{2} q^{-1} . \tag{4.11}
\end{equation*}
$$

By (2.2) for any integers a^{\prime}, q^{\prime} with $1 \leqslant q^{\prime}<q$ we have

$$
\begin{equation*}
\left|q^{\prime} \frac{\lambda_{1}}{\lambda_{2}}-a^{\prime}\right| \geqslant q^{\prime}\left(\frac{\left|a q^{\prime}-a^{\prime} q\right|}{q q^{\prime}}-\left|\frac{\lambda_{1}}{\lambda_{2}}-\frac{a}{q}\right|\right)>\frac{1}{q}-\frac{q^{\prime}}{2 q^{2}}>\frac{1}{2 q} . \tag{4.12}
\end{equation*}
$$

By (4.11), (4.12), (2.3) and $a_{2} \neq 0$ we see that

$$
\begin{equation*}
\left|a_{2} q_{1}\right| \geqslant q=P^{1-2 \alpha} . \tag{4.13}
\end{equation*}
$$

But by (4.7), (4.8), $x \in E_{2}$

$$
\begin{equation*}
\left|\frac{a_{2}}{q_{2}}\right| q_{1} q_{2} \leqslant\left(\left|\lambda_{2} x\right|+\varepsilon q_{2}^{-1} P^{-1+\alpha}\right) P^{2 \alpha} \leqslant 2\left|\lambda_{2}\right| P^{3 \alpha} . \tag{4.14}
\end{equation*}
$$

In view of (4.13), (4.14) we have a contradiction since by (2.1), (2.8) $\alpha<A / 3<1 / 5$.

Lemma 9. If at least two \mathfrak{p}_{j} in $\Psi(x)$ are of degree 1 then for any positive constant B we have

$$
\int_{E_{2}}|\Psi(x)| K_{\tau}(x) d x \ll \tau^{2} L^{-B} P^{S}
$$

Proof. It is known (Theorem 36, Hardy and Wright (1960)) that for $j=1,2$ and each $x \in E_{2}$ there are integers a_{j}, q_{j} with $\left(a_{j}, q_{j}\right)=1$ and $1 \leqslant q_{j} \leqslant P^{1-\alpha} \varepsilon^{-1}$ such that

$$
\left|\lambda_{j} x-a_{j} / q_{j}\right| \leqslant \varepsilon q_{j}^{-1} p^{-1+\alpha} \quad(j=1,2)
$$

By Lemma 8 either $q_{1}>P^{\alpha}$ or $q_{2}>P^{\alpha}$. Let

$$
E_{21}=\left\{x \in E_{2} \mid q_{1}>p^{\alpha}\right\} ; \quad E_{22}=\left\{x \in E_{2} \mid q_{2}>P^{\alpha}\right\} .
$$

Then

$$
\begin{equation*}
\int_{E_{2}}|\Psi| K_{\tau} d x \leqslant \int_{E_{21}}|\Psi| K_{\tau} d x+\int_{E_{22}}|\Psi| K_{\tau} d x=\mathscr{J}_{1}+\mathscr{J}_{2}, \quad \text { say } \tag{4.15}
\end{equation*}
$$

By Lemma 7, (2.1), (2.5) we have, for any positive constant $B+C$ and each $x \in E_{2 j}(j=1,2)$

$$
\begin{equation*}
g_{j}\left(\lambda_{j} x\right) \ll Q_{j} P^{-\alpha \mu_{j}}<\tau Q_{j} L^{-(B+C)} \tag{4.16}
\end{equation*}
$$

since in (4.6) $V \geqslant \min \left(Q_{j}^{1 / 3}, \varepsilon P^{\alpha}\right)=\varepsilon P^{\alpha}$ and $\mu_{j}=\left(\left(k_{j}+1\right) 2^{2\left(k_{j}+1\right)}\right)^{-1} \geqslant 1 / 192$. We come now to estimate \mathscr{J}_{1}. As it is given that among $\mathfrak{p}_{h}(h \neq 1)$ there is a polynomial of degree 1 , for simplicity we let $k_{2}=1$. By (4.16), Hölder's inequality and Lemma 2 we have

$$
\begin{aligned}
\mathscr{J}_{1} & \ll \tau Q_{1} L^{-(B+C)}\left(\int_{E_{2}}\left|g_{2}\right|^{2} K_{\tau} d x\right)^{\frac{1}{2}}\left(\int_{E_{2}}\left|g_{3} g_{4}\right|^{2} K_{\tau} d x\right)^{\frac{1}{2}} \\
& \ll \tau Q_{1} L^{-(B+C)}\left(\tau L^{C} Q_{2}^{(2-1)}\right)^{\frac{1}{2}}\left(\tau L^{C} Q_{3}^{2-\left(k_{3} / 2\right)} Q_{4}^{2-\left(k_{4} / 2\right)}\right)^{\frac{1}{2}} \\
& \ll \tau^{2} L^{-B} P^{S},
\end{aligned}
$$

where S is defined in (4.3). Similarly,

$$
\mathscr{J} \ll \tau^{2} L^{-B} P^{S}
$$

By (4.15) the lemma follows.

Lemma 10. Let

$$
\Omega(x)=\sum e\left(x \omega\left(y_{1}, \ldots, y_{n}\right)\right)
$$

where ω is any real valued function and the summation is over any finite set of values of y_{1}, \ldots, y_{n}. Then for any $X>4 / \tau$ we have

$$
\int_{|x|>X}|\Omega(x)|^{2} K_{\tau}(x) d x \leqslant(8 / X \tau) \int_{-\infty}^{\infty}|\Omega(x)|^{2} K_{\tau}(x) d x
$$

Proof. This lemma is due to Davenport and Roth (1955), p. 82. See, for example, Lemma 13 in Vaughan (1974b), p. 394.

Lemma 11. For any positive constant B we have

$$
\int_{E_{3}}|\Psi(x)| K_{\tau}(x) d x \ll \tau^{2} L^{-B} P^{S}
$$

Proof. By Hölder's inequality, (4.2), Lemmas 10, 2, (2.4) and (4.3) we have

$$
\begin{aligned}
\int_{E_{3}}|\Psi| K_{\tau} d x & \ll\left(\tau P^{\alpha}\right)^{-1}\left(\int_{-\infty}^{\infty}\left|g_{1} g_{2}\right|^{2} K_{\tau} d x\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left|g_{3} g_{4}\right|^{2} K_{\tau} d x\right)^{\frac{1}{2}} \\
& \ll\left(\tau P^{\alpha}\right)^{-1}\left(\tau L^{c} Q_{1}^{2-\left(k_{1} / 2\right)} Q_{2}^{2-\left(k_{2} / 2\right)}\right)^{\frac{1}{2}}\left(\tau L^{c} Q_{3}^{2-\left(k_{3} / 2\right)} Q_{4}^{2-\left(k_{4} / 2\right)}\right)^{\frac{1}{2}} \\
& \ll L^{c} P^{-\alpha} P^{S} \ll \tau^{2} L^{-B} P^{S}
\end{aligned}
$$

since by (2.1) $\alpha>2 \beta$.

5. Completion of the proof of Theorem 1

Lemma 12. For any positive constant B we have

$$
\int_{x \notin E_{1}}\left|\Psi^{*}(x)\right| K_{\tau}(x) d x \ll \tau^{2} L^{-B} P^{S}
$$

Proof. By (3.8), (2.4), if $|x|>P^{-1+a}$ we have $I_{j}(x) \ll Q_{j}^{1-k_{j}}|x|^{-1}$. Then, by (2.6), (4.3),

$$
\int_{x \notin E_{1}}\left|\Psi^{*}\right| K_{\mathrm{r}} d x \ll \tau^{2} P^{3(1-\alpha)} \prod_{1}^{4} Q_{j}^{1-k_{j}} \ll \tau^{2} L^{-B} P^{S} .
$$

Lemma. 13. We have

$$
\int_{-\infty}^{\infty} e(\eta x) \Psi^{*}(x) K_{\tau}(x) d x \gg \tau^{2} L^{-4} P^{s}
$$

Proof. Without loss of generality, let $\lambda_{1} \lambda_{2}<0$. Then define the set \mathscr{B}^{*} by the following conditions (5.1), (5.2), (5.3):

$$
\begin{equation*}
\varepsilon P \leqslant z_{j} \leqslant 2 \varepsilon P \quad(j=3,4), \quad \sqrt{ }(\varepsilon)\left|\lambda_{1} / \lambda_{2}\right| P \leqslant z_{2} \leqslant \sqrt{ }(\varepsilon)\left|\lambda_{1} / \lambda_{2}\right| P ; \tag{5.1}
\end{equation*}
$$

and $z_{1}>0$ and satisfies

$$
\begin{equation*}
\lambda_{1} p_{1}\left(z_{1}^{1 / k_{1}}\right)=y-\eta-\sum_{j=2}^{4} \lambda_{j} \mathfrak{p}_{j}\left(z_{j}^{1 / k_{j}}\right) \tag{5.2}
\end{equation*}
$$

for some real y with

$$
\begin{equation*}
|y| \leqslant \frac{1}{2} \tau . \tag{5.3}
\end{equation*}
$$

Note that such z_{1} is uniquely defined if the right-hand side of (5.2) is large enough. We shall show that

$$
\varepsilon P<z_{1}<P
$$

Hence if \mathscr{B} denotes the cartesian product of the intervals $\varepsilon^{k_{j}} P \leqslant z_{j} \leqslant P(1 \leqslant j \leqslant 4)$ then

$$
\begin{equation*}
\mathscr{B} \supset \mathscr{B ^ { * }} \tag{5.4}
\end{equation*}
$$

We see that for large z_{j}

$$
\begin{equation*}
\frac{1}{2} \alpha_{j} z_{j}<\mathfrak{p}_{j}\left(z_{j}^{1 / k j}\right)<2 \alpha_{j} z_{j}, \tag{5.5}
\end{equation*}
$$

where α_{j} is the positive leading coefficient of \mathfrak{p}_{j}. It follows from (5.2), (5.3), (5.5), (5.1) that

$$
\begin{aligned}
\mathfrak{p}_{1}\left(z_{1}^{1 / k_{1}}\right) & \geqslant \frac{1}{2}\left|\lambda_{2} / \lambda_{1}\right| \alpha_{2} z_{2}-\frac{1}{2} \tau\left|\lambda_{1}\right|^{-1}-\left(|\eta|+2 \sum_{j=3}^{4}\left|\lambda_{j}\right| \alpha_{j} z_{j}\right)\left|\lambda_{1}\right|^{-1} \\
& \geqslant \sqrt{ }(\varepsilon) P\left\{\frac{1}{2} \alpha_{2}-\left((2 P \sqrt{ }(\varepsilon))^{-1}+|\eta|(\sqrt{ }(\varepsilon) P)^{-1}+4 \sqrt{ }(\varepsilon) \sum_{j=3}^{4}\left|\lambda_{j}\right| \alpha_{j}\right)\left|\lambda_{1}\right|^{-1}\right\} \\
& >\frac{1}{3} \sqrt{ }(\varepsilon) P \alpha_{2}
\end{aligned}
$$

So by (5.5)

$$
z_{1}>\mathfrak{p}_{1}\left(z_{1}^{1 / k_{1}}\right)\left(2 \alpha_{1}\right)^{-1}>\varepsilon P .
$$

Similarly, we have $p_{1}\left(z_{1}^{1 / k_{1}}\right)<5 \sqrt{ }(\varepsilon) P \alpha_{2}$ and hence $z_{1}<P$. This proves (5.4). By Lemma 1, (4.3), (5.4), we have

$$
\int_{-\infty}^{\infty} e(x \eta) \Psi^{*} K_{\tau} d x=\int_{-\infty}^{\infty}\left(\prod_{j=1}^{4} \int_{\left(\varepsilon Q_{j}\right)^{k}}^{P} e\left(x \lambda_{j} p_{j}\left(z_{j}^{1 / k_{j}}\right)\right) z_{j}^{\left(1 / k_{j}\right)-1}\left(\log z_{j}\right)^{-1} d z_{j}\right)
$$

$$
\begin{aligned}
& \gg \prod_{j=1}^{4} P^{\left(1 / k_{j}\right)-1} L^{-1} \int_{\mathscr{F}} \max \left(0, \tau-\left|\eta+\sum_{j=1}^{4} \lambda_{j} p_{j}\left(z_{j}^{1 / k_{j}}\right)\right|\right) d z_{1} \ldots d z_{4} \\
& \gg P^{S-3} L^{-4} \int_{\mathscr{B}^{*}}^{\frac{1}{2} \tau d y d z_{2} d z_{3} d z_{4} \gg \tau^{2} L^{-4} P^{S}} .
\end{aligned}
$$

This proves Lemma 13.
We come now to the proof of Theorem 1. By (4.1), Lemma 1, we have

$$
\mathscr{I}=\int_{-\infty}^{\infty} e(x \eta) \Psi K_{\tau} d x=\sum_{\substack{\varepsilon Q_{j} \leqslant p_{j} \leqslant Q_{j} \\ 1 \leqslant j \leqslant 4}} \max \left(0, \tau-\left|\eta+\sum_{1}^{4} \lambda_{j} p_{j}\left(p_{j}\right)\right|\right) \leqslant \tau N,
$$

where N is the number of solutions ($p_{1}, p_{2}, p_{3}, p_{4}$) of the inequalities $\varepsilon Q_{j} \leqslant p_{j} \leqslant Q_{j}$ $(1 \leqslant j \leqslant 4)$ and $\left|\eta+\sum_{1}^{4} \lambda_{j} \mathfrak{p}_{j}\left(p_{j}\right)\right|<\tau$. So it suffices to show that $\mathscr{I} \rightarrow \infty$ as $P \rightarrow \infty$.

By Lemmas 13, 12, 6 , we have

$$
\begin{align*}
\int_{E_{1}} e(x \eta) \Psi K_{\tau} d x= & \int_{-\infty}^{\infty} e(x \eta) \Psi^{*} K_{\tau} d x-\int_{x \notin E_{1}} e(x \eta) \Psi^{*} K_{\tau} d x \tag{5.6}\\
& -\int_{E_{1}} e(x \eta)\left(\Psi^{*}-\Psi\right) K_{\tau} d x \\
\geqslant & \tau^{2} P^{s} L^{-4}\left(1-L^{-B+4}-L^{4} \exp \left(-L^{1 / 5}\right)\right) \gg \tau^{2} L^{-4} P^{s}
\end{align*}
$$

It follows from (5.6), Lemmas 9, 11 that

$$
\mathscr{I}=\sum_{h=1}^{3} \int_{E_{h}} e(x \eta) \Psi K_{\tau} d x \gg \tau^{2} L^{-4} P^{S}\left(1-2 L^{-B+4}\right) \gg L^{-4} P^{S-2 \beta}
$$

This completes the proof of Theorem 1.

6. Remark

K.W. Lau and the author are able to replace the $1 / 10$ in (1.2) by any constant $<1 / 9$ (to appear in Bull. Austral. Math. Soc.).

References

A. Baker (1967), 'On some diophantine inequalities involving primes', J. Reine Angew. Math. 228, 166-181.
H. Davenport and H. Heilbronn (1946), 'On indefinite quadratic forms in five variables', J. London Math. Soc. 21, 185-193.
H. Davenport and K. F. Roth (1955), 'The solubility of certain diophantine inequalities', Mathematika 2, 81-96.
G. Hardy and E. M. Wright (1960), An introduction to the theory of numbers (4th ed., Clarendon Press, Oxford).
L. K. Hua (1965), Additive theory of prime numbers, Translations of Mathematical Monographs, Vol. 13 (Amer. Math. Soc., Providence, R.I.).
A. E. Ingham, 'On the estimation of $N(\sigma, T)$ ', Quart. J. Math. Oxford 11 (1940), 291-292.
M. C. Liu (1977), 'Diophantine approximation involving primes', J. Reine Angew. Math. 289, 199-208.
M. C. Liu (1978), 'Approximation by a sum of polynomials involving primes', J. Math. Soc. Japan, 30, 395-412.
K. Ramachandra (1973), 'On the sums $\sum_{j=1}^{K} \lambda_{j} f_{J}\left(p_{j}\right)$ ', J. Reine Angew. Math. 262/263, 158-165.
W. Schwarz (1963), 'Úber die Lösbarkeit gewisser Ungleichungen durch Primzahlen', J. Reine Angew. Math. 212, 150-157.
R. C. Vaughan (1974a), 'Diophantine approximation by prime numbers, I', Proc. London Math. Soc. (3) 28, 373-384.
R. C. Vaughan (1974b), 'Diophantine approximation by prime numbers, II', Proc. London Math. Soc. (3) 28, 385-401.
I. M. Vinogradov (1938), 'A new estimation of a trigonometric sum containing primes' (in Russian with English summary), Bull. Acad. Sci. USSR, Sér. Math. 2, 3-13.

Mathematics Department
University of Hong Kong
Hong Kong

