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Abstract

Let Xj (1 <j<4) be any nonzero real numbers which are not all of the same sign and not all in
rational ratio and let Pj be polynomials of degree one or two with integer coefficients and positive
leading coefficients. The author proves that if exactly two Vj are of degree two then for any real i\
there are infinitely many solutions in primes pj of the inequality

4

1+
J=i

< (max/7 j

where 0<j9<(V(21)-l)/5760.

1980 Mathematics subject classification (Amer. Math. Soc): 10 J 15, 10 F 15, 10 B 45.

1. Introduction

Let kit . . . ,As(s^3) be any nonzero real numbers which are not all of the same
sign and not all in rational ratio. Baker (1967), pp. 166-167, introduced a new kind
of approximation analogous to Davenport and Heilbronn (1946), p. 186, by proving
that if s = 3 then for any positive integer N, (1.1) has infinitely many solutions in
primes pt:

(1.1) \klpl+k2p2 + k3p3\<(\ogma.xpJ)-
N.

Recently, Vaughan (1974a), p. 374, improved (1.1) and a result of Ramachandra's
(1973), Theorem 3, by showing that for any real rj, (1.1) can be replaced by

(1.2) \ti + XlPl + X2p2 + X3P3\<{maxpj)-lll0(\ogmaxpj)20.

(1.2) has been extended (Vaughan (1974b), p. 386, and Liu (1978), Theorems 1, 2)
to polynomials p /x ) of the same degree k ^ 2 with integer coefficients and positive
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leading coefficients, namely if s^so(k), 0<y<yo(k) then (1.3) has infinitely many
solutions in primes pj, where so(k) and yo(k) depend on k only (in particular,

<{msixpj)-y.(1.3)

In this paper we shall modify the methods of Schwarz (1963) and Vaughan (1974)
and prove

THEOREM 1. Let Xt (1 sS./sS 4) be any nonzero real numbers which are not all of the
same sign and not all in rational ratio. Let p} be polynomials of degree one or two
with integer coefficients and positive leading coefficients. If exactly two pj are of
degree two then for any real n there are infinitely many solutions in primes p3 of the
inequality

4

1+ Z IJVAPJ)
7=1

where O<0<(V(21)- l)/576O.

REMARK. Since all preliminary lemmas in Section 3 are valid for p3 of degrees
ks > 2, the above theorem can be extended with no difficulty to s > 4 polynomials
Pj of different degrees kj with maxkj>2. This kind of generalization will certainly
lead to a complete improvement of the results in Liu (1977), p. 199. For poly-
nomials of higher different degrees, a more interesting problem is to obtain a better
(or smaller) value of so(k) where k = max A:,, for which (1.3) has infinitely many
solutions in primes pj. This problem seems to require a new idea.

In the following proof we shall see that the hypothesis in Theorem 1 that exactly
two pj are of degree two is needed only in the proof of Lemma 9. So by the same
proof we can extend Theorem 1 to the case that exactly three pj are of degree two
provided that kjkj is irrational for at least one pair pt> pj which are both of degree
two. That is

THEOREM 2. Let k} (1 ^y< 4) be any nonzero real numbers which are not all of the
same sign and let kjk2 be irrational. Let p3 be polynomials of degree one or
two with integer coefficients and positive leading coefficients. If pup2 and exactly
one of p3, p 4 are of degree two then for any real n there are infinitely many solutions
in primes p} of the inequality

*i+ Z •
7=1

where 0</J<(V(21)- l)/5760.
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The author wishes to thank the referee for his valuable comments and suggestions
which brought improvement in the presentation of the paper and for pointing out
that Theorem 2 can be obtained simultaneously.

2. Notation

We shall only give a proof for Theorem 1. Throughout, n and p with or without
suffices denote positive integers and primes respectively; x is a real variable and
[x] is its integral part. We write e(x) = exp(i2nx). k} and a, (> 1) are the degree
and the leading coefficient of pj respectively. For the given /?, let a be some
positive constant satisfying

(2.1) 192jff<a<(V(21)-l)/30.

Without loss of generality let XJX2 be irrational and |At| < |A2|. Then it is known
(Hardy and Wright (1960), Theorem 183) that there are infinitely many convergents
ajq with (a,q)= 1, l^q such that

(2.2)

Put

(2.3)

(2.4)

/>! a
X2 q

1

P = ,

QJ =

\ L = logP,

Lj = log Qj.

We always choose P (that is, q) to be large and e small so that all inequalities in
Sections 3-5 hold. If X>0 we use y<^(or A> Y) to denote | Y\ <KX, where K
is some positive constant which may depend on the given constants a,, k}, e only.
Let

(2.5)

Kt = KT(x) =
if x = 0,

((sin nrx)2/(nx)2 otherwise.

Obviously, we have

(2.6)

Let

(2.7)

= g/x) = X e(xpj(p)),
QQ

(2.8) , ao=\-A.
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We use p = (7+it to denote a typical zero of the Riemann zeta function C(s) and
Zj (or Z ) t 0 denote the summation over all those zeros p with |/| < Q* and

It is known (Ingham (1940) that

(2.9) X;
Let

(2.10) Gj(x,p)

where summation is over all n such that

(211) Jj = Jj(x) = £ ; Gj(x,p),

(2.12) A, = A/x) = * , + / , - / , .

3. Preliminary lemmas

The proof of Lemmas 4, 5, 8 is similar to that of Lemmas 9, 10,13 in Liu (1978).

LEMMA 1. For any real y we have

e{xy)Klx)dx = max(0,t- \y\).

PROOF. This follows from Lemma 4 in Davenport and Heilbronn (1946).

LEMMA 2. Let k = max kj. If m >2fc~1, then

m m

[I I %< e(xXjVj(p))\2Kt(x)dx<T(logmaxQj)c \\ gu-cv-H,

where C is a positive constant depending on k only.
PROOF. This can be proved by the same argument as Lemma 4 in Liu (1977),

since Theorem 4 in Hua (1965) (that is Lemma 3 in Liu (1977)) is valid for poly-
nomials with integer coefficients.

LEMMA 3. (a) Suppose that 2< Y^ Qj. Then

Z log/>+Z; Y>p~l-Y<Q'joL\
p^ Y

where D is some large positive constant.

PROOF, (a) can be proved by the same argument as that of Lemma 3 in
Vaughan (1974a), p. 376. (b) can be shown by the same proof as that of Lemma
8 in Vaughan (1974a), p. 379.
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L E M M A 4 . We have

where D is the same positive constant in Lemma 3(a).

PROOF. For simplicity, in the following proof we shall drop all suffices,/ whenever
there is no ambiguity. Without loss of generality we replace EQJ and (EQJYJ in
(2.7), (2.10) simply by 2. Let

flog«+X*n"1+("/*) if n = / for some/K Q,
(3.1) an = \

( £ * M - I + ( P / * > otherwise;

bn = eix[p(nllk)})/logn and b'n = e(xp(n1/k))/logn.

Then by (2.7), (2.11) we have
(3.2) g(x)+J(x) = £ an(bn-b-)+anbn = Sl + S2, say.

As for any real y

e(x[y])-e(xy)<\x\

and p(«) is integral valued, we have

(3.3) 5,=X* Z «

The last inequality follows from Lemma 3(b).
We come now to consider S2- Note that by Abel's partial summation,

But if z^ g*. ao<(J<l,\t\^QA>tnen

r P/*)-2 r

Hence

(3.4) £n«"»- l-2"*(fc//»)<^L.

It follows from (3.1), (3.4), (2.9) and Lemma 3(a) that for any z^ i
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(3.5) X T-zllk= £ logp+Z*z"kp-1-zllk+(KQ*L)l;i

The last inequality follows from (2.8). Putting A(z) = Y,**kzanlk a n d using Abel's
partial summation (Theorem 421 in Hardy and Wright (I960)) we have

S2 = kA(P)
logP

The last equality follows from (3.5) and (2.9) by which ax A2<^Z* l ^ QA- T h e n

(3.6) S2 = /(*) + 0(Q'oL6(l + \x\ />))

on integrating by parts and changing the variable to y = z17*. Lemma 4 follows
from (3.2), (3.3) and (3.6).

LEMMA 5. Let

(3.7)

We have

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

f

PROOF. In the proof we shall drop all suffices/ (3.8) follows from (2.7) by partial
integration. By (2.11) and Holder's inequality,

3.13) f* |/(*)|2d*£ £ £ f* \G(x,
J -i Pl P2 J " i

(3.13) f |/(*)|2d*£ £ £ f \G(x,Pl)G(x>P2)\dx
J

* \G{x,p2)\*dxJ
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Note that for any large positive integers m,n with \m—n\ >2, we have

since when y tends to infinity, (d/dy)p(y1/k) tends to the value of the leading
coefficient of p which is not less than one. Let H(n) = n~1+i'"k\logn)~1. Then by
(2.10), ParsevaFs identity and a< 1

(3.14) f* \G(x,p)\2dx< X {H(n)2 + H(n)H(n-l)
J

+ H(n)H(n+\)}<Q-k+2°L-2.

Then (3.9) follows from (3.13), (3.14) and Lemma 3(b).
(3.10) follows from (3.8) and the partition of the interval x\ ^ 111 at ±P-\
By Lemma 4, (3.7), (2.4) we have

-s

Then (3.11) follows since by k^2, (2.1) and (2.8) we have

2<7O + 3ak < 2<T0 + 2A=2.

(3.12) follows from (2.12), (3.9), (3.10), (3.11) easily. This proves Lemma 5.

4. Contribution of the integrals over £ \ , E2, E3

Let
4 4

C*.l) x = TT\X) = llgj{AjX), X = X (X) = Hlj(AjX),
1 1

(4.3) 5 =

LEMMA 6. We have

I e x p ( -

PROOF. By (4.1), (2.12)

4 y - 1 4

where ]JISH = f i t A = 1- It follows from (4.4), (2.6) and |/, |, | ^ | < Qj that
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(4.5)

i f
J = 2JE1

n
h

Then Lemma 6 follows from (4.5), Holder's inequality and Lemma 5.

LEMMA 7. Suppose that a and q are integers such that q^l, (a,q) = 1 and

log V>2l6kj~2\2kj+ l)loglog Qj,

where

(4.6) V

then

I
where nj = ((kJ+l)22^j+^)-1.

PROOF. This lemma is a direct consequence of the theorem in Vinogradov (1938),
p. 5.

LEMMA 8. Let j = 1,2, and xeE2. If there are integers aj,qj with (aj,qj) — 1 and
qs ^ 1 such that

then either ql>P" or q2>P".

PROOF. We first show that a 2 # 0 . For if a2 = 0 then by (4.7), we have x$E2.
This is impossible.

Next, suppose that both

(4.8) qi<P* and

By (4.7), (4.8) and xeE2

(4.9)

1l
qi

Similarly since |At| < |A2| we have

(4.10)

It follows from (4.9), (4.10), (2.3) that

(4.11)
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By (2.2) for any integers a',q' with l^q' <q we have

(4.12) A , ^
f\aq'-a'q\

By (4.11), (4.12), (2.3) and a ^ O w e see that

(4.13)

But by (4.7), (4.8), xeE2

a2(4.14)

In view of (4.13), (4.14) we have a contradiction since by (2.1), (2.8) tx<A/3< 1/5.

LEMMA 9. If at least two Pj in *P(x) are of degree 1 then for any positive constant
B we have

YV(x)\K,{x)dx<t2L-BPs.
!

PROOF. It is known (Theorem 36, Hardy and Wright (I960)) that for y= 1,2
and each xeE2 there are integers aJtqj with (aj,qj) = 1 and
such that

, say.

By Lemma 8 either q^ >P* or q2 >P". Let

E21 = {xeE3\ql>p*}; E22 = {xeE2\q2>P*}.
Then

(4.15) I \*¥\KTdx^\ | * | Krdx+\ \Y\Kzdx = ^^ + ^
j £ 2 JE21 JE»

By Lemma 7, (2.1), (2.5) we have, for any positive constant B+C and each
xeE2J(j= 1,2)

(A 1 £\ t* ( 2 -v-\ *2 f~\ P ~~ *'* * *£ -r /") T ~ tB + C)

since in (4.6) V>min(Qjl3,ePx) = eP' and #, = ( ( ^ + 1 ) 2 2 < * J + 1 > ) - 1 > 1/192.
We come now to estimate #x. As it is given that among ph (h^ 1) there is a poly-
nomial of degree 1, for simplicity we let k2 = 1. By (4.16), Holder's inequality and
Lemma 2 we have

\g3gA\2Ktdx\ff
x L~ lB+c\rLc Q2

2 ~ (*3/2) Ql ~ {kt
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where S is defined in (4.3). Similarly,

f<T2L~BPS.

By (4.15) the lemma follows.

LEMMA 10. Let

where co is any real valued function and the summation is over any finite set of values
of yi,---,yn- Then for any X>4jx we have

\n(x)\2Kt(x)dx^C&/Xr)\ \£l(x)\2KT(x)dx.
J\x\>X J - c o

PROOF. This lemma is due to Davenport and Roth (1955), p. 82. See, for example,
Lemma 13 in Vaughan (1974b), p. 394.

LEMMA 11. For any positive constant B we have

\ \y¥(x)\Kr(x)dx<r2L-BPs.
J E3

PROOF. By Holder's inequality, (4.2), Lemmas 10, 2, (2.4) and (4.3) we have

since by (2.1)a>2)S.

5. Completion of the proof of Theorem 1

LEMMA 12. For any positive constant B we have

JxtE,

PROOF. By (3.8), (2.4), if |JC| >P~i+* we have lAx)<Qj~kt\x\-1. Then, by (2.6),
(4.3),

JxtEy
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LEMMA. 13. We have

J -
PROOF. Without loss of generality, let X1k2<0. Then define the set 88* by the

following conditions (5.1), (5.2), (5.3):

(5.1) eP^Zj^2eP (/ = 3,4), V(fi)\XJX

and zx > 0 and satisfies

(5.2) ^vMlki) = y-ri- i )
j=2

for some real y with

(5.3) \y\^\x.

Note that such Zj is uniquely defined if the right-hand side of (5.2) is large enough.
We shall show that

Hence if Si denotes the cartesian product of the intervals ekjP^Zj^P(l <j
then

(5.4)

We see that for large zs

(5.5) &)

where <Xj is the positive leading coefficient of pj. It follows from (5.2), (5.3), (5.5),
(5.1) that

f I Â | a

So by (5.5)

Similarly, we have p1(z}/*')<5\/(£)^>a2 and hence zx <P. This proves (5.4).
By Lemma 1, (4.3), (5.4), we have

I*" e(xr,)V*KTdx = f" I f j f
J -® J - °o V y= i J(cQj)kj
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fl Pu/y-iL-i f

J
This proves Lemma 13.

We come now to the proof of Theorem 1. By (4.1), Lemma 1, we have

£ max(0,T-

where N is the number of solutions (puPiiPiiP*) of the inequalities
(1 ^y<4) and \*I+YA^JVAP])\ < T - SO it suffices to show that J-*cc as P-*oo.

By Lemmas 13, 12, 6, we have

(5.6) e{xrif¥Kxdx= | eipcriW* Kidx-\ e(xr/y¥*
JE1 J - » ]xiEl

"I,
It follows from (5.6), Lemmas 9, 11 that

• - i f
*=1 j£

This completes the proof of Theorem 1.

6. Remark

K.W. Lau and the author are able to replace the 1/10 in (1.2) by any con-
stant < 1/9 (to appear in Bull. Austral. Math. Soc).
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