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Abstract
Risk measurements are clearly central to risk management, in particular for banks, (re)insurance com-
panies, and investment funds. The question of the appropriateness of risk measures for evaluating the
risk of financial institutions has been heavily debated, especially after the financial crisis of 2008/2009.
Another concern for financial institutions is the pro-cyclicality of risk measurements. In this paper, we
extend existing work on the pro-cyclicality of the Value-at-Risk to its main competitors, Expected Shortfall,
and Expectile: We compare the pro-cyclicality of historical quantile-based risk estimation, taking into
account the market state. To characterise the latter, we propose various estimators of the realised volatility.
Considering the family of augmented GARCH(p, q) processes (containing well-known GARCH models
and iid models, as special cases), we prove that the strength of pro-cyclicality depends on the three factors:
the choice of risk measure and its estimators, the realised volatility estimator and the model considered,
but, no matter the choices, the pro-cyclicality is always present. We complement this theoretical analysis
by performing simulation studies in the iid case and developing a case study on real data.
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1. Introduction
Risk measurements are clearly central to risk management, in particular for financial institutions
such as banks, insurance companies, and investment funds. Risk can be measured in terms of
probability distributions. However, for practical purpose, it is often summarised into one real
number, interpreted as a capital amount. Risk measures denote the tools that map loss distribu-
tions or random variables to capital amounts required as a buffer against insolvency. Proposing
risk measures and studying their properties and impact in terms of risk management and model
validation have been the topic of much research in actuarial science (including risk analysis and
management), economics, finance, and mathematics; see e.g. Föllmer & Schied (2016), Jarrow
(2017), McNeil et al. (2015), Miller (2018), Rüschendorf (2013), for a non-exhaustive list of books
on the topic. Here, our focus is not on risk measures but on the impact of historical risk estima-
tion on pro-cyclicality, when considering popular or regulatory quantile-based risk measures as
Value-at-Risk (VaR), Expected Shortfall (ES; named also Average VaR, Conditional VaR or Tail-
VaR), and expectile. While the case of the VaR has been considered in Bräutigam et al. (2022) to
lay down a methodology for quantifying pro-cyclicality, here, we investigate the pro-cyclicality
of historical risk measurements in bigger generality by also considering other quantile-based risk
measures, in particular ES, widely used by practitioners and more recently by regulators (as the
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Basel Committee on Banking Supervision has replaced VaR with the coherent risk measure ES in
internal market risk models).

The pro-cyclicality of risk measurements is an important concern for financial institutions;
there is a consensus that, in times of crisis, risk measurements overestimate the future risk, while
they underestimate it in quiet times, leaving the financial institutions unprepared. Quoting Gilles
Moec, Chief Economist of AXA, ’The major mistake made in 2010 was imposing austerity at
the worst time’ (Le Monde, 2020/01/21. Translated). Pro-cyclicality has been a topic investigated
mainly in economics, modelling agent behaviour (see e.g. Adrian & Shin, 2013; Catarineu-Rabell
et al., 2005). In macro-economics, the general issue of pro-cyclicality has been analysed with
respect to the implications for banking regulation. In particular, there have been many discus-
sions on the fact that, in times of crisis, banks reduce lending to firms, accentuating then the
liquidity crisis. It is thus not surprising that discussions have mostly focused on credit risk mea-
surement. For a more general review on bank pro-cyclicality, we refer to Athanasoglou et al.
(2014), Quagliariello (2008), and the references therein. Note also the paper by Behn et al. (2016),
where the authors use a quasi-experimental setup to show that model-based regulation in credit
risk, which implies an increase in capital requirements, can increase the lack of credit. Regulatory
authorities in different sectors (as BIS1 for Basel III (where a “counter-cyclical” capital buffer has
been created), EIOPA2 for Solvency 2, and ESMA3 for derivative exchanges), have then proposed
solutions to reduce pro-cyclicality (see Basel Committee on Banking Supervision, 2019, RBC30 &
RBC40, Solvency 2 Directive, 2009 art.77b-d, 106, RTS (European Union), 2013 art.28). Studies
such as Repullo & Saurina (2011), Rubio & Carrasco-Gallego (2016) and Llacay & Peffer (2019)
deal with these new proposals in regulation and review its consequences on the phenomenon. In
Bräutigam (2020), we tackled the topic differently, taking a statistical point of view to investigate,
empirically and theoretically, the pro-cyclicality of the VaR historical estimation (i.e. a VaR esti-
mation based purely on the empirical distribution of the data), showing that pro-cyclicality exists
even beyond business cycles. Our approach, presented in Bräutigam et al. (2022), allowed us to
quantify the pro-cyclicality for the first time. To evaluate the quality of the VaR prediction 1 year
ahead, we introduced a ratio, referred to as “look-forward ratio”, that compares the VaR prediction
with its realisation. Using the realised volatility to characterise the market state, we observed an
opposite behaviour over time between the estimated look-forward ratio and the realised volatility
(see e.g. Bräutigam et al., 2022, Figure 2). By how much this ratio is over- or underestimated for
high or low volatility can also be direcly represented through volatility binning, as in Bräutigam
et al. (2022, Figure 4), providing the amount of over- and under-estimated capital. This might
be a useful representation for risk management purposes. This led us to assess the pro-cyclicality
via the degree of negative dependence between the two estimators. Subsequently, we identified
two main factors characterising the observed pro-cyclical effect for the VaR. The clustering and
return-to-the-mean of volatility, as expected, and,more surprisingly, the very way risk is measured
on historical data, independently of the business cycles.

To investigate further this pro-cyclicality issue, we explore it more generally, considering
quantile-based risk measures beyond the VaR, namely ES and expectile. In doing so, we question
the appropriateness of measuring risk based on the empirical distribution of the data when con-
sidering those quantile-based risk measures for both models, static (iid) and dynamic (GARCH)
ones. Moreover, as the realised volatility is used as a proxy for the market state, as in Bräutigam
(2020) and Bräutigam et al. (2022), we also take into account the impact of the choice of its esti-
mator when quantifying the pro-cyclicality. In the financial literature, the standard deviation
is the usual realised volatility estimator; how does the pro-cyclicality behaviour change when
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choosing other realised volatility estimators? To answer these two questions, we build on the
methodology set in Bräutigam (2020) and Bräutigam et al. (2022) when working with the VaR.
We prove asymptotic normality of the joint distribution of the logarithm of the look-forward
ratio and the dispersion measures estimators, whatever the risk measure, VaR, ES or expectile,
and whatever the choice of dispersion measure to estimate the volatility. We thereby assess theo-
retically the pro-cyclicality of risk measurements made on historical data in a general framework
through the degree of negative correlation between the components of this asymptotic distribu-
tion. This contribution complements the economic studies on the topic of pro-cyclicality and sets
the results in Bräutigam et al. (2022) in a broader perspective. To our knowledge, this was an
unexplored subject, and timely in its exploration given that this historical method is still used
predominantly in practice, whatever the approach, unconditionnally or conditionnally; see e.g.
Pérignon & Smith (2010) or European Banking Authority (2019) for quantitative surveys on this
matter.

Resorting to historical types of measurement can be explained not only by an easy implemen-
tation but also by the reduction to a one-dimensional risk-measure estimation problem, without
having to estimate the multivariate distribution of the risk vector nor taking into account the
dependence between risk-factor changes. By construction, an unconditional approach neglects the
dynamics of the data, leading generally to a poor estimation. Considering conditional approaches
based on historical simulation from a univariate time series loss model certainly represents an
improvement. For instance, a well-known method named filtered historical simulation applies
empirical quantile estimation to the residuals of GARCHmodels. Although the conditional infor-
mation will be more restricted than if considering the full multivariate setting, this method, of
current use in practice, often works well. See e.g. McNeil et al. (2015) for further discussions.
Our results cover both approaches of historical estimation of risk measures, conditional and
unconditional, and conclude to the existence of pro-cyclicality in either case, and whatever the
quantile-based risk measure considered. They also confirm the two main factors characterising
pro-cyclicality.

To examine the relevance of our asymptotic theoretical results in a finite sample setting, we per-
form a simulation study in the iid case considering light and heavy tails of distributions. This study
validates the appropriateness of the theoretical results to practically relevant situations, ensuring
that one can expect the same conclusions in practice. Therefore, we canmeaningfully compare the
impact of choices of risk measures and dispersion measures on the degree of pro-cyclicality, when
taking into account the fatness of the tail of the underlying distribution. This step being done, we
turn to real data to verify that historical risk measurements lead to pro-cyclicality, irrespectively
of the choice of quantile-based risk measures and dispersion measures, but also irrespectively
of the choice of conditional versus unconditional approaches for risk estimation. Indeed, using
Theorem 1 in conjunction with the good finite sample performance, we are able to confirm both
main factors of pro-cyclicality, the clustering and return-to-the-mean of volatility and the way
risk is measured on historical data independently of the business cycles.

The paper is organised as follows. In Section 2, we introduce the notation, the definitions
of risk measures and measures of dispersion, and the setup of the statistical framework for our
study. Section 3 derives the asymptotic joint distribution of the involved estimators proving the
pro-cyclicality of risk measurements made on historical data. In Section 4, a simulation study
is undertaken in the iid case to compare the effect of the choice of risk measure and dispersion
measure and their estimators on pro-cyclicality. Then, in Section 5, we check about the two main
factors explaining pro-cyclicality when considering real data. With this, we conclude to the pres-
ence of the pro-cyclical effect of traditional risk measurements (i.e. purely based on historical
data), whatever the choice of risk measure and of volatility estimators. Proofs of theoretical results
are deferred to the Appendix, while complementary material to Sections 4 and 5 are deferred to
the Online Supplementary Appendix hosted by the journal.
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2. Framework
Notation

Let X be a random variable (rv) with cumulative distribution function (cdf) FX , and, given
they exist, probability density function (pdf) fX , mean μ, variance σ 2, as well as, for any integer
r ≥ 1, the r-th absolute centred moment, μ(X, r) :=E[|X − μ|r] and quantile of order p defined
as qX(p) := inf{x ∈R:FX(x)≥ p}. For a n-sample (X1, · · · , Xn), we denote the associated order
statistics by X(1) ≤ ...≤ X(n).

Recall the sample estimator of the quantile for any order p ∈ (0, 1], defined as qn(p)=
X(�np�), where �x� =min {m ∈Z:m≥ x}, 	x
 =max {m ∈Z:m≤ x} and [x], are the rounded-up,
rounded-off integer parts and the nearest integer of a real number x ∈R, respectively.

The r-th absolute centred sample moment is defined, for r ∈N, by

m̂(X, n, r) := 1
n

n∑
i=1

|Xi − X̄n|r, (1)

X̄n denoting the empirical mean. Special cases of this latter estimator include the sample variance
(r = 2) and the sample Mean Absolute Deviation (denoted as MAD) around the sample mean
(r = 1).

Some standard notations: uT for the transpose of a vector u and, for the signum function,
sgn(x) := − 1(x<0) + 1(x>0). Moreover the notations d→, a.s.→, P→, and

Dd[0,1]→ correspond to the
convergence in distribution, almost surely, in probability and in distribution of a random vector
in the d-dimensional Skorohod space Dd[0, 1]. Further, for real-valued functions f , g, we write
f (x)=O(g(x)) (as x→ ∞) if and only if there exists a positive constant M and a real number x0
s.t. |f (x)| ≤Mg(x) for all x≥ x0, and f (x)= o(g(x)) (as x→ ∞) if for all ε > 0 there exists a real
number x0 s.t. |f (x)| ≤ εg(x) for all x≥ x0. Analogously, for a sequence of rv’s Xn and constants
an, we denote by Xn = oP(an) the convergence in probability to 0 of Xn/an.

Risk Measures
Let us recall the definitions of the risk measures we consider in this paper. One of the most used

risk measures is Value-at-Risk (VaR), popularised by JP Morgan in 1996 (see Morgan & Reuters,
1996), and defined as follows: If we assume a loss random variable L having a continuous, strictly
increasing distribution function FL, the VaR at level p of L is simply the quantile qL(p) of order p
of L:

VaRp = inf
{
x : P[L≤ x]≥ p

}
= qL(p). (2)

Despite the availability of other approaches, in practice the VaR is usually estimated on historical
data (see e.g. Pérignon & Smith, 2010 or European Banking Authority, 2019) for quantitative
surveys on this matter), using the empirical quantile V̂aRn(p)= qn(p) associated to a n-loss sample
(L1, . . . , Ln) with p ∈ (0, 1).

VaR has been shown not to be a coherent risk measure, Artzner et al. (1999), contrary to
Expected Shortfall (ES), introduced in slightly different formulations in Artzner et al. (1997, 1999),
Acerbi & Tasche (2002), Rockafellar & Uryasev (2002). ES is defined as follows (e.g. Acerbi &
Tasche, 2002) for a loss random variable L and a level p ∈ (0, 1):

ESp = 1
1− p

∫ 1

p
qL(u)du=E[L|L≥ qL(p)]. (3)

While the first equality in (3) is the definition of ES, the second one holds only if L is continu-
ous. There are different ways of estimating ES, we focus on the two most direct ones when using
historical estimation.
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First, simply approximating the conditional expectation in (3) by averaging over k sample
quantiles, i.e.

ẼSn,k(p) := 1
k

k∑
i=1

qn(pi), (4)

for a specific choice of p= p1 < p2 < ...< p:k< 1. This was e.g. proposed in Emmer et al. (2015)
in the context of backtesting expected shortfall (using pi = 0.25 p(5− i)+ 0.25(i− 1), i= 1, ..., 4).

Another way was proposed in Chen (2008) and can be seen as a special case of ẼSn,k(p) choosing
k= n− [np]+ 1 and the pi accordingly, estimating it as a conditional mean of the sample:

ÊSn(p) := 1
n− [np]+ 1

n∑
i=1

Li 1(Li≥qn(p)). (5)

The discussions about which riskmeasure would bemost appropriate to use for evaluating the risk
of financial institutions have often included a third risk measure, the expectile. It was introduced,
in the context of least-squares estimation in Newey & Powell (1987) and later used as a risk mea-
sure in finance and actuarial science (see e.g. Kuan et al., 2009; Bellini et al., 2021 and references
therein, to refer to the pioneering paper and a very recent one, respectively). This risk measure
satisfies many favourable properties (in particular for backtesting), making it appealing from a
theoretical point of view (see e.g. Bellini & Bignozzi, 2015; Ziegel, 2016 and references therein).
It is defined, for a square-integrable loss random variable L and level p ∈ (0, 1), by the following
minimiser

ep = argminx∈R
(
pE[ max (L− x, 0)2]+ (1− p)E[ max (x− L, 0)2]

)
. (6)

There are various ways to estimate the expectile, the most natural one being the argmin of the
empirical version of (6). Here, for simplicity, we choose to estimate it through a sample quantile
using the following relation given in Yao &Tong (1996): Let qL(p) be the quantile at level p ∈ (0, 1),
then there exists a bijection κ :(0, 1) → (0, 1) such that eκ(p)(L)= qL(p) with

κ(p)= p qL(p)−
∫ qL(p)
−∞ x dFL(x)

E[L]− 2
∫ qL(p)
−∞ x dFL(x)− (1− 2p)qL(p)

. (7)

Thus, we consider the sample estimator for the expectile at level p denoted as

ên(p) := qn(κ−1(p)). (8)
As unified notation representing these risk measures and their estimators defined above, we
introduce, for j= 1, ..., 4:

ζ (j)(p)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

VaRp for j= 1,

ESp for j= 2,

ESp for j= 3,

ep for j= 4,

with estimators ζ
(j)
n (p)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V̂aRn(p) for j= 1,

ÊSn(p) for j= 2,

ẼSn,k(p) for j= 3,

ên(p) for j= 4.

(9)

Since we will work in a dynamic setting, time needs to be introduced. Therefore, we introduce a
time-series notation of our estimated quantities. By

V̂aRn,t(p), ÊSn,t(p), ẼSn,k,t(p), ên,t(p), ζ
(j)
n,t(p), (10)

we denote the corresponding estimators estimated at time t over the last n observations before
time t.
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Framework setup
The samples considered in this study will be either realisations from iid rv’s (white noise pro-

cess) or from augmented GARCH(p, q) processes (with the latter naturally including the former
as a special case), since they include two families that allow one to isolate the pro-cyclicality
effects, as shown in Bräutigam (2020) (see also Bräutigam et al., 2022): One is the iid model
that exemplifies the inherent part of pro-cyclicality (due to the use of historical estimation),
and the other is the GARCH(1,1) model that shows that pro-cyclicality is caused by GARCH
effects, i.e. return-to-the-mean and clustering of volatility (thus further amplifying the effect of
pro-cyclicality).

Recall that an augmented GARCH(p, q) process X = (Xt)t∈Z, due to Duan (1997), satisfies, for
integers p≥ 1 and q≥ 0,

Xt = σt εt (11)

with �(σ 2
t )=

p∑
i=1

gi(εt−i)+
q∑

j=1
cj(εt−j)�(σ 2

t−j), (12)

where (εt) is a series of iid rv’s with mean 0 and variance 1, σ 2
t =Var(Xt) and �, gi, cj, i=

1, ..., p, j= 1, ..., q, are real-valued measurable functions. Also, as in Lee (2014), we restrict the
choice of � to the so-called group of either polynomial GARCH(p, q) or exponential GARCH(p,
q) processes:

(Lee) �(x)= xδ , for some δ > 0, or �(x)= log (x)
Using this family of processes, let us now explain how we proceed to assess the pro-cyclicality
of the proposed risk measure estimators (defined in (9) and (10)), based on the methodology
developed in Bräutigam (2020) and Bräutigam et al. (2022). Namely, we use an indicator, the
look-forward ratio, that quantifies the difference between the historically predicted risk and the
estimated realised future risk (measured ex post) by considering the ratio of those two quanti-
ties: ζ (j)

n, t+n(p)/ζ
(j)
n, t(p) (with the time-series notation, i.e. estimation at any time t, t + n over the

last n observations before time t, t + n). We study this ratio as a function of the realised volatility
(a proxy for market states). Then, we investigate theoretically the dependence between the look-
forward ratio and the realised volatility estimated with the r-th absolute central sample moment
(1), denoted m̂(X, n, r, t) (or m̂(n, r, t) when no confusion possible). A negative dependence will
characterise the degree of pro-cyclicality of the considered risk measures estimators. As their
dependence is nonlinear, we study the joint asymptotic distribution between the logarithm of the
look-forward ratio and the r-th absolute central sample moment.

Note that the two quantities defining the look-forward ratio are estimators defined on disjoint,
finite samples. Thus, some care has to be taken to translate the setting from a finite sample of
overall size n, into an asymptotic one, where n→ ∞. In order to simplify computations, we use a
little trick to obtain the disjointness of the estimators. Namely, we consider ζ

(j)
n/2, t+n/2(p), ζ

(j)
n/2, t(p)

and m̂(n/2, r, t), where we assume w.l.o.g. that n/2 is an integer. It means that the estimators are
evaluated on a sample of size n/2 each.

Denoting the correlation of the asymptotic distribution for the two quantities of interest, to ease
and by abuse of notation, as

lim
n→∞ Cor

⎛⎝log

∣∣∣∣∣∣ζ
(j)
n/2, t+n/2(p)

ζ
(j)
n/2, t(p)

∣∣∣∣∣∣ , m̂(X, n/2, r, t)

⎞⎠ , j= 1, ..., 4, r > 0, (13)

the measure of the pro-cyclicality of risk measure estimators amounts then to the degree of
negative correlation of (13).
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3. An Asymptotic Theorem for Assessing Pro-Cyclicality
Let us now present the main result on pro-cyclicality. For the ease of presentation, the main the-
orem is presented in Section 3.1 while the discussion and explanation of the specific conditions
under which this result holds are deferred to Section 3.2.

3.1 Main result
Extending the study Bräutigam et al. (2022) (see also Bräutigam, 2020) performed for the VaR, we
provide here a general asymptotic theorem to assess theoretically the negative dependence for the
historical estimators of any of the considered risk measures and any of the dispersion measures.
With such a generality, it highlights even more the impact of historical risk measurements on
pro-cyclicality. Moreover, we state this main theorem for the large family of augmented GARCH
processes (defined in (11) and (12)), including of course the two models, iid and GARCH(1,1),
which we used to isolate and prove the effect of pro-cyclicality. This generalisation is made for
modelers using more sophisticated GARCH models as e.g. HAR, EGARCH, to model the volatil-
ity dynamics. To allow for such an extension, we need a set of conditions for the asymptotic
theorem to hold. The simpler the model, the weaker the conditions. Those conditions will be
made specific after the statement of the theorem (in Section 3.2) to discuss them, from the sim-
plest iid case, which is also more intuitive, to the general augmented GARCH case that requires
more work.

Let us present the result in its full generality. We refer to Appendix A for its proof.

Theorem 1 Let X = (Xt)t∈Z be either a white noise process or from the family of augmented
GARCH(p,q) processes and have stationary distribution with its cdf, pdf, and quantile denoted as
FX , fX , qX, respectively. Consider a risk measure estimator ζ

(j)
n (p), j ∈ {1, ..., 4}, and the r-th abso-

lute central sample moment m̂(n, r), for a chosen integer r > 0. Given the choice of process, risk and
dispersion measures, assume its corresponding set of conditions (given explicitly in Section 3.2), i.e.
either one of (S1), (S2), (S3), (S4) in the iid case, or one of (S∗

1), (S
∗
2), (S

∗
3), (S

∗
4) when X belongs to the

the family of augmented GARCH(p,q) processes.
Then, the asymptotic distribution of the logarithm of the look-forward ratio of the risk mea-

sure estimator with the r-th absolute central sample moment, at any given fixed time t, is bivariate
normal, i.e.

√
n

⎛⎜⎝ log
∣∣∣∣ ζ (j)n/2, t+n/2(p)

ζ
(j)
n/2, t(p)

∣∣∣∣
m̂(n/2, r, t)− μ(X, r)

⎞⎟⎠ d→N (0, �̃),

with �̃ = (�̃ik)1≤i, k≤2 and �̃ik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4�ik/

(
ζ (j)(p)

)2 for i= k= 1,

2�ik for i= k= 2,

−2�ik/ζ
(j)(p) otherwise,

� being the covariance matrix of the asymptotic bivariate distribution between ζ
(j)
n (p) and m̂(n, r)

(see Appendix A.1 for the explicit expressions in the different cases). In particular, the correlation of
this asymptotic bivariate distribution equals

�̃12√
�̃11

√
�̃22

= −1√
2
sgn(ζ (j)(p))

�12√
�11

√
�22

= −1√
2

|�12|√
�11

√
�22

, (14)

thus, it is always nonpositive.
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3.2 Discussion of the conditions sets
Let us introduce and explain the different types of conditions we need to consider.

First, we impose four conditions on the distribution function FX . They are needed for the
asymptotic representation of the different risk measure (and measure of dispersion) estimators:
The continuity of FX (or its l-th derivative), the l-fold differentiability of FX for any integer l> 0,
and the positivity of its density fX . These conditions hold at a given point or neighbourhood and
are named as

(C0) FX is continuous,
(Cl) the l-th derivative of FX is continuous,
(C′

l) FX is l-times differentiable,
(P) fX is positive.

Equally, to establish any Cental Limit Theorem (CLT), we need a condition on the finiteness of
the moments of the innovation process of the augmented GARCH process, (Mk), for k ∈N,

(Mk) E[|ε0|2k]< ∞.
To motivate which of these conditions are exactly needed for asymptotic theorem, let us infor-
mally explain how to establish (13) considering the iid case. In a later step, we then point out the
additional conditions needed for the class of augmented GARCH(p, q) processes.

IID case – In this case, recall that the sample used for any risk measure estimator at time t +
n/2, ζ (j)

n/2, t+n/2(p), is, by construction, disjoint from the sample used at time t. Thus, the estimator
ζ
(j)
n/2, t+n/2(p) will be uncorrelated with the r-th absolute centred sample moment m̂(n/2, r, t), at
time t, as well as with the risk measure estimator ζ

(j)
n/2, t(p) at time t.

Translating this for the correlation of the asymptotic distribution (again abusing the notation),
i.e. (13), it should hold, for j= 1, ..., 4,

lim
n→∞Cor

⎛⎝log

∣∣∣∣∣∣ζ
(j)
n/2, t+n/2(p)

ζ
(j)
n/2, t(p)

∣∣∣∣∣∣, m̂(n/2, r, t)

⎞⎠= lim
n→∞

Cov(− log |ζ (j)
n/2, t(p)|, m̂(n/2, r, t))√

2Var( log |ζ (j)
n/2, t(p)|)

√
Var(m̂(n/2, r, t))

= −1√
2

lim
n→∞ Cor( log|ζ (j)

n, t(p)|, m̂(n, r, t))= −1√
2

∣∣∣ lim
n→∞ Cor(ζ (j)

n, t(p), m̂(n, r, t))
∣∣∣ , (15)

where the first equality follows by the uncorrelatedness (which also holds for finite n), the second
by the scale invariance of the correlation, and the third as a consequence of the Delta-method with
the logarithm.

Thus, in the iid case, establishing (13) reduces to proving a joint asymptotic normality between
ζ
(j)
n, t(p) and m̂(n, r, t). To do so, we need conditions to obtain an appropriate representation of
the risk measure estimator ζ

(j)
n, t(p) and moment conditions depending on the chosen dispersion

measure m̂(n, r, t). We group the set of conditions (Sj) by the choice of risk measure ζ
(j)
n, t(p), j=

1, ...4, for a given measure of dispersion m̂(n, r, t), r ∈N, where

(S1)= S(p) and (S4)= S
(
κ−(p)

)
with S(·):

⎧⎪⎨⎪⎩
(C′

1)(see (C
′
l)) at qX(·)

(P) at μ for r = 1, and at qX(·)
(Mr)(see (Mk))

(S2):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(C3)(see (Cl)) in a neighbourhood of qX(p)
FX absolutely continuous
(Mr) and (M1+γ )(see (Mk)) for some γ > 0
(P) at μ for r = 1

and (S3):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
For l= 2, ..., k:
S(pl)
(C′

1)(see (C
′
l)) at qX(pl)

(P) at qX(pl)
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AugmentedGARCH(p, q) –Clearly, in the case of the augmented GARCH(p, q) processes family,
we will need additional conditions for the asymptotic normality to hold. There are two reasons for
this. First, the conditions to establish such a limit theorem are stronger. Second, any two estima-
tors, even if computed over disjoint samples, might be correlated (in contrast to the iid case), so
the argumentation in (13) does not hold without further requirements.

Let us first discuss conditions for establishing a bivariate asymptotic theorem between ζ
(j)
n, t(p)

and m̂(n, r, t) for the family of augmented GARCH(p, q) processes.
Note that already for a strictly stationary solution to (11) and (12) to exist, the functions�, gi, cj

as well as the innovation process (εt)t∈Z have to fulfil some regularity conditions (see e.g. Lee, 2014,
Lemma 1), namely the positivity of the functions used, (A), and the boundedness in Lr-norm for
either the polynomial GARCH, (Pv), or exponential/logarithmic GARCH, (Lv), respectively, for a
given integer v> 0:

(A) gi ≥ 0, cj ≥ 0, i= 1, ..., p, j= 1, ..., q,

(Pv)
p∑

i=1
‖gi(ε0)‖v < ∞,

q∑
j=1

‖cj(ε0)‖v < 1,

(Lv) E

[
exp

(
4v

p∑
i=1

|gi(ε0)|2
)]

< ∞,
q∑

j=1
|cj(ε0)| < 1.

Note that Condition (Lv) requires the cj to be bounded functions.
It was shown by Lee that these conditions are sufficient conditions for establishing a CLT for the

volatility process (see Lee, 2014, Corollary 1) and, together with the finiteness of the innovations
process, i.e. (Mr) (see (Mk)), also for the CLT of the augmented GARCH(p, q) process itself.

For this, Lee exploited the known fact that the L2-near-epoch dependence (L2-NED) paired
with corresponding finite moments is a sufficient condition for establishing the CLT.

Let us recall the concept of Lp-near-epoch dependence (Lp-NED), using a definition due to
Andrews (1988) but restricted to stationary processes. Let (Zn)n∈Z, be a sequence of rv’s andF t

s =
σ (Zs, ..., Zt), for s≤ t, the corresponding sigma-algebra. By |·|, we denote the Euclidean norm and
the usual Lp-norm is denoted by ‖ · ‖p :=E

1/p[|·|p].
Definition 2 (Lp-NED, Andrews, 1988) For p> 0, a stationary sequence (Xn)n∈Z is called Lp-NED
on (Zn)n∈Z if, for k≥ 0,

‖X1 −E[X1|Fn+k
n−k ]‖p ≤ ν(k),

for non-negative constants ν(k) such that ν(k)→ 0 as k→ ∞.
If ν(k)=O(k−τ−ε) for some ε > 0, we say that Xn is Lp-NED of size (−τ).
If ν(k)=O(e−δk) for some δ > 0, we say that Xn is geometrically Lp-NED.

Now that we have discussed the conditions for establishing a CLT, let us go back to (13) and
the fact that two estimators, even if computed over disjoint samples, might be correlated as those
processes exhibit dependence. In this case, we show that the condition of strong mixing with geo-
metric ratemakes the estimators on disjoint samples asymptotically uncorrelated, thus, recovering
structurally the pro-cyclicality behaviour as in the iid case. It means that, besides L2-NED depen-
dence, also strong mixing with geometric rate is an additional condition needed for the class of
augmented GARCH(p, q) processes.
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Let us recall for completeness the notion of strong mixing, denoting for a sequence of random
variables (Zn)n∈Z the corresponding σ -algebra as F t

s = σ (Zs, ..., Zt) for s≤ t:

Definition 3 (Strong mixing) Define, as measure of dependence, for any integer n≥ 1,

α(n) := sup
j∈Z

sup
C∈F j

−∞,D∈F∞
j+n

|P(C ∩D)− P(C)P(D)|. (16)

The sequence of rv’s (Zn)n∈Z is called strongly mixing if α(n)→ 0 as n→ ∞. It is called strongly
mixing with geometric rate if there exist constants λ ∈ (0, 1) and c such that α(n)≤ cλn for every n.

If we denote the set of conditions for the family of augmented GARCH(p, q) processes X by
(S∗

j ) (as extension to the set of conditions (Sj) in the iid case), again grouped by the choice of risk

measure ζ
(j)
n, t(p), j= 1, ...4, for a given measure of dispersion m̂(n, r, t), r ∈N, we get:

(S∗
1)= S∗(p) and (S∗

4)= S∗(κ−(p)) with S∗(·):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C′
2)(see (C

′
l)) at qX(·)

(P) at μ for r = 1, and at qX(·)
(Mr+τ )(see (Mk)) for some τ > 0
X strongly mixing with geometric rate
(Lee) and (A)
(Pmax (1, r

δ
))(see (Pv)) if X is polynomial GARCH

(Lr)(see (Lv)) if X is exponential GARCH

(S∗
2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(S∗
1)

FX absolutely continuous
(C3)(see (Cl)) in a neighbourhood of qX(p)
(M1+γ )(see (Mk)) for some γ > 0 for r = 1
All the 2nd partial derivatives of the bivariate
distribution of (X1, Xk+1) for k≥ 1, are
bounded in a neighbourhood of qX(p)

and (S∗
3):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
For l= 2, ..., k:
S∗(pl)
(C′

1)(see (C
′
l)) at qX(pl)

(P) at qX(pl)

4. Comparing the Pro-Cyclicality of Risk Measures
We consider two different applications in this section. Both aim at further understanding the
theoretically proven pro-cyclicality behaviour of the different risk measures in conjunction with
the corresponding volatility estimators.

First, in Section 4.1, we evaluate empirically in a simulation study for light (Gaussian) and
heavy-tailed distributions (Student-t distribution with 5 and 3 degrees of freedom) how well the
finite sample results, as one encounters in practice, approximate the theoretical asymptotics.

Subsequently, in Section 4.2, we compare, for the same distributions and estimators as in
Section 4.1, the strength of the theoretical correlation of the asymptotic distribution – thus
comparing the existing degree of pro-cyclicality between the different risk measures.

4.1 Simulation study: finite sample performance
As in practice the estimation of risk measures occurs on a finite sample (usually a sample of 1 year
of data which corresponds to 252 data points), we want to assess the finite sample performance,
in view of the asymptotic results obtained in Theorem 1. When working with data, we estimate
the risk measure and volatility estimators on finite samples of size n. To subsequently evaluate the
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corresponding covariance and correlation empirically we need, say l, independent realisations of
these risk measure and realised volatility estimators.

To assess the finite sample performance, we conduct a simulation study following a similar but
more general setup than in Section 4.1 of Bräutigam et al. (2022). We simulate an iid sample with,
e.g. mean μ = 0 and variance σ 2 = 1, from three different distributions each: Either a Gaussian
distribution or Student t distributions with 3 and 5 degrees of freedom, respectively. The sample
is of varying size n× l. It is determined by the fact that we use different sample sizes n for the esti-
mation of either the risk measure or volatility, with n= 126, 252, 504, 1, 008 (being multiples or
fractions of 1 year of data, i.e. 252 working days/data points), and different lengths l correspond-
ing to the independent realisations of the risk measure or realised volatility estimator to estimate
the sample correlation of interest.

Taking the example of risk levels relevant in practice (this means p= 0.99 for the VaR and p=
0.975 for the ES in the standard Basel regulation; for the expectile, it has been suggested in Bellini
& Di Bernardino (2017) to consider p= 0.99855), we consider p= 0.95, 0.975, 0.99, 0.99855.
For each risk level, we compute l independent realisations of each risk measure estimator
(ζ (j)

n,k(p))k=1,...,l, j= 1, 2, 3, 4 on disjoint samples and, accordingly, l realisations of the realised
volatility estimator (m̂(X, n, r))k)k=1,...,l, r = 1, 2, i.e. focussing on the standard deviation andMAD
for the latter.

We then estimate Cor
(
log

∣∣∣∣ ζ (j)n/2, t+n/2(p)

ζ
(j)
n/2, t(p)

∣∣∣∣ , m̂(X, n/2, r, t)
)
, j= 1, 2, 3, 4, r = 1, 2 by its sample

correlation (denoted by Ĉor), using these l pairs of independent realisations of the estimators. This
procedure is repeated 1,000-fold in each case. We report the averages of the 1,000-fold repetition
with, into brackets, the corresponding empirical 95% confidence interval. Further, we provide
as benchmark the theoretical value of the correlation in its asymptotic distribution, denoted as
“(n→ ∞)” in the last column. The explicit expressions in the case of a Gaussian or Student dis-
tribution of the correlation of the asymptotic distribution used to calculate the theoretical values
in the tables can be derived from Theorem 1 (and can be found in Appendix B.1).

In this section, we study exemplarily the finite sample performance of the historical Expected
Shortfall estimator as risk measure estimator and the MAD as realised volatility estimator. We
focus on the approximation of the correlation of the asymptotic distribution by its sample corre-
lation as a function of the sample size n and the three different distributions considered. As risk
levels, we consider p= 0.95 and p= 0.99. Thus, we fix the length of the sample correlation time
series to l= 50 (from simulations performed with different sample sizes, we saw that this is long
enough for a good estimation of the correlation; see Appendix D).

The other cases, VaR, expectile as risk measures, standard deviation as realised volatility esti-
mator and other risk levels, show a similar behaviour and can be found in the extensive appendix
for the simulation studies (see Appendix D).

Thus, let us look at the results displayed in Table 1. First, we consider the risk level p= 0.95.
For the three distributions, we see that a sample size of n= 126 suffices to estimate on average
the correlation of the asymptotic distribution well enough (with slightly less precision for heavier
tailed distributions). For the higher risk level p= 0.99, one can observe that the convergence to
the theoretical value is slower and a sample size of n= 126 does not yield as accurate results as for
p= 0.95. Nevertheless, considering a sample size frequently used in practice, n= 252, i.e. 1 year of
data, gives a sufficiently accurate picture. Note also that the size of the empirical confidence inter-
vals depend on the size of the sample correlation, here chosen to be l= 50 (recall that the results
for other values of l can be found in Appendix D). They are in line with what is to be expected for
l= 50: To show this, we can build confidence intervals for the sample Pearson correlation coeffi-
cient around the theoretical value (using the classical variance-stabilising Fisher transform of the
correlation coefficient for a bivariate normal distribution to compute the confidence intervals –
see the original paper Fisher, 1921 or e.g. a standard encyclopedia entry Rodriguez, 1982).
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Table 1. Average values from a 1,000-fold repetition. Comparing the sample Pearson correlations of the log-ratio of the
historical Expected Shortfall with the sample MAD, as a function of the sample size n on which the quantile is estimated
(fixed length l= 50 of the bivariate sample used to estimate the correlation). We consider the thresholds p= 0.95, 0.99.
Underlying samples are simulated from a Gaussian, Student(5) and Student(3) distributions. Average empirical values
are written first (with empirical 95% confidence interval in brackets). The theoretical correlation value in the asymptotic
distribution “(n→ ∞)” are provided as benchmark in the last column.

ES and MAD n= 126 n= 252 n= 504 n= 1, 008 Theoretical value
(n→ ∞)

Gaussian distr.


p= 0.95 −32(− 56,−7) −32(− 56,−5) −32(− 55,−7) −32(− 55,−7) −32


p= 0.99 −22(− 48, 5) −21(− 46, 8) −21(− 46, 6) −20(− 45, 8) −19


Student(5) distr.


p= 0.95 −38(− 60,−13) −37(− 58,−12) −38(− 59,−14) −38(− 57,−14) −37


p= 0.99 −30(− 55,−4) −27(− 53,−2) −28(− 51,−2) −27(− 50,−2) −26


Student(3) distr.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p= 0.95 −42(− 63,−15) −42(− 64,−17) −43(− 63,−17) −43(− 63,−21) −43


p= 0.99 −37(− 59,−9) −36(− 59,−7) −36(− 59,−9) −36(− 58,−11) −35

4.2 Theoretical comparison
Having confirmed in the previous section the validity of the theoretical results in a sample size
setting used in practice, we are interested in the following in comparing the degree of (theoretical)
pro-cyclicality depending on the choice of volatility estimator, the risk measure (estimator), and
the heavy-tailedness of the distribution. As for the simulation study, we consider underlying iid
models and evaluate the degree of negative correlation in the asymptotic distribution of the log-
ratio of risk measure estimators with measure of dispersion estimators, given in (13).

As risk measure estimators, we consider the VaR estimator V̂aRn(p), the expectile estimator
ên(p), and three ES estimators, ẼSn,4, ẼSn,50 and ẼSn,∞ (=ÊSn). As in the simulation study, we
focus on the sample MAD m̂(X, n, 1) and the sample variance m̂(X, n, 2) as they are the two most
common realised volatility estimators.

As, from a risk management perspective, only large values for the risk level p ∈ (0, 1) are rel-
evant, we focus on those cases. When considering the tail of the distribution, we choose the
Gaussian distribution, N (0, 1), for its light tail, and, for heavy tailed distributions, the Student-
t ones with varying degrees of freedom ν (ν = 3, 4, 5, 10, 50) but always normalised to have mean
0 and variance 1.

The closed form solutions for the degree of pro-cyclicality in the aforementioned cases follow
from Theorem 1 and its corresponding bivariate CLT’s, and can be found in Appendix B.1. Here,
we focus on visualising the solutions and comparing them.
Gaussian Distribution. In Figure 1, we plot the correlations in the asymptotic distribution of the
different risk measure estimators with the sample standard deviation (left) and the sample MAD
(right), respectively.

Observing the different plots, we can make the following claims on the pro-cyclicality
behaviour for the Gaussian distribution (as an example of a light-tailed distribution).

We observe a switch of behaviour in the tail. The degree of pro-cyclicality for tail values for
different risk measures has a turning point in the tail in which the ordering is reversed. For quan-
tile values below the turning point, the ES exhibits the highest pro-cyclicality, then the VaR and
then the expectile. After the turning point, this exact ordering is reversed. The choice of dispersion
measure has no real impact in this case, as the behaviour looks similar with MAD and variance.
The ordering of the different riskmeasures with respect to pro-cyclicality is the same forMAD and
variance – also roughly their magnitude of pro-cyclicality. What differs is the location of the turn-
ing point: It is further in the tail with the variance (around 0.97) than with MAD (around 0.92).
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Figure 1. Gaussian case. Pro-cyclicality as defined in (13), considering on each plot three different risk measures (VaR, ES,
evaluated in three possible ways, and expectile) for a risk level higher than 80%. On the left with the standard deviation, on
the right with the sample MAD.

Considering VaR and ES, the values of the correlation are very similar after the turning point,
while before, the pro-cyclicality for ES can be markedly (depending on the estimation method)
higher than for VaR. From the plots it is also clear that the expectile, with the estimation method
used, has the highest degree of pro-cyclicality in the far tail. It could be tested if this observation
remains true when taking another method to estimate the expectile. We do not do it here, since
the expectile is not yet a risk measure used in practice.

Student t Distribution. By considering the Student t distribution, we are interested in under-
standing how the observed behaviour may change with heavy-tailed distributions. Exemplary, we
consider the case ν = 5 in Figure 2 since we need ν > 4 for (M2) (see (Mk)) to hold. However, in
Appendix B (see Figure 1), we include an analysis when looking at different degrees of freedom
(ν = 3, 4, 5, 10, 40), investigating how the correlations change as a function of ν, also comparing
them with the Gaussian limiting case.

In Figure 2, we observe that, for this heavy-tailed distribution, the correlation behaviour
depends on the dispersion measure considered. Indeed, in contrast to the Gaussian case, the exis-
tence of the turning points depends on whether we use the sample variance or the MAD: It does
not exist with the sample variance, but appears with the MAD (as for the Gaussian distribution)
– with the location of the turning point having shifted further into the tail. Moreover, the degree
of pro-cyclicality for the VaR and ES is very different when choosing the variance, whereas for the
MAD (where the turning point still exists as in the Gaussian case), the tail behaviour is similar
for both risk measures. For the expectile, the correlation behaviour is similar as in the Gaussian
case, except in the extreme case when the quantile level p tends to 1: in such a case, the correlation
does not tend to 0 but to a non-zero value, for both measures of dispersion. Moreover, the
pro-cyclicality is the highest in the far tail for the sample MAD (right plots), as in the Gaussian
case, but not anymore for the sample variance.

Implications of the pro-cyclicality for the choice of risk measure. Let us end the compari-
son of the pro-cyclicality in Gaussian and Student iid models for the different risk measures by
commenting on its implications for the choice of risk measure.

From the observations made on the figures, we have seen that the pro-cyclicality behaviour
depends on the choice of the underlying risk measure, the dispersion measure, and also on the
type of tail distribution. But, as already proven through Theorem 1, pro-cyclicality is inherent
to and present (to a significant degree) with all risk measures due to the method of estimation,
namely the historical estimation.
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Figure 2. Case of a Student-t distribution with 5 degrees of freedom. Pro-cyclicality as defined in (13), (VaR, ES, evaluated in
three possible ways, and expectile) quantified for a risk level higher than 80%. On the left with the standard deviation, on the
right with the sample MAD.

5. A Case Study on Real Data
In this part, we want to go one step beyond the illustration of the pro-cyclicality in the iid case and
check about the effect of pro-cyclicality when considering real data. We want to use the results
of Theorem 1 to statistically verify the empirical claims on the causes of pro-cyclicality. Namely,
that the pro-cyclicality observed is partly from an intrinsic effect of using the method of histori-
cal estimation and partly due to the clustering and return-to-the-mean behaviour of volatility, as
modeled with a GARCH(1, 1), for any risk and dispersion measures.

We could compute the theoretical pro-cyclicality value for a GARCH(1, 1) process given in
Theorem 1 and compare it with the value obtained for the real data. But we do not have closed
form solutions of the correlation of the asymptotic distribution for this family of models. Further,
it is known that, for GARCH processes, the convergence to its asymptotic distribution is slow (as
argued e.g. in Mikosch & Stărică (2000) for the autocovariance/autocorrelation process). Hence,
we consider the alternative and easier way suggested in Bräutigam et al. (2022) for the VaR case:
Instead of analysing the theoretical correlation for a GARCHmodel, we analyse the residuals of a
GARCH(1, 1) fitted to the data, then the pro-cyclicality for this residual process.

Pro-cyclicality Analysis of Residuals. To start with, recall the GARCH(1,1) model:

Xt+1 = εt σt , with σ 2
t = ω + α X2

t + βσ 2
t−1 and ω > 0, α ≥ 0, β ≥ 0,

where (εt , t ∈Z) is an iid series with mean 0 and variance 1.
As in Bräutigam et al. (2022) and Bräutigam (2020), we consider 11 stock indices. The data used

are the daily closing prices from Friday, January 2, 1987 to Friday, September 28, 2018 (detailed
information about the countries and indices used can be found in Appendix C.1, Table 3). As
measure of dispersion we choose the MAD. An important motivation for choosing the MAD over
the variance as measure of dispersion is that it implies weaker conditions on the moments of the
underlying distribution (recall Theorem 1).

For each of the 11 indices, we initialise σ̂t by using 1 year of data (as “burn-in” sample) using
the fitted GARCH parameters (see Table 4 in Appendix C.1 for details). This enables us to consider
the time series of empirical residuals ε̂t := Xt+1/σ̂t .

Then, to assess the pro-cyclicality for these residuals, we compute the sample correlation
between the logarithm of the look-forward ratio and the sample MAD, recall (13) – but here, on
the time series of residuals ε̂t (and not the real data itself!). In theory, this time series of residuals
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should be iid with mean 0 and variance 1. Hence, we can exactly assess the pro-cyclicality (i.e. the
degree of negative correlation in the asymptotic distribution of the logarithm of the look-forward
ratio and the MAD) for iid models, by applying Theorem 1 (for the iid case, i.e. under milder
conditions than what would be needed for the GARCH).

To compare the sample correlation (based on a finite sample of about 300) with the theoreti-
cal asymptotic value of the correlation, we provide the corresponding confidence intervals for the
sample Pearson linear correlation coefficient (for details, see Appendix C.2). Note that they are
computed assuming a bivariate normal sample, although the bivariate normality of the logarithm
of the look-forward ratio with the sample MAD holds only asymptotically. But, from preliminary
simulation results, we observed that, for such a sample size, the empirical and theoretical confi-
dence intervals for underlying Gaussian and Student samples are similar. Thus, we feel confident
in providing those theoretical confidence intervals as approximate guidance. We then verify if the
sample correlation based on the residuals falls in these iid confidence intervals and how the sam-
ple correlation based on the real data behaves in comparison (the corresponding raw values, i.e.
the pro-cyclicality values for the 11 stock indices, can be found in Appendix C.1).

In the theoretical results, we have considered three different risk measures (VaR, ES, and expec-
tile) and in the application for the iid case (Section 4) have looked at five different risk measure
estimators. Here, dealing with an empirical setup, we restrict ourselves to the two risk measures
that are effectively used in practice, VaR and ES, and their simplest form of estimation V̂aRn(p)
and ẼSn,∞(= ÊSn). Note that, for completeness and to allow for comparison with ES, we include
the case of the VaR already studied in Bräutigam et al. (2022).

For each risk measure, we consider the results on each of the 11 indices, using one plot per
index. In those plots, we compare for four thresholds p= 0.95, 0.975, 0.99, 0.995, the measured
pro-cyclicality (i.e. the sample correlation between the log-ratio of the VaR or ES estimators,
respectively, and the sample MAD) on the real data versus the one on the residuals. Further,
95%-confidence intervals for a sample correlation assuming an underlying white noise process
are given – considering as alternatives a Gaussian or Student distribution, the latter with varying
degrees of freedom, ν = 4, ..., 7. In Figure 3, we consider, exemplarily, the S&P 500 and the FTSE
index for the VaR and ES, respectively. The totality of the 22 plots are to be found in Appendix C.3
in Figures 2 and 3. Considering the VaR (in the first row of Figure 3), we observe that for the FTSE
the pro-cyclicality value for the residuals is always in the confidence interval, whereas for the S&P
500 only two out of four times. For the ES in the second row, it is in all cases for both indices in
the iid confidence interval.

Considering all indices in the case of the ES (Figure 3 in Appendix C.3), in 37 out of 44 cases
(84%), the sample correlation of the real data falls in the 95% confidence interval of the sample
correlation of iid rv’s, while it is in 38 out of 44 cases (86%) for the VaR (see Figure 2 in Appendix
C.3). Moreover, for exactly 1 out of 44 cases for ES and none for VaR, the sample correlation of
the real data falls in these confidence intervals.

Thus, the same conclusion holds for ES as for VaR: We are left with a pro-cyclicality behaviour
for the residuals like for iid data.

6. Conclusion
In this study, we investigated the pro-cyclicality of historical risk estimation considering popu-
lar quantile-based risk measures, using the methodology set in Bräutigam et al. (2022), based on
the joint behaviour of the look-forward ratio and the realised volatility. We extended the results
obtained for the VaR in Bräutigam et al. (2022) by considering ES and expectile and different
realised volatility estimators for characterising the market states. The main theoretical result con-
sists in establishing the joint asymptotic normality between the logarithm of the look-forward
ratio (defined in terms of risk measures estimators) and dispersion measures estimators. By this,
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Figure 3. Comparison of pro-cyclicality for the real data (blank circle) with the pro-cyclicality for the GARCH(1, 1)-residuals
(filled circle), considering the S& P500 (on the left) and the FTSE (on the right). The first row considers the VaR as risk mea-
sure (estimator V̂aRn(p)), the second row the ES (estimator ẼSn,∞). Each plot contains the correlation for the four different
quantile values p. For each of them, corresponding theoretical confidence intervals (for the sample correlation) assuming a
specific underlying distribution (Gaussian or Student with different degrees of freedom) are plotted.

we are able to quantify the pro-cyclicality by the degree of negative dependence between the
components of this distribution.

As the result reveals a negative correlation, it shows that pro-cyclicality exists, whatever
the quantile-based risk measure, VaR, ES, or expectile, whether we consider a conditional or
unconditional approach, and whatever the choice of dispersion measure to estimate the volatility.

To test the relevance of the theoretical results on finite samples, we undertake extensive simu-
lation studies in the iid case. The results show in all cases a good approximation of the asymptotic
negative dependence by the finite sample counterpart, highlighting the applicability of such
asymptotic theorem. Using the corresponding closed-form solutions based on the theorem, we
then compare the impact of choices of quantile-based risk measures and dispersion measures
on the degree of pro-cyclicality, also taking into account the fatness of the tail of the underlying
distribution.
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Finally, in a case study on real data, we verify that historical risk measurements indeed lead to
pro-cyclicality, irrespectively of the choice of quantile-based risk measures and dispersion mea-
sures, but also irrespectively of the choice of conditional versus unconditional approaches for
historical risk estimation.

While we focused on the impact of historical estimation on pro-cyclicality, further research
could be done when considering other risk estimationmethods, with different (parametric or not)
models, as e.g. (GARCH-)EVT one. Other popular stochastic processes for modelling financial
returns (like e.g. ARMA-GARCH) could be included in the framework by extending the class of
processes currently considered; related theoretical work on the topic developed for a broader class
of augmented GARCH processes (Bräutigam & Kratz, 2021) could be used as a starting point.

This work lays the ground for tackling pro-cyclicality at its root, namely the way risk is mea-
sured, rather than resorting to operational means as e.g. the transitional measures of Solvency 2
that temper with economic valuation. Our study opens the door for finding new direct ways to
mitigate pro-cyclicality. Such a mitigation is sought after by risk managers and regulators, and
our conclusions should help building a counter-cyclical risk measure, or at least a risk measure
that limits the pro-cyclicality. This is what we are currently investigating.
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APPENDIX
The Appendix consists of four parts. The first one, Appendix A, given here, contains the proof
of Theorem 1 and all the necessary auxiliary results (as for example the (F)CLTs between risk
measure estimators and the r-th absolute centred sample moment in Appendix A.1). To ease its
understanding, an outline of the structure of the proof is given at the beginning. The three other
appendices are available online, with parts taken from Bräutigam et al. (2022) and included only
for self-containedness.We explicitly point this out throughout the online appendix where applica-
ble. Appendix B provides additional material related to Section 4; first, the explicit formulas for the
examples computed in Section 4, then, additional plots illustrating the pro-cyclicality behaviour
in the iid case for a Student t distribution with different degrees of freedom. Appendix C presents
additional plots related to Section 5. We display the plots of the pro-cyclicality of the residuals
for all 11 indices considered – in the case of VaR and ES; the results for the VaR, which can be
found in Bräutigam et al. (2022), are included here for comparative completeness. Finally, all
tables corresponding to the simulation study developed in Section 4 are given in Appendix D.

Note that for brevity and notational convenience, we refer to the asymptotic theorem,
Theorem 1, throughout the appendix as CLT, although in the main body of the paper we avoided
this terminology to point out that the given theorem is not simply a limit theorem based on an
average of random variables, but needs more work than that.

Appendix A. Proof of Theorem 1
Let us start by briefly laying out the structure of the proof to make the partition into the given sub-
sections comprehensible. Recalling Equation (13), we claimed that, in the iid case, we can reduce

the CLT of Theorem 1 (i.e. between the log-ratio log
∣∣∣∣ ζ (j)n/2, t+n/2(p)

ζ
(j)
n/2, t(p)

∣∣∣∣ and the r-th absolute central

sample moment m̂(X, n/2, r, t)) to a CLT between the risk measure estimator itself ζ (j)
n/2, t(p) and

the dispersion measure estimator m̂(X, n/2, r, t). For the family of augmented GARCH(p, q) pro-
cesses, some additional assumptions on the dependence and existence of moments are needed, but
this reduction is equally possible.

Thus, we start in Section A.1 collecting the FCLTs between risk measure and measure of
dispersion estimators. While these results are known for the VaR and expectile estimators we
consider (recalled in Section A.1.1), we need to establish them in the case of the ES estima-
tor, ÊSn(p), as a novel result in the literature (Section A.1.2). Given these FCLT’s, we present in
Section A.2 the reduction theorem, which formally proves why the bivariate asymptotics between
ζ
(j)
n/2, t(p) and m̂(X, n/2, r, t) are enough to deduce the trivariate asymptotics of log

∣∣∣ζ (j)
n/2, t(p)

∣∣∣,
log

∣∣∣ζ (j)
n/2, t+n/2(p)

∣∣∣ and m̂(X, n/2, r, t). Finally, in Section A.3, the proof of Theorem 1 is given,
which, after all this preparation, is a simple application of the reduction theorem.

Note that, as mentioned, the results in the iid case hold with weaker conditions, as a special
case of the family of augmented GARCH(p, q) processes. Here, we present and provemore general
results for augmented GARCH(p, q) processes. For direct proofs of all results in the iid case, we
refer to Bräutigam et al. (2022) (for the VaR) or Bräutigam (2020).

A.1 FCLT’s between risk and dispersionmeasure estimators

In this section, we provide the FCLT’s between ζ
(j)
n (p), j= 1, ..., 4, and m̂(X, n, r) when considering

augmented GARCH(p, q) processes. We separetely consider risk measure estimators based on the
sample quantile (which we call “VaR-based”) in Section A.1.1 and the Expected Shortfall estimator
in Section A.1.2.
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A.1.1 VaR-based risk measure estimators
The bivariate FCLT for the estimator V̂aRn(p), already proven in Bräutigam (2020, Theorem 4.3),
is stated here for completeness only.

To ease its presentation, we introduce a trivariate normal random vector (functionals of X),
(U,V ,W)T , with mean zero and the following covariance matrix:

(D)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var(U)=Var(X0)+ 2
∞∑
i=1

Cov(Xi, X0)

Var(V)=Var(|X0|r)+ 2
∞∑
i=1

Cov(|Xi|r , |X0|r)

Var(W)= p(1− p)
f 2X(qX(p))

+ 2
f 2X(qX(p))

∞∑
i=1

(
E[1(X0≤qX(p))1(Xi≤qX(p))]− p2

)
Cov(U,V)=

∑
i∈Z

Cov(|Xi|r , X0)=
∑
i∈Z

Cov(|X0|r , Xi)

Cov(U,W)= −1
fX(qX(p))

∑
i∈Z

Cov(1(Xi≤qX(p)), X0)= −1
fX(qX(p))

∑
i∈Z

Cov(1(X0≤qX(p)), Xi)

Cov(V ,W)= −1
fX(qX(p))

∑
i∈Z

Cov(|X0|r , 1(Xi≤qX(p)))=
−1

fX(qX(p))
∑
i∈Z

Cov(|Xi|r, 1(X0≤qX(p))).

Theorem 4 (Theorem 4.3 in Bräutigam, 2020.) For an integer r > 0, consider an augmented
GARCH(p, q) process X as defined in (11) and (12) satisfying condition (Lee), (C0) at 0 for r = 1, and
both conditions (C′

2) (see (C
′
l )), (P) at qX(p). Assume also conditions (Mr) (see (Mk)), (A), and either

(Pmax(1,r/δ)) (see (Pv)) for X belonging to the group of polynomial GARCH, or (Lr) (see (Lv)) for the

group of exponential GARCH. Introducing the random vector Tn,r(X)=
(

qn(p)− qX(p)
m̂(X, n, r)−m(X, r)

)
,

we have the following FCLT: For t ∈ [0, 1], as n→ ∞,

√
n t T[nt],r(X)

D2[0,1]→ W�(r) (t),

where (W�(r) (t))t∈[0,1] is the 2-dimensional Brownian motion with covariance matrix �(r) ∈R
2×2

defined, for any (s, t) ∈ [0, 1]2, by Cov(W�(r) (t),W�(r) (s))=min (s, t)�(r), where

�
(r)
11 =Var(W),

�
(r)
22 = r2E[Xr−1

0 sgn(X0)r]2Var(U)+Var(V)− 2rE[Xr−1
0 sgn(X0)r]Cov(U,V),

�
(r)
12 = �

(r)
21 = −rE[Xr−1

0 sgn(X0)r]Cov(U,W)+ Cov(V ,W),

(U,V ,W)T being the trivariate normal vector (functionals of X) with mean zero and covariance
given in (D), all series being absolute convergent.

Note that the conditions for establishing such a CLT are weaker than (S∗
1), since we are not

considering the log-ratio, but only the asymptotics between the risk measure and the measure of
dispersion estimators. Notably we do not require the process to be strongly mixing with geometric
rate and the moment condition (Mr) (see (Mk)) is sufficient (instead of (Mr+τ ), for τ > 0).

Extension to the estimators ζ (j)
n (p) for j= 3, 4, which are expressed as a VaR estimator. Theorem 4

can also be applied to establish a FCLT for ζ
(3)
n (p)= ên(p)= V̂aRn(κ−1(p)) for κ given. Also, it can

https://doi.org/10.1017/S1748499523000039 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000039


Annals of Actuarial Science 567

be directly extended to a FCLT for a k-vector of estimators V̂aRn(pi), i= 1, ..., k. Applying then the
continuous mapping theorem yields the case of ζ (4)

n (p)= ẼSn,k(p).

A.1.2 ES-based risk measure estimators
Contrary to the other presented risk measure estimators, the asymptotics of ÊSn(p) with m̂(X, n, r)
have not yet been proven in the literature. To do so and establish the bivariate FCLT for ÊSn(p),
we proceed in a similar way to the case of V̂aRn(p). We introduce, to ease the presentation of the
FCLT, a 4-dimensional normal random vector (functionals of X), (U,V , W̃, R)T , with mean zero
and the following covariance matrix:

(D̃)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var(U)=Var(X0)+ 2
∞∑
i=1

Cov(Xi, X0),

Var(V)=Var(|X0|r)+ 2
∞∑
i=1

Cov(|Xi|r, |X0|r),

Var(W̃)= q2X(p)

(
Var

(
1(X0≥qX(p))

)+ 2
∞∑
i=1

Cov
(
1(Xi≥qX(p)), 1(X0≥qX(p))

))
,

Var(R)=Var
(
X01(X0≥qX(p))

)+ 2
∞∑
i=1

Cov
(
Xi1(Xi≥qX(p)), X01(X0≥qX(p))

)
,

Cov(U,V)=
∑
i∈Z

Cov(|Xi|r , X0)=
∑
i∈Z

Cov(|X0|r , Xi),

Cov(U, W̃)= qX(p)
∑
i∈Z

Cov(1(Xi≥qX(p)), X0)= qX(p)
∑
i∈Z

Cov(1(X0≥qX(p)), Xi),

Cov(V , W̃)= qX(p)
∑
i∈Z

Cov(|X0|r , 1(Xi≥qX(p)))= qX(p)
∑
i∈Z

Cov(|Xi|r , 1(X0≥qX(p))),

Cov(W̃, R)= qX(p)
∑
i∈Z

Cov(Xi1(Xi≥qX(p)), 1(X0≥qX(p)))

= qX(p)
∑
i∈Z

Cov(X01(X0≥qX(p)), 1(Xi≥qX(p))),

Cov(U, R)=
∑
i∈Z

Cov(Xi1(Xi≥qX(p)), X0)=
∑
i∈Z

Cov(X01(X0≥qX(p)), Xi),

Cov(V , R)=
∑
i∈Z

Cov(|X0|r , Xi1(Xi≥qX(p)))=
∑
i∈Z

Cov(|Xi|r , X01(X0≥qX(p))).

Using this 4-dimensional vector, we can now describe the joint asymptotic distribution of
ÊSn(p) and m̂(X, n, r). Here also, the conditions given in Proposition 5 are less restrictive than
S∗
2. Nevertheless, in contrast to the VaR case, strong mixing with geometric rate is necessary
(and, for r = 1, also a slightly stronger moment condition than (Mr) – see (Mk)). A more detailed
comparison on the difference between the conditions for VaR and ES is given in Remark 7.

Proposition 5 Consider an augmented GARCH(p, q) process X as defined in (11) and (12), strongly
mixing with geometric rate and satisfying the (Lee) condition. For any integer r > 0, assume that:
(Mr) (see (Mk)) and (A) hold, FX is absolutely continuous, (C3) (see (Cl)) holds in a neighbourhood
of qX(p), and all 2nd partial derivatives of the joint distribution of (X1, Xk+1), for k≥ 1, are bounded
in a neighbourhood of qX(p). Assume also either (Pmax (1, r/δ)) (see (Pv)) for polynomial GARCH, or
(Lr) (see (Lv)) for exponential GARCH and, if r = 1, (C0) at the mean μ and (M1+δ) (see (Mk)) for
some δ > 0.
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Introducing the random vector Tn,r(X)=
(

ÊSn(p)− ESp
m̂(X, n, r)−m(X, r)

)
, for r ∈Z, we have the follow-

ing FCLT. For t ∈ [0, 1], as n→ ∞,
√
n t T[nt],r(X)

D2[0,1]→ W�(r) (t),

where (W�(r) (t))t∈[0,1] is the 2-dimensional Brownian motion with covariance matrix �(r) ∈R
2×2

defined for any (s, t) ∈ [0, 1]2 by Cov(W�(r) (t),W�(r) (s))=min (s, t)�(r), where

�
(r)
11 =Var(W̃)+Var(R)− 2Cov(W̃, R),

�
(r)
22 = r2E[Xr−1

0 sgn(X0)r]2Var(U)+Var(V)− 2rE[Xr−1
0 sgn(X0)r]Cov(U,V),

�
(r)
12 = �

(r)
21 =Cov(R,V)−Cov(W̃,V)− rE[Xr−1

0 sgn(X0)r]Cov(R,U)

+ rE[Xr−1
0 sgn(X0)r]Cov(W̃,U),

(U,V , W̃, R)T being the 4-dimensional normal vector (functionals of X) with mean zero and
covariance given in (D̃), all series being absolutely convergent.

Remark 6 How restrictive is the condition of strong mixing with geometric rate for the aug-
mented GARCH(p, q) processes? While we cannot make a general statement covering all cases,
there exist different results in the literature linking GARCH processes and strong mixing:
Boussama proves in Boussama (1998), Theorem 3.4.2, the strong mixing with geometric rate for
GARCH(p,q) processes. Carrasco & Chen (2002) prove in Proposition 5(i), that a big class of aug-
mented GARCH(1,1) processes are strongly mixing with geometric rate. Therein, in Proposition
12, they also prove that power GARCH(p,q) (PGARCH) processes are strongly mixing with
geometric rate.

Remark 7 Comparing the conditions in Proposition 5 with those for V̂aRn(p) in Theorem 4, we
see that we need here the absolute continuity of FX and the continuity of the second derivative
of fX in a neighbourhood of qX(p) (instead of (C′

2) (see (C
′
1)) and (P) at qX(p)). Also, for r = 1,

we need (M1+δ) instead of (M1) (see (Mk)). Note that those conditions are sufficient to obtain
the CLT in the iid case. Here, we also require the process X to be strongly mixing with geometric
rate, as well as all second partial derivatives of the joint distribution of (X1, Xk+1), for k≥ 1, to
be bounded (in a neighbourhood of qX(p)). These conditions come from the use of the Bahadur
representation of the ES, see Chen (2008).

Proof of Proposition 5 The proof follows the lines of the corresponding FCLT between the sample
quantile and the r-th absolute centred sample moment (Theorem 4.3 in Bräutigam, 2020), also
keeping the same structure of the proof in four steps: In Step 1, we check the conditions of the
Bahadur representation of the ES. Obviously, this is different than Step 1 in the case of the VaR.
Checking the conditions of the representation of the r-th absolute sample moment in Step 2 is
identical to the VaR-case and only recalled for self-containedness. In Step 3, we check the con-
ditions to apply the FCLT. Naturally, it is what requires most of the work. But as the Bahadur
representation for the ES contains elements of the Bahadur representation for the VaR, we can
partially use results from the VaR case. Finally, Step 4 has exactly the same reasoning as in the case
of the VaR, even if using the ES.

Step 1: Bahadur representation of the ES – conditions.

We want to use the Bahadur representation of the ES. Such a representation holds under the
necessary conditions (i) and (ii) as given in Chen (2008), which here are fulfilled by assumption:

https://doi.org/10.1017/S1748499523000039 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000039


Annals of Actuarial Science 569

(i) The process X is strongly mixing with geometric rate.
(ii) The stationarity of the process follows from Assumption (Pmax (1, r/δ)) (see (Pv)) or (Lr) (see

(Lv)), respectively, with Lemma 1 of Lee (2014). The conditions on continuity and moments
imposed by Chen (2008) are fulfilled by assumption, namely, the absolute continuity of FX ,
continuous second derivative of fX in a neighbourhood of qX(p), the boundedness in a neigh-
bourhood of qX(p) of all 2nd partial derivatives of the joint distribution of (Y1, Yk+1) for
k≥ 1.

Thus, we can apply the Bahadur representation of the ES:

ÊSn(p)− ESp = 1
(1− p)n

n∑
i=1

(Xi − qX(p))1(Xi≥qX(p)) − (ESp − qX(p))+ oP(n−3/4+κ ), (A.1)

for an arbitrary κ > 0.

Step 2: Representation of the r-th absolute centred sample moment – Conditions.

This step is exactly the same as for the FCLT with the VaR and can be found in the proof of
Theorem 4.3 in Bräutigam (2020). We recall it for self-containedness:

As shown in Proposition 4.8 in Bräutigam (2020), we have a representation of the r-th absolute
centred sample moment under the following conditions:

• A stationary and ergodic time-series (Xn, n≥ 1) with “short-memory”, i.e.∑∞
i=0|Cov(X0, Xi)| < ∞

• An existing r-th moment of X0 and (C0) at μ for r = 1.

Under that conditions, it holds, as n→ ∞, that
√
n

(
1
n

n∑
i=1

|Xi − X̄n|r
)

= √
n

(
1
n

n∑
i=1

|Xi − μ|r
)

− r
√
n(X̄n − μ)E[(X0 − μ)r−1sgn(X0 − μ)r]+ oP(1). (A.2)

We recall here, why these conditions are satisfied:

1. As mentioned in Step 1, the stationarity follows from assumption (Pmax (1,r/δ)) (see (Pv)) or
(Lr) (see (Lv)), respectively, and Lemma 1 of Lee (2014).

2. For the moment condition, short-memory property and ergodicity, we simply verify that the
conditions for a CLT of Xr

t (or |Xt|r) are fulfilled, distinguishing between the polynomial and
exponential case. Conditions (Mr) (see (Mk)), (A), (Pmax (1,r/δ)) (see (Pv)) in the polynomial
case, and (Mr), (A), (Lr) (see (Lv)) in the exponential case respectively, imply the CLT, using
Corollary 2 and 3 in Lee (2014), respectively.

3. Finally, (C0) at μ for r = 1 holds by assumption.

Step 3: Conditions for applying the FCLT

We adapt Step 3 in the proof of Theorem 4.3 in Bräutigam (2020) to the ES instead of the VaR.
Here, we are using a four-dimensional version of the FCLT (Lemma 4.9 in Bräutigam, 2020, a
slight modification of Theorem A.1 in Aue et al., 2009), which we cite here for self-containedness
and to better understand the proof.

Lemma 8 (Theorem A.1 in Aue et al., 2009) Consider a d-dimensional random process (uj, j ∈Z),
which is centred and has finite variance, i.e.

E[uj]= 0, ‖uj‖22 < ∞ ∀j ∈Z, (A.3)
and has a causal (possibly non-linear) representation in terms of an iid process, i.e.

uj = f (εj, εj−1, ...), (A.4)
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where f :R1×∞ →R
d is a measurable function and (εj, j ∈Z) is a sequence of real valued iid rv’s

with mean 0 and variance 1.
Suppose further, there exists a�-dependent approximation of uj, i.e. a sequence of d-dimensional

random vectors
(
u(�)
j , j ∈Z

)
such that, for any � ≥ 1, we have

u(�)
j = f (�)(εj−�, ..., εj, ..., εj+�) (A.5)

and
∑
�≥1

‖u0 − u(�)
0 ‖2 < ∞, (A.6)

where f (�) :R1×(2�+1) →R
d is a measurable function.

Then, the series � =∑
j∈Z Cov(u0, uj) converges (coordinatewise) absolutely and a FCLT holds

for Un := 1
n
∑n

j=1 uj
√
ntU[nt]

Dd[0,1]→ W�(t),
where the convergence takes place in the d-dimensional Skorohod space Dd[0, 1] and (W�(t), t ∈
[0, 1]) is a d-dimensional Brownian motion with covariance matrix �, i.e. it has mean 0 and
Cov(W�(s),W�(t))=min (s, t)�.

Anticipating the use of this Lemma in Step 4 to establish the FCLT for Un(X) := 1
n
∑n

j=1 uj,
where

uj =

⎛⎜⎜⎜⎝
Xj

|Xj|r −m(X, r)
qX(p)1(Xj≥qX(p)) − (1− p)qX(p)
Xj1(Xj≥qX(p)) −E[Xj1(Xj≥qX(p))]

⎞⎟⎟⎟⎠ ,

we verify that its conditions (Equations (A.3)–(A.6)) hold.We have that uj fulfils (A.3) asE[uj]= 0
holds by construction, andE[|Xj|2r]< ∞ is guaranteed since |Xt|r satisfies a CLT (see Step 2), thus
also E[u2j ]< ∞. As we assume (A), it follows from Lemma 1 in Lee (2014) that Xj = f (εj, εj−1, ...).
This latter relation also holds for functionals of Xj, i.e. uj, thus (A.4) holds.

Then, we define a �-dependent approximation u(�)
0 satisfying (A.5) and (A.6).

Denote, for the ease of notation, X0� :=E[X0|F+�
−� ], and set

u(�)
0 =

⎛⎜⎜⎜⎜⎝
X0�

E[|X0|r|F+�
−� ]−m(X, r)

qX(p)1(X0�≥qX(p)) − (1− p)qX(p)
X0�1(X0�≥qX(p)) −E[Xj1(Xj≥qX(p))]

⎞⎟⎟⎟⎟⎠
with F t

s = σ (εs, ..., εt) for s≤ t. Thus, (A.5) is fulfilled by construction. Let us verify (A.6). We can
write∑
�≥1

‖u0 − u(�)
0 ‖2 ≤

∑
�≥1

(
‖X0 − X0�‖2 + ‖|X0|r −E[|X0|r|F+�

−� ]‖2

+ q2X(p))
∥∥1(X0≥qX(p)) − 1(X0�≥qX(p))

∥∥
2 + ∥∥X01(X0≥qX(p)) − X0�1(X0�≥qX(p))

∥∥
2
)
.

(A.7)
Obviously, a sufficient condition for (A.7) is the finiteness of its summands. Note that we have
already shown the finiteness for the first three parts of the sum in (A.7) (in Step 3 of the proof
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of Theorem 4.3 in Bräutigam, 2020) which we recall here for self-containedness: If it holds that
each summand is geometrically L2-NED, then its sum will be finite. E.g. assuming that X0 is
geometrically L2-NED, i.e. ‖X0 − X0�‖2 =O(e−κ�) for some κ > 0, it follows that

∑
�≥1 ‖X0 −

X0�‖2 < ∞.
The condition of geometric L2-NED of X0 and |Xr

0| is satisfied, on the one hand in the polyno-
mial case under (Mr) (see (Mk)), (A) and (Pmax (1,r/δ)) (see (Pv)) via Corollary 2 in Lee (2014), on
the other hand in the exponential case under (Mr), (A) and (Lr) (see (Lv)) via Corollary 3 in Lee
(2014). Thus, as X0 is geometric L2-NED, this follows also for its bounded functional 1(X0≤qX(p))
using Lemma 3.5 in Wendler (2011).

Finally, we only need to consider the fourth sum. This follows directly by an algebraic manip-
ulation. Using first the triangle inequality, then the Hölder inequality (with p, q ∈ [1,∞] such that
1
p + 1

q = 1), we have∥∥X01(X0≥qX(p)) − X0�1(X0�≥qX(p))
∥∥
2

= ∥∥X0(1(X0≥qX(p)) − 1(X0�≥qX(p)))+ 1(X0�≥qX(p))(X0 − X0�)
∥∥
2

≤ ∥∥X0(1(X0≥qX(p)) − 1(X0�≥qX(p)))
∥∥
2 + ∥∥1(X0�≥qX(p))(X0 − X0�)

∥∥
2

≤ ‖X0‖2p
∥∥1(X0≥qX(p)) − 1(X0�≥qX(p))

∥∥
2q + ‖X0 − X0�‖2 .

Choosing p= 1+ δ, for δ as in Proposition 5, ‖X0‖2+2δ is finite by assumption. Further, note that
we can write, for any q,∥∥1(X0≥qX(p)) − 1(X0�≥qX(p))

∥∥
2q = ∥∥1(X0≥qX(p)) − 1(X0�≥qX(p))

∥∥1/q
2 .

As we have recalled above that
∑

�≥1 ‖X0 − X0�‖2 < ∞ and ‖1(X0≥qX(p)) − 1(X0�≥qX(p))‖2 =
O(e−κ�) for some κ > 0, then

∑
�≥1 ‖1(X0≥qX(p)) − 1(X0�≥qX(p))‖1/q2 < +∞. Hence, we can

conclude that ∑
�≥1

∥∥X01(X0≥qX(p)) − X0�1(X0�≥qX(p))
∥∥
2 < ∞,

which means that (A.6) is fulfilled.

Step 4:Multivariate FCLT

Having checked the conditions for the FCLT of Lemma 8 in Step 3, we can apply a 4-
dimensional FCLT for uj

√
n
1
n

[nt]∑
j=1

uj = √
n t

⎛⎜⎜⎜⎜⎜⎜⎝
X̄[nt]

1
[nt]

∑[nt]
j=1|Xj|r −m(X, r)

qX(p)
[nt]

∑[nt]
j=1 (1Xj≥qX(p)) − (1− p))

1
[nt]

∑[nt]
j=1 (Xj1Xj≥qX(p)) −E[Xj1Xj≥qX(p))])

⎞⎟⎟⎟⎟⎟⎟⎠
D4[0,1]→ W�̃(r) (t) as n→ ∞,

(A.8)
where W�̃(r) (t), t ∈ [0, 1] is the 4-dimensional Brownian motion with covariance matrix �̃(r) ∈
R
4×4, i.e. the components �̃

(r)
ij , 1≤ i, j≤ 4, satisfy the dependence structure (D̃), with all series

being absolutely convergent.
Recalling the representation of m̂(X, n, r), (A.2), and the Bahadur representation (A.1) of

the sample ES (ignoring the remainder terms for the moment), we apply to (A.8) the multi-
variate continuous mapping theorem using the function f (w, x, y, z) → (aw+ x, b(z − y)) with
a= −rE[(X − μ)r−1sgn(X − μ)r], b= 1/(1− p), and obtain
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√
n t

⎛⎝ a(X̄[nt])+ 1
[nt]

∑[nt]
j=1|Xj|r −m(X, r)

1
1−p

(
1

[nt]
∑[nt]

j=1 1(Xj≥qX(p))(Xj − qX(p))− (1− p)(ESp − qX(p))
)⎞⎠ D2[0,1]→ W�(r) (t). (A.9)

As by Slutsky’s theorem, a remainder term that converges in probability to 0, does not change
the limiting distribution, we get from (A.9),

√
n t

(
m̂(X, [nt], r)−m(X, r)

ÊS[nt](p)− ESp

)
D2[0,1]→ W�(r) (t),

where �(r) follows from the specifications of �̃(r) above and the continuous mapping theorem.

A.2 Reduction Theorem
For the proof of Theorem 1, we establish a slightly more general result in Theorem 9, named
reduction theorem, which form appears less related with the focus of our paper (hence the choice
of putting it in the Appendix). To apply this reduction theorem to our setting of pro-cyclicality,
we need to make a specific choice of functions f , g to recover Equation (13), then to prove the
FCLT (A.10) for the class of augmented GARCH(p, q) processes.

Theorem 9 Consider a univariate, stationary stochastic process (Xj, j ∈Z). Assume that, for given

real functions f and g, the bivariate rv uj :=
(
f (Xj)−E[f (Xj)]
g(Xj)−E[g(Xj)]

)
satisfies the FCLT, i.e.

√
nt

⎛⎝∑[nt]
j=1 (f (Xj)−E[f (Xj)])/[nt]∑[nt]
j=1 (g(Xj)−E[g(Xj)])/[nt]

⎞⎠ D2[0,1]→ W�(t), as n→ ∞, (A.10)

where (W�(t))t∈[0,1] is the 2-dimensional Brownian motion with covariance matrix �(s, t) ∈R
2×2,

defined for any (s, t) ∈ [0, 1]2 by Cov(W�(t),W�(s))=min (s, t)� (� being the covariance matrix
of uo). Define

Qj =
⎧⎨⎩0 for j≤ 	n/2

f (Xj) for j> 	n/2


, Yj =
⎧⎨⎩f (Xj) for j≤ 	n/2

0 for j> 	n/2


, Zj =
⎧⎨⎩g(Xj) for j≤ 	n/2

0 for j> 	n/2


.

(A.11)
Denote their sample averages (normalised to mean 0) as

Q̄n = 1
n

n∑
j=1

(Qj −E[Qj]), Ȳn = 1
n

n∑
j=1

(Yj −E[Yj]), Z̄n = 1
n

n∑
j=1

(Zj −E[Zj]). (A.12)

Then, if the process Xj is strongly mixing with geometric rate and there exists a δ > 0 s.t.

E[|Qj −E[Qj]|2+2δ]< ∞, E[|Yj −E[Yj]|2+2δ]< ∞, E[|Zj −E[Zj]|2+2δ]< ∞ , ∀j, (A.13)
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it holds that

√
n

⎛⎜⎝Q̄n

Ȳn

Z̄n

⎞⎟⎠ d→N (0,�), where � = (�ij)1≤i,j≤3 satisfies �ij

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2�11 for i= j ∈ {1, 2},
1
2�22 for i= j= 3,
1
2�12 for i, j ∈ {2, 3} with i �= j,

0 otherwise.

(A.14)

Proof The proof consists of two steps. First, we need to establish univariate CLT’s for each of the
components of the vector in (A.14), using a CLT for non-stationary strongly mixing sequences.
Secondly, we argue why we can deduce the trivariate asymptotics directly via the Cramér-Wold
device. To do so, we need to show that the covariances between estimators over disjoint samples
vanish asymptotically. For this, we will use covariance bounds for strongly mixing processes.

Step 1: Univariate CLT’s

To establish the univariate CLT’s, we use a CLT for non-stationary sequences by Politis et al.
(1997), Ekström (2014), which we simplify to our purposes, as follows:

Consider a stochastic process, denoted by (Wj, j ∈Z), which is strongly mixing with coefficient
α(k). Denote W̄n = 1

n
∑n

j=1 Wj and σ 2
n =Var(

√
n W̄n). If the following three conditions hold,

E[|Wj − E[Wj]|2+2δ]≤ c, ∀j (A.15)

σ 2 := lim
n

σn ∈ (0,∞) (A.16)
∞∑
k=0

(k+ 1)2α(k)δ/(4+δ) ≤ d, for a finite constant d independent of k, (A.17)

then
√
n (W̄n − E[W̄n])

d→N (0, σ 2) as n→ ∞.
Note that a stronger condition than (A.16), is introduced in Politis et al. (1997), namely

∀(dn) s.t. dn → ∞: sup
t

|Var(
√
dn

1
dn

t+dn−1∑
j=t

Wj)− σ 2| → 0, as n→ ∞, (A.18)

under which the authors conclude that 1√
dn

∑dn
i=1 Xi

d→N (0, σ 2) holds (with σ 2 := lim
n→∞ σn) for

any sequence dn ≤ n such that dn → ∞ as n→ ∞. To ensure this asymptotic Gaussian behaviour,
(A.18) is reasonable, i.e. the CLT should hold for any dn with always the same variance σ 2. In our
case, we only need the CLT to hold for dn = n (and we do not care what would happen for other
choices of dn). This is why we consider Ekström (2014), where the author shows that (A.18) is
actually superfluous, but at the price of accepting potentially degenerate limiting distributions.
As a compromise between the two, we demand (A.16), which ensures that we do not have a
degenerate limiting distribution for the case dn = n.

The proof for each of the three univariate CLT’s is analogous. Thus, we prove it forQj and only
state the results for the two other cases.

Let us verify the conditions (A.15)–(A.17) so that we can apply the CLT. First, we note that
(A.15) corresponds, in our case, to our assumption (A.13), hence is satisfied. Direct computations
lead to (A.16):
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σ 2
Q = lim

n
Var(

√
n Q̄n)= lim

n

1
n
(

n∑
j=n/2+1

Var(Qj)+ 2
∑

n/2+1≤i<j≤n
Cov(Qi,Qj))

= 1
2
Var(f (X0))+ lim

n

2
n

n/2−1∑
i=1

(n/2− i)Cov(f (X0), f (Xi))

= 1
2
Var(f (X0))+

∞∑
i=1

Cov(f (X0), f (Xi)),

which is non-degenerate by (A.10).
As Qj is a functional of Xj, we can bound from above the mixing coefficient of Qj, denoted by

αQ(k), by the one of Xj, i.e. αQ(k)≤ α(k). As we know that Xj is strongly mixing with geometric
rate, we have that αQ(k)≤ Cλk for some constants C > 0 and λ ∈ (0, 1), which implies

∞∑
k=0

(k+ 1)2αQ(k)δ/(4+δ) ≤
∞∑
k=0

(k+ 1)2(Cλk)δ/(4+δ) = Cδ/(4+δ)
∞∑
k=1

k2λ(k−1)δ/(4+δ).

We perform a ratio test to confirm the convergence of this series

L= lim
k→∞

∣∣∣∣∣ (k+ 1)2λkδ/(4+δ)

k2λ(k−1)δ/(4+δ)

∣∣∣∣∣= lim
k→∞

∣∣∣∣(1+ 2
k

+ 1
k2

)λδ/(4+δ)
∣∣∣∣= λδ/(4+δ) < 1.

Thus, the series is convergent, from which we deduce (A.17). We conclude to the CLT, as n→ ∞,

√
n(Q̄n −E[Q̄n])

d→N (0, σ 2
Q).

In the same manner, we obtain, as n→ ∞,
√
n (Ȳn −E[Ȳn])

d→N (0, σ 2
Y ) and

√
n (Z̄n −E[Z̄n])

d→N (0, σ 2
Z),

where

σ 2
Q = σ 2

Y and σ 2
Z = 1

2
Var(g(X0))+

∞∑
i=1

Cov(g(X0), g(Xi)).

Step 2: Trivariate CLT

By the Cramér-Wold Device, it suffices to show that all linear combinations of the components
of (Q̄n, Ȳn, Z̄n)T are normally distributed, to conclude their trivariate normality.

For any a, b, c ∈R, we establish the CLT for

Uj := a
(
Qj −E[Qj]

)+ b
(
Yj −E[Yj]

)+ c(Zj −E[Zj]),

i.e.
√
n

n∑
j=1

Uj/n
d→N (0, σ 2), as n→ ∞,

with σ 2 to be determined - in a similar way as in Step 1. Note that, by construction, E[Uj]= 0. We
need to verify the strong mixing of Uj and the three conditions (A.15)–(A.17). By the Minkowski
inequality, we have that

E[|Uj|2+2δ]= ‖Uj‖2+2δ
2+2δ ≤ (a‖Qj −E[Qj]‖2+2δ + b‖Yj −E[Yj]‖2+2δ + c‖Zj −E[Zj]‖2+2δ)2+2δ .

Thus, (A.15) is fulfilled by the assumption (A.13).
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By construction, each Uj is a functional of Xj (which is strongly mixing with geometric rate, by
assumption).We can bound from above themixing coefficient ofUj, denoted by αU(k), by the one
of Xj, i.e. αU(k)≤ α(k). Therefore, (A.12) holds by the same argumentation as in the univariate
case.

So, we are left with computing σ 2 = lim
n→∞ σ 2

n . We write it as

σ 2
n =Var(

√
n

n∑
j=1

Uj/n)= 1
n
Var(

√
n

n∑
j=1

(aQj + bYj + cZj)/n)

= a2Var(
√
n

n∑
j=1

Qj/n)+ b2Var(
√
n

n∑
j=1

Yj/n)+ c2Var(
√
n

n∑
j=1

Zj/n)

+ 2abCov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Yi/n)+ 2acCov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Zi/n)

+ 2bcCov(
√
n

n∑
j=1

Yj/n,
√
n

n∑
i=1

Zi/n). (A.19)

As this expression for σ 2
n will involve some computations, we split it into different parts. First,

note that the respective variances in (A.19) are known from the univariate asymptotics:

lim
n→∞ Var(

√
n

n∑
j=1

Qj/n)= σ 2
Q, lim

n→∞ Var(
√
n

n∑
j=1

Yj/n)= σ 2
Y , lim

n→∞ Var(
√
n

n∑
j=1

Zj/n)= σ 2
Z .

(A.20)
Thus, we are left with the covariances that we assess one after the other.

• Computation of the first covariance of (A.19):

Cov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Yi/n)= 1
n

n∑
j=n/2+1

n/2∑
i=1

Cov(f (Xj), f (Xi))

= 1
n

n∑
j=n/2+1

n/2∑
i=1

Cov(f (Xj−i), f (X0))

= 1
n

⎛⎝ n/2∑
k=1

k Cov(f (Xk), f (X0))+
n−1∑

k=n/2+1

(n− k)Cov(f (Xk), f (X0))

⎞⎠
= 1

n

⎛⎝ n/2∑
k=1

k Cov(f (Xk), f (X0))+
n/2−1∑
k=1

(
n
2

− k)Cov(f (Xk+n/2), f (X0))

⎞⎠ ,

(A.21)
where we used the stationarity of the underlying process X.

To bound the two sums in (A.21), we use covariance bounds provided in Roussas & Ioannides
(1987), Theorem 7.3. For convenience, we recall them here for a process (Xj, j ∈Z): For chosen
positive integers l, k> 0,

1. if f (Xk) is F∞
l+k measurable and f (X0) is F l−∞ measurable

2. if E[|f (X0)|p]< ∞ and E[|f (Xk)|rq]< ∞ for some p, q> 1 s.t. 1p + 1
q < 1,

3. if the process (Xj, j ∈Z), is strongly mixing, with mixing coefficient α(k),

then we have |Cov(f (X0), f (Xk))| ≤ 10 α(k)1−
1
p− 1

q ‖f (X0)‖p‖f (Xk)‖q.
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Choosing q= 2 and p= 2+ 2δ (as those moments will exist under Assumption (A.13)), and
l= 0, we can write the inequality above as

|Cov(f (X0), f (Xk))| ≤M α(k)1−
1
p− 1

q ,
whereM := 10‖f (X0)‖p‖f (Xk)‖q.

The process being strong mixing with geometric rate, recall that there exist constants C > 0
and λ ∈ (0, 1) s.t. α(k)≤ Cλk. We use this geometric rate and the covariance bound to show the
finiteness of the first covariance sum of (A.21):
n/2∑
k=1

kCov(f (Xk), f (X0))≤
n/2∑
k=1

k|Cov(f (Xk), f (X0))|≤
n/2∑
k=1

kMα(k)1−
1
p− 1

q ≤MC1− 1
p− 1

q

n/2∑
k=1

kλk(1−
1
p− 1

q ).

Using once again the ratio test for the finiteness of the latter series (as n→ ∞)

L= lim
k→∞

∣∣∣∣∣∣ (k+ 1)λ(k+1)(1− 1
p− 1

q )

kλk(1−
1
p− 1

q )

∣∣∣∣∣∣= lim
k→∞

(1+ 1/k)λ(1−
1
p− 1

q ) = λ
(1− 1

p− 1
q ) < 1,

we deduce that

lim
n

1
n

n/2∑
k=1

k Cov(f (Xk), f (X0))= 0. (A.22)

Nowwe need to look at the second sum of (A.21).We proceed in the same way using the strong
mixing rate as well as the covariance bounds:

1
n

n/2−1∑
k=1

(
n
2

− k)Cov(f (Xk+n/2), f (X0))≤ 1
n

n/2−1∑
k=1

(
n
2

− k)|Cov(f (Xk+n/2), f (X0))|

≤ 1
n

n/2−1∑
k=1

(
n
2

− k)Mα(k+ n/2)1−
1
p− 1

q ≤ 1
n

n/2−1∑
k=1

(
n
2

− k)M(Cλk+n/2)1−
1
p− 1

q . (A.23)

For the ease of notation, define λ̃ = λ
1− 1

p− 1
q and M̃ =MC1− 1

p− 1
q , such that we have from (A.23)

1
n

n/2−1∑
k=1

(
n
2

− k)Cov(f (Xk+n/2), f (X0))≤ M̃λ̃n/2
n/2−1∑
k=1

(
1
2

− k
n
)λ̃k ≤ M̃λ̃n/2

n/2−1∑
k=1

(
1
2

− k
n
)= M̃λ̃n/2

n− 2
8

,

which tends to 0, as n→ ∞, as λ̃ < 1. Thus, we can conclude that

lim
n→∞

1
n

n/2−1∑
k=1

(
n
2

− k)Cov(f (Xk+n), f (X0))= 0. (A.24)

Combining (A.21) with (A.22) and (A.24), we conclude for the first covariance sum of (A.19) that:

lim
n

Cov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Yi/n)= 0. (A.25)

• Computation of the second covariance of (A.19):
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The computation of the limit of the second covariance of (A.19) is analogous to the first one,
simply replacing Yi by Zi and thus f (Xi) by g(Xi). I.e., from (A.21), we deduce that

Cov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Zi/n)= 1
n

n∑
j=1

n∑
i=1

Cov(Qj, Zi)= · · ·

= 1
n

⎛⎝ n/2∑
k=1

k Cov(f (Xk), g(X0))+
n/2−1∑
k=1

(
n
2

− k)Cov(f (Xk+n/2), g(X0))

⎞⎠ . (A.26)

The covariance bounds are again applicable. Choosing p= 2 and q= 2+ 2δ, those moments exist
by (A.13). Thus, we obtain analogous results to (A.22) and (A.24) and can conclude, as for the first
covariance of (A.19), that

lim
n→∞ Cov(

√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Zi/n)= 0. (A.27)

• Computation of the third covariance of (A.19): We are left with

Cov(
√
n

n∑
j=1

Yj/n,
√
n

n∑
i=1

Zi/n)= 1
n

n/2∑
j=1

n/2∑
i=1

Cov(f (Xj), f (Xi))

= 1
n

⎛⎝n
2
Cov(f (X0), f (X0))+ 2

n/2−1∑
i=1

(
n
2

− i)Cov(f (Xi), f (X0))

⎞⎠ . (A.28)

Thus, we have

lim
n→∞ Cov(

√
n

n∑
j=1

Yj/n,
√
n

n∑
i=1

Zi/n)=Var(f (X0))/2+
∞∑
i=1

Cov(f (Xi), f (X0)). (A.29)

Therefore, we can finally compute σ 2
n . We get, recalling the expressions for the variances in (A.20)

and for the covariances in (A.25), (A.27), and (A.29), that

σ 2
n =Var(

√
n

n∑
j=1

Uj/n)= 1
n
Var(

√
n

n∑
j=1

(aQj + bYj + cZj)/n)

= a2Var(
√
n

n∑
j=1

Qj/n)+ b2Var(
√
n

n∑
j=1

Yj/n)+ c2Var(
√
n

n∑
j=1

Zj/n)

+ 2abCov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Yi/n)+ 2acCov(
√
n

n∑
j=1

Qj/n,
√
n

n∑
i=1

Zi/n)

+ 2bcCov(
√
n

n∑
j=1

Yj/n,
√
n

n∑
i=1

Zi/n).

Hence, we have in the limit

lim
n→∞ σ 2

n = a2σ 2
Q + b2σ 2

Y + c2σ 2
Z + 2bc

(
1
2
Var(f (X0))+

∞∑
i=1

Cov(f (Xi), f (X0))

)
. (A.30)

Recalling the univariate asymptotics of Q̄n, Ȳn, and Z̄n, respectively, �11 = σ 2
Q, �22 =

σ 2
Y , �33 = σ 2

Z , we can deduce from (A.30) that it must hold �12 = �13 = 0 and
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�23 =Var(f (X0))/2+∑∞
i=1 Cov(f (Xi), f (X0)) to have the trivariate normality of the asymptotic

distribution of
√
n

⎛⎝Q̄n
Ȳn
Z̄n

⎞⎠ with covariance matrix �.

The claims on the relation of � and � follow directly by comparing.

A.3 Main proof
After having proved Theorem 9, which was the biggest part of the work, we can proceed with
the proof of Theorem 1. It consists of two parts. In the first part, we check all conditions to
apply Theorem 9 to establish trivariate asymptotics. The second part uses Slutsky’s theorem, the
Delta method, and the continuous mapping theorem to deduce from the trivariate asymptotics
the claimed bivariate asymptotics of Theorem 1.

Step 1: Applicability of Theorem 9

The first assumption in Theorem 9, needs the bivariate FCLT, (A.13), to hold. For this, we need
to identify the functions f and g with the risk measure and measure of dispersion estimators,
respectively, and then explain why the bivariate FCLT between them holds.

Recall that we already know that, for j= 1, ..., 4,

ζ
(j)
n (p)=

n∑
i=1

(fj(Xi)−E[fj(Xi)])/n+ oP(1/
√
n), (A.31)

with the functions specified as follows:

• For j= 1, f1(Xi)= 1(Xi>qX (p))
fX(qX(p)) – which follows from the Bahadur representation of the sample

quantile, see e.g. Wendler (2011).
• For j= 2, f2(Xi)= (Xi−qX(p))1(Xi>qX (p))

1−p – which follows from the Bahadur representation for
ÊSn, see (A.1).

• For i= 3, f3(Xi)= 1
k
∑k

l=1
1(Xi>qX (pl))
fX(qX(pl))

– recalling the definition of the corresponding estimator,
(4), and using the case i= 1.

• For i= 4, f4(Xi)=
1(Xi>qX (κ−1(p)))
fX(qX(κ−1(p))) – recalling the definition of the corresponding estimator, (8),

and using the case j= 1.

Analogously, we know from (A.2) (based on Proposition 4.8 in Bräutigam, 2020) that

m̂(X, n, r)=
n∑
i=1

(g(Xi)−E[g(Xi)])/n+ oP(1/
√
n), (A.32)

with g(Xi)= |Xi − μ|r − rE[(X − μ)r−1sgn(X − μ)r](Xi − μ).
These representations (A.31) and (A.32) hold as, by assumption in Theorem 1, the condi-

tions for the bivariate asymptotics between ζ
(j)
n (p) and m̂(X, n, r) are fulfilled, as we explain in

the following for each risk measure estimator separately:

• For j= 1, the set of conditions (S∗
1) includes all conditions of Theorem 4 to conclude to the

bivariate FCLT.
• For j= 2, the set of conditions (S∗

2) includes all conditions of Proposition 5 to conclude to the
bivariate FCLT.

• For j= 3, the set of conditions (S∗
3) includes all conditions of Theorem 4 to apply a multivari-

ate version of it at all the quantile levels p1, ..., pk and, using the continuous mapping theorem,
conclude to the bivariate FCLT.
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• For j= 4, the set of conditions (S∗
4) includes all conditions of Theorem 4 to apply it at the

quantile level k−1, recalling (8).

Then, we consider Theorem 9 for each choice of fj, j= 1, ..., 4, as defined above, combined with g,
so that the bivariate asymptotics (A.10) then holds.

Further, we can identify, by our construction,

ζ
(j)
n/2, t+n/2(p)− ζ (j)(p)= 2Q̄n + oP(1/

√
n), (A.33)

ζ
(j)
n/2, t(p)− ζ (j)(p)= 2Ȳn + oP(1/

√
n), (A.34)

m̂(X, n/2, r, t)−m(X, r)= 2Z̄n + oP(1/
√
n), (A.35)

using the definitions (A.11) and (A.12).
To conclude to the trivariate asymptotics (A.14), we need the strong mixing and the moment

condition (A.13). But, recalling the set of assumptions (S∗
1),. . .,(S

∗
4), we see that strong mixing

holds by assumption as well as (Mr+τ ) (see (Mk)) such that (A.13) holds.

Step 2: Concluding the bivariate asymptotics

By Slutsky theorem, we know that adding a rest which converges in probability to 0, does not
change the limiting distribution, thus, from Equations (A.34)–(A.35) and (A.14), it follows that,
as n→ ∞,

√
n

⎛⎜⎜⎝
ζ
(j)
n/2, t+n/2(p)− ζ (j)(p)

ζ
(j)
n/2, t(p)− ζ (j)(p)

m̂(X, n/2, r, t)−m(X, r)

⎞⎟⎟⎠ d→N (0, 4�), (A.36)

with the covariance matrix � being related to � as described in Theorem 9 and 4� is to be under-
stood as elementwisemultiplication. By themultivariate Deltamethod, we can deduce from (A.36)
that, as n→ ∞,

√
n

⎛⎜⎜⎝
log|ζ (j)

n/2, t+n/2(p)| − log|ζ (j)(p)|
log|ζ (j)

n/2, t(p)| − log|ζ (j)(p)|
m̂(X, n/2, r, t)−m(X, r)

⎞⎟⎟⎠ d→N (0, �̃), (A.37)

where �̃jk =

⎧⎪⎨⎪⎩
4�jk/

(
ζ (j)(p)

)2 for j, k ∈ {1, 2},
4�jk for j= k= 3,
4�jk/ζ

(j)(p) else.
Applying the continuous mapping theorem to (A.27) with the function f (x, y, z)= (x− y, z),

we obtain
√
n

(
log|ζ (j)

n/2, t+n/2(p)| − log|ζ (j)
n/2, t(p)|

m̂(X, n/2, r, t)−m(X, r)

)
d→

n→∞ N (0, �̂),

where �̂jk =

⎧⎪⎨⎪⎩
�̃11 + �̃22 for j= k= 1,
�̃33 for j= k= 2,
�̃13 − �̃23 else.

By tracing back the definitions of � (see Theorem 9), we see that �̂ equals �̃ as defined in
Theorem 1, and thus concludes the proof.
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