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Abstract. For random piecewise linear systems T of the interval that are expanding on
average we construct explicitly the density functions of absolutely continuous T-invariant
measures. If the random system uses only expanding maps our procedure produces all
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maps, random β-transformations and random Lüroth maps with a hole.

Key words: absolutely continuous invariant measure, β-expansions, interval map, Lüroth
expansions, random dynamics
2020 Mathematics Subject Classification: 37E05, 28D05, 37H05 (Primary); 37A05,
37A44, 37A10, 60G10 (Secondary)

1. Introduction
The Perron–Frobenius operator has been used since the seminal paper [LY73] of Lasota
and Yorke to establish the existence of absolutely continuous invariant measures for
deterministic dynamical systems. The same approach was also successful in the study
of random dynamical systems. In the random setting, instead of a single map, a family
of maps is considered from which one is selected at each iteration at random. In [Pel84]
Pelikan gave sufficient conditions under which a random system using a finite number
of piecewise C2-transformations on the interval has absolutely continuous invariant
measures. He also discussed the possible number of ergodic components. Around the same
time a similar result was obtained by Morita in [Mor85], allowing for the possibility to
choose from an infinite family of maps as well. In more recent years these results have
been generalized in various ways. See [Buz00, GB03, BG05, Ino12], for example.

Finding an explicit formula for the density functions of these absolutely continuous
invariant measures, however, is a different matter. Here the Perron–Frobenius operator
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can only help if one can make an educated guess. An explicit expression for the invariant
density is therefore available only for specific families of maps. In 1957 Rényi gave in
[Rén57] an expression for the invariant density of the β-transformation x �→ βx(mod 1)

for β = (1 + √
5)/2, the golden mean. Later Parry and Gel’fond gave a general formula for

the invariant density of the β-transformation in [Par60, Gel59]. In [DK10] generalizations
of the β-transformation were considered. A more general set-up allowing different slopes
was proposed in [Kop90] by Kopf. He introduced a matrix M for any piecewise linear
expanding interval map satisfying some minor restraints and associated each absolutely
continuous invariant measure of the system to a vector from the null space of M . Some
twenty years later, Góra developed in [Gór09] a similar procedure for deterministic
piecewise linear eventually expanding interval maps. Unless the map in question has many
onto branches, the matrix involved in the procedure from [Gór09] is of higher dimension
than the one used in [Kop90].

For random maps not much is known. An exception is the random β-transformation,
which was first introduced in [DK03] by Dajani and Kraaikamp and uses random
combinations of two piecewise linear maps with constant slope β > 1. It has a unique
absolutely continuous invariant measure, as proved in [DdV07]. In [Kem14] Kempton
gave a formula for the invariant density in the case where one chooses the two base maps
with equal probability. Recently Suzuki extended these results in [Suz19] to include the
non-uniform Bernoulli regime as well.

This paper is concerned with finding explicit expressions for invariant densities of
random systems. We consider any finite or countable family {Tj : [0, 1] → [0, 1]} of
piecewise linear maps that are expanding on average. The random system T is given
by choosing one of these maps at each step using a probability vector p = (pj ). The
existence of an absolutely continuous invariant measure for such systems is guaranteed
by [Pel84] for a finite family and by [Buz00, Ino12] in the countable case. The
main result of this paper is that we provide a procedure to construct explicit formulas
for invariant probability densities of the random system T . This is the content of
Theorem 4.1. The results from Theorem 4.1 cover those from [Kem14, Suz19] regarding
the expression for the invariant density as a special case. If we assume that all maps Tj

are expanding, we obtain the stronger result that the procedure leading to Theorem 4.1
actually produces all absolutely continuous invariant measures of T . We prove this in
Theorem 5.3.

The paper is organized as follows. In the second section we specify our set-up and
introduce the necessary assumptions and notation. The third section is devoted to the
definition of a matrix M and to the proof that the null space of M is non-trivial. In the
fourth section we prove Theorem 4.1, relating each non-trivial vector γ from the null space
of M to the density hγ of an absolutely continuous invariant measure of the system T . In
the fifth section we prove Theorem 5.3 concerning when we get all invariant densities. It is
in this section that the extra difficulties that we had to overcome for dealing with random
systems instead of deterministic ones, are most visible. Finally, we apply the results to
some examples. In the sixth section we consider random tent maps, random W -shaped
maps and various random β-transformations. In the final section we elaborate on a system
related to representations of real numbers: a random Lüroth map with a hole.
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2. Preliminaries
Let � ⊆ N and let {Tj : [0, 1] → [0, 1]}j∈� be a family of piecewise linear transforma-
tions. Consider a positive probability vector p = (pj )j∈� (i.e., pj > 0 for all j ∈ � and∑

j∈� pj = 1). We call the system T a random system of the interval [0, 1] of probability
p, if for x ∈ [0, 1] and j ∈ �,

T (x) := Tj (x) with probability pj .

A measure μp on [0, 1] is an absolutely continuous invariant measure for T and p if
there is a density function h, such that for each Borel set A ⊆ [0, 1] we have

μp(A) =
∫

A

h dλ =
∑
j∈�

pjμp(T −1
j A), (1)

where λ denotes the one-dimensional Lebesgue measure.
Such a random system T can also be described by a pseudo skew-product system. In

that case, let σ : �N → �N be the left shift on sequences and define the map R : �N ×
[0, 1] → �N × [0, 1] by R(ω, x) = (σ (ω), Tω1x). If mp is the p-Bernoulli measure on
�N, then mp × μp is an invariant measure for R. We call R the pseudo skew-product
system associated to T .

We put some assumptions on the systems T we consider.

(A1) Assume that the set of all the critical points of the maps Tj is finite. Denote these
critical points by 0 = z0 < z1 < · · · < zN = 1. The points zi together specify a common
partition {Ii}1≤i≤N of subintervals of [0, 1], such that all maps Tj are monotone on each
of the intervals Ii . Hence, there exist ki,j , di,j ∈ R such that the maps Ti,j := Tj |Ii

are
given by

Ti,j (x) = ki,j x + di,j .

(A2) Assume that T is expanding on average with respect to p, that is, assume that there
is a constant 0 < ρ < 1, such that for all x ∈ [0, 1],

∑
j∈�(pj/|T ′

j (x)|) ≤ ρ < 1. This is
equivalent to assuming that for each 1 ≤ i ≤ N ,∑

j∈�

pj

|ki,j | ≤ ρ < 1.

Under these conditions the random system T satisfies conditions (a) and (b) from
[Ino12], which studies the existence of invariant densities h satisfying (1) using the
Perron–Frobenius operator. For the deterministic maps Tj : [0, 1] → [0, 1], j ∈ �, the
Perron–Frobenius operator on L1(λ) is given by

PTj
f (x) =

∑
y∈T −1

j {x}

f (y)

|T ′
j (y)| .

The random Perron–Frobenius operator is then defined by

PT f =
∑
j∈�

pjPTj
f . (2)
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The operator PT is clearly linear and positive. An L1(λ)-function h is called T -invariant
for the random system T if it is a fixed point of PT , that is, if it satisfies PT h = h λ-almost
everywhere (a.e.). A density function h is the density of a measure μp satisfying (1) if and
only if it is a fixed point of PT . From [Ino12, Theorem 5.2] it follows that a T -invariant
measure μp of the form (1), and hence a T -invariant function h, exists. Inoue obtained this
result by showing that the operator PT , applied to functions of bounded variation, satisfies
a Lasota–Yorke type inequality. From the famous Ionescu-Tulcea and Marinescu theorem
one can then deduce much more than mere existence of an absolutely continuous invariant
measure; it says that PT as an operator on the space of functions of bounded variation is
quasi-compact. The specific implications of the quasi-compactness of PT that we use in
this paper are the following. The eigenvalue 1 of PT has a finite-dimensional eigenspace.
In other words, the subspace of L1(λ) of T -invariant functions is a finite-dimensional
sublattice of the space of functions of bounded variation. As such, it has a finite base H =
{v1, . . . , vr} of T -invariant density functions of bounded variation, each corresponding
to an ergodic measure, so that any other T -invariant L1(λ)-function h can be written as
a linear combination of the vi : h = ∑r

i=1 civi for some constants ci ∈ R. Furthermore, if
we set Ui := {x : vi(x) > 0} for the support of the function vi , then each Ui is forward
invariant under T in the sense that

λ

(
Ui	

⋃
j∈�

Tj (Ui)

)
= 0, (3)

where 	 denotes the symmetric difference. Also, the sets Ui are mutually disjoint and
none of the sets Ui can properly contain another forward invariant set. We will use these
properties in the proofs from §5. An account of these implications on the operator PT can
be found in [Pel84, Mor85, Buz00, Ino12], for example. For more information, we also
refer to standard textbooks such as [BG97, LM94].

In this paper we find T -invariant functions h : [0, 1] → R by linking them to the vectors
from the null space of a matrix M . To guarantee that this null space is non-trivial, we
formulate three additional assumptions that are easy to verify for any given systems. Firstly,
we assume that not all the lines x �→ ki,j x + di,j , 1 ≤ i ≤ N , with respective weights pj ,
have a common intersection point with the diagonal. More precisely, consider for each
interval Ii the weighted intersection point with the diagonal

x =
∑
j∈�

pj

(
x

ki,j
− di,j

ki,j

)
.

Our third assumption states that for each i there is an n, such that these points do not
coincide.

(A3) Assume that for each 1 ≤ i ≤ N , there is an 1 ≤ n ≤ N , such that

∑
j∈�(pj/ki,j )di,j

1 − ∑
j∈�(pj/ki,j )


=
∑

j∈�(pj/kn,j )dn,j

1 − ∑
j∈�(pj/kn,j )

.
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FIGURE 1. On the left is an arbitrary map T satisfying the above conditions. On the right we see a random
map T in the white box that does not satisfy (A4). By adding the branches in the grey part and rescaling, we
obtain a system that does satisfy these conditions. Note that any point in the grey part (except for 0 and 1)
moves to the white part after a finite number of iterations and stays there. Hence, any invariant density will equal

0 on the grey part.

Note that if di,j < 0, then ki,j > −di,j and if di,j > 1, then ki,j < 1 − di,j . Hence, in all
cases |di,j | < |ki,j | + 1 and by (A2),∑

j∈�

pj

|ki,j | |di,j | ≤ 1 + ρ. (4)

So, the quantities in (A3) are all finite. Our fourth assumption is on the orbits of the points
0 and 1.

(A4) For each j , assume that

d1,j =
{

0 if k1, j > 0,

1 if k1, j < 0,
and dN ,j =

{
1 − kN , j if kN , j > 0,

− kN , j if kN , j < 0.

In other words, the points 0 and 1 are mapped to 0 or 1 under all maps Tj , making the
system continuous at the origin, when we consider it as acting on the circle R/Z with
the points 0 and 1 identified. Since we can deal with finitely many discontinuities, (A4)
is not necessary for our results to hold, but it makes computations easier. Any system
not satisfying it can be extended to a system that does satisfy this condition and for
which no absolutely continuous invariant measure puts weight on the added pieces. See
Figure 1 for an illustration and see §6.3 for a concrete example, given by the random
(α, β)-transformation.

Finally, we include an assumption stating that the weighted inverse derivative cannot be
0 anywhere.

(A5) Assume that for any x ∈ [0, 1], the weighted inverse derivative satisfies∑
j∈�(pj/T

′
j (x)) 
= 0. This is equivalent to assuming that for each 1 ≤ i ≤ N ,

∑
j∈�

pj

ki,j

= 0.
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Conditions (A3) and (A5) are sufficient to get our main results, but probably not
necessary. Note that (A5) is automatically fulfilled for any deterministic Lasota–Yorke map
(and, in particular, for any deterministic piecewise linear map) and also for any random
system for which on each interval Ii the derivatives of all maps Tj have the same sign. The
final section contains an example that does not satisfy (A5) for a specific choice of p. We
will see that the procedure which leads to our main results still gives all invariant densities
in that case. Moreover, if (A5) is not satisfied for some probability vector p, then changing
p slightly already lifts this restriction.

3. A homogeneous system with a non-trivial solution
An invariant measure reflects the dynamics of a system. For the maps Tj , j ∈ �,
considered in this article, the dynamics is determined by the orbits of the endpoints of
the lines x �→ ki,j x + di,j , 1 ≤ i ≤ N . We start this section by defining some quantities
that keep track of the possible orbits of these points.

Let �∗ be the set of all finite strings of elements from � together with the empty
string ε. For t ≥ 0, let �t ⊆ �∗ denote the subset of those strings that have length t . So,
in particular, �0 = {ε}. Let |ω| denote the length of the string ω. For any string ω ∈ �∗
with |ω| ≥ t , we let ωt

1 denote the starting block of length t . For two strings ω, ω′ ∈ �∗ we
simply write ωω′ for their concatenation. Each element ω ∈ �t defines a possible start of
an orbit of a point in [0, 1] by composition of maps: for x ∈ [0, 1] and ω = ω1 · · · ωt ∈ �t ,
define

Tω(x) = Tωt ◦ Tωt−1 ◦ · · · ◦ Tω1(x)

and set Tε(x) = x. For ω ∈ �∗, set τω(y, 0) = 1, and for 1 ≤ t ≤ |ω|, set

τω(y, t) := pωt

ki,ωt

if T
ωt−1

1
(y) ∈ Ii .

Define

δω(y, t) :=
t∏

n=0

τω(y, n), (5)

so that δω(y, t) is the weighted slope of the map Tωt
1

at the point y. Note that τω(y, t)

and δω(y, t) only depend on the block ωt
1 and not on what comes after. Moreover, for a

concatenation ωj , given by any block ω with |ω| = t − 1 and any j ∈ �, we have that
τωj (y, t) = τj (Tω(y), 1) and δωj (y, t) = τωj (y, t)δω(y, t − 1). By assumption (A2) we
have that for any y ∈ [0, 1],∣∣∣∣∑

t≥0

∑
ω∈�t

δω(y, t)

∣∣∣∣ ≤ 1 +
∑
t≥1

∑
ω∈�t−1

∑
j∈�

|δω(y, t − 1)||τωj (y, t)|

≤ 1 +
∑
t≥1

∑
ω∈�t−1

|δω(y, t − 1)|ρ ≤ 1
1 − ρ

. (6)

Let 1A denote the characteristic function of the set A and set

KIn(y) :=
∑
t≥1

∑
ω∈�t

δω(y, t)1In(Tωt−1
1

(y)) for 1 ≤ n ≤ N .

https://doi.org/10.1017/etds.2020.127 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.127


Invariant densities for random systems of the interval 147

Then KIn(y) keeps track of all the times the random orbit of y visits In and adds the
corresponding weighted slopes. For 1 ≤ i ≤ N − 1, set Ai := I1 ∪ · · · ∪ Ii and Bi :=
Ii+1 ∪ · · · ∪ IN . We define

KAi (y) :=
∑
t≥0

∑
ω∈�t

δω(y, t)1Ai
(Tω(y)),

KBi (y) :=
∑
t≥0

∑
ω∈�t

δω(y, t)1Bi
(Tω(y)).

(7)

By (6), |KIn|, |KAi | and |KBi | are finite for all y ∈ [0, 1]. For each 1 ≤ n ≤ N , let Sn be
the average inverse of the slope,

Sn :=
∑
j∈�

pj

kn,j
,

which is non-zero by (A5), so that S−1
n is well defined. The next two lemmas give some

identities that we will use later.

LEMMA 3.1. For each y ∈ [0, 1] and 1 ≤ i ≤ N − 1 we have

KAi (y) =
i∑

n=1

S−1
n KIn(y) and KBi (y) =

N∑
n=i+1

S−1
n KIn(y).

Proof. For any 1 ≤ n ≤ N we have

∑
t≥0

∑
ω∈�t

δω(y, t)1In(Tω(y)) =
∑
t≥0

∑
ω∈�t

( ∑
j∈�

pj

kn,j

)−1( ∑
j∈�

pj

kn,j

)
δω(y, t)1In(Tω(y))

=
∑
t≥0

∑
ω∈�t

S−1
n

∑
j∈�

τωj (y, t + 1)δω(y, t)1In(Tω(y))

= S−1
n

∑
t≥0

∑
ω∈�t+1

δω(y, t + 1)1In(Tωt
1
(y)) = S−1

n KIn(y).

(8)

Putting this in the definition of KAi (y) from (7) gives the first part of the lemma. Using
(8), we also get that

KAi (y) + KBi (y) =
∑
t≥0

∑
ω∈�t

δω(y, t) =
N∑

n=1

S−1
n KIn(y). (9)

The result for KBi follows.

Define

Kn := S−1
n − 1 and Dn := S−1

n

( ∑
j∈�

pj

kn,j
dn,j

)
.

Then

Dn

Kn

=
∑

j∈�(pj/kn,j )dn,j

1 − ∑
j∈�(pj/kn,j )

,
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so that we can rephrase assumption (A3) as follows: for each 1 ≤ i ≤ N , there is an 1 ≤
n ≤ N such that Di/Ki 
= Dn/Kn. We have the following properties for Kn and Dn.

LEMMA 3.2. Let y ∈ [0, 1]. Then

N∑
n=1

Kn KIn(y) = 1 and −
N∑

n=1

Dn KIn(y) = y.

Proof. For the first part, note that by (9) we have

N∑
n=1

S−1
n KIn(y) = 1 +

∑
t≥1

∑
ω∈�t

δω(y, t) = 1 +
N∑

n=1

KIn(y). (10)

For the second part, let 1 ≤ i ≤ N be such that y ∈ Ii . Then for j ∈ � we get Ti,j (y) =
ki,j y + di,j , and thus

y =
∑
j∈�

(
pj

ki,j
Ti,j (y) − pj

ki,j
di,j

)
.

For t ≥ 1 and ω ∈ �∗ with |ω| ≥ t , set

θω(y, t) := − pωt

kn,ωt

dn,ωt if T
ωt−1

1
(y) ∈ In. (11)

Then

y =
∑
ω∈�

τω(y, 1)Tω(y) + θω(y, 1). (12)

Since τj (Tω(y), 1) = τωj (y, 2) and θj (Tω(y), 1) = θωj (y, 2), we obtain for ω ∈ � that

Tω(y) =
∑
j∈�

τωj (y, 2)Tωj (y) + θωj (y, 2). (13)

Repeated application of (13) in (12), together with the definition of δω from (5), yields
after n steps,

y =
n+1∑
t=1

∑
ω∈�t

δω(y, t − 1) θω(y, t) +
∑

ω∈�n+1

δω(y, n + 1)Tω(y).

From (6) we obtain that limn→∞
∑

ω∈�n+1 |δω(y, n + 1)Tω(y)| = 0. Hence, by (A2), (4)
and (6),

y =
∑
t≥0

∑
ω∈�t+1

δω(y, t)θω(y, t + 1) (14)

= −
N∑

n=1

∑
t≥0

∑
ω∈�t

δω(y, t)1In(Tω(y))

( ∑
j∈�

pj

kn,j
dn,j

)
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= −
N∑

n=1

S−1
n

( ∑
j∈�

pj

kn,j
dn,j

) ∑
t≥0

∑
ω∈�t

δω(y, t)

( ∑
j∈�

pj

kn,j

)
1In(Tω(y))

= −
N∑

n=1

Dn

∑
t≥0

∑
ω∈�t

δω(y, t)

( ∑
j∈�

τωj (y, t + 1)

)
1In(Tω(y))

= −
N∑

n=1

Dn

∑
t≥0

∑
ω∈�t+1

δω(y, t + 1)1In(Tωt
1
(y)) = −

N∑
n=1

Dn KIn(y).

For the invariant densities, we need to keep track of the orbits of the limits from the left
and from the right of each partition point. Set, for 1 ≤ i ≤ N − 1 and j ∈ �,

ai,j := ki,j zi + di,j = lim
x↑zi

Tj (x), and bi,j := ki+1,j zi + di+1,j = lim
x↓zi

Tj (x).

See also Figure 1.

Definition 3.3. The N × (N − 1) matrix M = (μn,i ) given by

μn,i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈�

[
pj

ki,j
+ pj

ki,j
KIn(ai,j ) − pj

ki+1,j
KIn(bi,j )

]
for n = i,

∑
j∈�

[
pj

ki,j
KIn(ai,j ) − pj

ki+1,j
− pj

ki+1,j
KIn(bi,j )

]
for n = i + 1,

∑
j∈�

[
pj

ki,j
KIn(ai,j ) − pj

ki+1,j
KIn(bi,j )

]
otherwise,

is called the fundamental matrix of the random piecewise linear system T .

Note that assumption (A2) together with the fact that |KIn(y)| < ∞ for all y ∈ [0, 1]
implies that all entries of M are finite. In the next section we associate invariant functions
hγ to vectors γ ∈ R

N−1 in the null space of M . Here we prove that the null space of M is
non-trivial.

LEMMA 3.4. The system Mγ = 0 admits at least one non-trivial solution.

Proof. Since M has dimension N × (N − 1), by the Rouché–Capelli theorem the asso-
ciated homogeneous system admits a non-trivial solution if and only if the rank of M

is at most N − 2. Below we will give non-trivial linear dependence relations between
all combinations of N − 1 out of N rows. It follows that any minor of order N − 1 of
M is zero and thus that the rank of M is at most N − 2. We first show that for every
1 ≤ i ≤ N − 1,

N∑
n=1

Knμn,i = 0 and
N∑

n=1

Dnμn,i = 0. (15)
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Indeed by Lemma 3.2,

N∑
n=1

Knμn,i

=
∑
j∈�

[
pj

ki,j
Ki − pj

ki+1,j
Ki+1 + pj

ki,j

N∑
n=1

Kn KIn(ai,j ) − pj

ki+1,j

N∑
n=1

Kn KIn(bi,j )

]

= Si(S
−1
i − 1) − Si+1(S

−1
i+1 − 1) + Si − Si+1 = 0.

On the other hand, by the definition of the points ai,j and bi,j ,

N∑
n=1

Dnμn,i

=
∑
j∈�

[
pj

ki,j
Di − pj

ki+1,j
Di+1 + pj

ki,j

N∑
n=1

Dn KIn(ai,j ) − pj

ki+1,j

N∑
n=1

Dn KIn(bi,j )

]

=
∑
j∈�

(
SiS

−1
i

pj

ki,j
di,j − Si+1S

−1
i+1

pj

ki+1,j
di+1,j − pj

ki,j
ai,j + pj

ki+1,j
bi,j

)
= 0.

Consequently, for every 1 ≤ l ≤ N and every 1 ≤ i ≤ N − 1,

N∑
n=1,n
=l

(DlKn − DnKl)μn,i = 0.

By assumption (A3) this gives non-trivial linear dependence relations between all com-
binations of N − 1 out of N rows, giving the result.

Remark 3.5. Note that if Sn = 0 for some 1 ≤ n ≤ N , then the quantities Kn and Dn are
not well defined. In this case μn,i = ∑

j∈�(pj/ki,j ) KIn(ai,j ) − (pj /(ki+1,j )) KIn(bi,j )

for each 1 ≤ i ≤ N − 1 and by the definition of KIn we can write for any y ∈ [0, 1] that

KIn(y) =
∑
t≥1

∑
ω∈�t−1

∑
j∈�

δω(y, t − 1)
pj

kn,j
1In(Tωt−1

1
(y))

=
∑
t≥1

∑
ω∈�t−1

δω(y, t − 1)1In(Tωt−1
1

(y))Sn = 0.

Hence, μn,i = 0 for each i. From this, it is clear that if Sn = 0 for at least two indices n,
then a non-trivial vector γ such that Mγ = 0 still exists. If there is a unique � with S� = 0,
then to obtain a non-trivial solution one still needs to find suitable constants cn such that∑N

n=1,n
=� cnμn,i = 0 for each i.

Any vector γ from the null space of M satisfies the following orthogonal relations,
linking γ to the functions KAi and KBi .
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LEMMA 3.6. For all 1 ≤ i ≤ N − 1 we have the following orthogonal relations:

γi +
N−1∑
m=1

γm

∑
j∈�

[
pj

km,j
KAi (am,j ) − pj

km+1,j
KAi (bm,j )

]
= 0,

and

γi −
N−1∑
m=1

γm

∑
j∈�

[
pj

km,j
KBi (am,j ) − pj

km+1,j
KBi (bm,j )

]
= 0.

Proof. If γ is a solution of the system Mγ = 0, then
∑N−1

m=1 γmμn,m = 0 for all n.
Lemma 3.1 gives for n = 1,

0 = S−1
1

N−1∑
m=1

γmμ1,m

= S−1
1 γ1

∑
j∈�

pj

k1,j
+ S−1

1

N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KI1(am,j ) − pj

km+1,j
KI1(bm,j )

)

= γ1 +
N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KA1(am,j ) − pj

km+1,j
KA1(bm,j )

)
.

For 2 ≤ n ≤ N − 1 we similarly obtain

0 = S−1
n

N−1∑
m=1

γmμn,m = S−1
n

N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KIn(am,j ) − pj

km+1,j
KIn(bm,j )

)

+ S−1
n

(
γn

∑
j∈�

pj

kn,j
− γn−1

∑
j∈�

pj

kn,j

)

= S−1
n

N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KIn(am,j ) − pj

km+1,j
KIn(bm,j )

)

+ γn − γn−1. (16)

Then summing over all 1 ≤ n ≤ i and using (16) and Lemma 3.1 gives

0 =
i∑

n=1

S−1
n

N−1∑
m=1

γmμn,m

= γi +
i∑

n=1

S−1
n

N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KIn(am,j ) − pj

km+1,j
KIn(bm,j )

)

= γi +
N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
KAi (am,j ) − pj

km+1,j
KAi (bm,j )

)
.

This gives the relations for KAi .
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From
∑N−1

m=1 γmμn,m = 0 for all n it also follows that
∑N−1

m=1 γm

∑N
n=1 μn,m = 0. From

this we obtain that

N−1∑
m=1

γm

∑
j∈�

pj

km,j

(
1 +

N∑
n=1

KIn(am,j )

)
=

N−1∑
m=1

γm

∑
j∈�

pj

km+1,j

(
1 +

N∑
n=1

KIn(bm,j )

)
.

Then (10) from the proof of Lemma 3.2 gives that

N−1∑
m=1

γm

∑
j∈�

pj

km,j

N∑
n=1

S−1
n KIn(am,j ) =

N−1∑
m=1

γm

∑
j∈�

pj

km+1,j

N∑
n=1

S−1
n KIn(bm,j ).

Hence, by Lemma 3.1 we get for each i that

N−1∑
m=1

γm

∑
j∈�

pj

km,j
(KAi (am,j ) + KBi (am,j ))=

N−1∑
m=1

γm

∑
j∈�

pj

km+1,j
(KAi (bm,j ) + KBi (bm,j )).

This gives the orthogonal relations for KBi .

In the proofs of our main results we only use the second part of Lemma 3.6, that is,
the orthogonal relations for KBi , but since we obtain the orthogonal relations for KAi and
KBi more or less simultaneously, we have listed them both.

4. Invariant densities for the random system T

We now state our main result. For y ∈ [0, 1], define the L1(λ)-function Ly : [0, 1] → R by

Ly(x) =
∑
t≥0

∑
ω∈�t

δω(y, t)1[0,Tω(y))(x). (17)

THEOREM 4.1. Let T be a random piecewise linear system on the unit interval [0, 1] that
satisfies assumptions (A1)–(A5) from §2. Let M be the corresponding fundamental matrix
and let γ = (γ1, . . . , γN−1)

ᵀ be a non-trivial solution of the system Mγ = 0. For each
1 ≤ m ≤ N − 1, define the function hm : [0, 1] → R by

hm(x) :=
∑
�∈�

[
p�

km,�
Lam,� (x) − p�

km+1,�
Lbm,� (x)

]
. (18)

Then a T -invariant function is given by

hγ : [0, 1] → R, x �→
N−1∑
m=1

γmhm(x) (19)

and hγ 
= 0.

To show that PT hγ = hγ λ-a.e. we have to determine, for each x ∈ [0, 1] and each
branch Ti,j , whether or not x has an inverse image in the branch Ti,j . Let

xi,j := x − di,j

ki,j
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be the inverse of x under the map Ti,j : R → R. By the definitions in (18) and (19), we
have to show that

hγ (x) =
∑
j∈�

N∑
i=1

pj

|ki,j |hγ (xi,j )1Ii
(xi,j )

=
∑
j∈�

N∑
i=1

pj

|ki,j |1Ii
(xi,j )

N−1∑
m=1

γm

∑
�∈�

(
p�

km,�
Lam,� (xi,j ) − p�

km+1,�
Lbm,� (xi,j )

)
.

(20)

The parts for Lam,� and Lbm,� behave similarly. That is why we first study

∑
j∈�

N∑
i=1

pj

|ki,j |1Ii
(xi,j )Ly(xi,j )

for general y ∈ [0, 1] through several lemmas. We introduce some notation to manage the
long expressions. For 1 ≤ i ≤ N − 1, let

ηi :=
∑
j∈�

pj (1(0,∞)(ki,j ) − ai,j )

ki,j
and φi :=

∑
j∈�

pj (−1(−∞,0)(ki+1,j ) + bi,j )

ki+1,j
.

For y ∈ [0, 1] let 1 ≤ n ≤ N be the index such that y ∈ In and set

C(y) :=
∑
j∈�

( n−1∑
i=1

pj

|ki,j | + pj

|kn,j |1(−∞,0)(kn,j )

)
. (21)

LEMMA 4.2. Let y ∈ [0, 1]. Then

y =
∑
t≥0

∑
ω∈�t

δω(y, t)C(Tω(y)) −
N−1∑
i=1

(ηi + φi) KBi (y).

Proof. Let y ∈ [0, 1] be given and recall the definition of θω(z, t) from (11). If y ∈ In,
then

C(y) −
N−1∑
i=1

(ηi + φi)1Bi
(y)

=
∑
j∈�

pj

|kn,j |1(−∞,0)(kn,j )

+
∑
j∈�

n−1∑
i=1

(
pj

|ki,j | − pj (1(0,∞)(ki,j ) − ai,j )

ki,j
− pj (−1(−∞,0)(ki+1,j ) + bi,j )

ki+1,j

)

=
∑
j∈�

(
− pj

kn,j
bn−1,j + pj

|k1,j | − pj

k1,j
1(0,∞)(k1,j ) + pj

k1,j
a1,j +

n−1∑
i=2

pj

ki,j
(ai,j − bi−1,j )

)

= −
∑
j∈�

pj

kn,j
dn,j =

∑
j∈�

θj (y, 1),
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where we have used the assumptions from (A4) in the second to last step. So for any t ≥ 0
and ω ∈ �t we get that

C(Tω(y)) −
N−1∑
i=1

(ηi + φi)1Bi
(Tω(y)) =

∑
j∈�

θωj (y, t + 1), (22)

where ωj denotes the concatenation of ω with j ∈ �. Recall from the first line of (14) that

y =
∑
t≥0

∑
ω∈�t

δω(y, t)
∑
j∈�

θωj (y, t + 1).

Combining this with (22) and the definition of KBi from (7) then gives the result.

For each 1 ≤ i ≤ N − 1, define the functions Ei , Fi : [0, 1] → R by

Ei(x) :=
∑
j∈�

pj

ki,j

(
− 1[ai,j ,1](x)1(0,∞)(ki,j ) + 1[0,ai,j )(x)1(−∞,0)(ki,j )

)
,

Fi(x) :=
∑
j∈�

pj

ki+1,j

(
− 1[0,bi,j )(x)1(0,∞)(ki+1,j ) + 1[bi,j ,1](x)1(−∞,0)(ki+1,j )

)

and let EN , F0 : [0, 1] → R be the zero functions. Then for each 1 ≤ i ≤ N we have that
for Lebesgue almost every x ∈ [0, 1],

Ei(x) + Fi−1(x) =
∑
j∈�

pj

|ki,j | (1Ii
(xi,j ) − 1),

where we have used (A4) for i = 1, N . In fact, equality holds for all but countably many
points.

LEMMA 4.3. For y ∈ [0, 1] we have that for Lebesgue almost every x ∈ [0, 1],

∑
j∈�

N∑
i=1

pj

|ki,j |1Ii
(xi,j )Ly(xi,j )

=
N−1∑
i=1

(Ei(x) + ηi + Fi(x) + φi) KBi (y) + y + Ly(x) − 1[0,y)(x).

Proof. For y ∈ [0, 1], let 1 ≤ n ≤ N be the index such that y ∈ In. By Fubini’s theorem,
we get

∑
j∈�

N∑
i=1

pj

|ki,j |1Ii
(xi,j )Ly(xi,j ) =

∑
t≥0

∑
ω∈�t

δω(y, t)

N∑
i=1

∑
j∈�

pj

|ki,j |1Ii∩[0,Tω(y))(xi,j ).

(23)
For Lebesgue almost every x ∈ [0, 1] and for n 
= 1 we have that∑

j∈�

pj

|kn,j |1(−∞,0)(kn,j ) +
∑
j∈�

pj

kn,j
1[0,Tj (y))(x) + Fn−1(x)

=
∑
j∈�

(
pj

|kn,j |1(−∞,0)(kn,j )(1 − 1[0,Tj (y))(x) − 1[bn−1,j ,1](x))

https://doi.org/10.1017/etds.2020.127 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.127


Invariant densities for random systems of the interval 155

+ pj

|kn,j |1(0,∞)(kn,j )(1[0,Tj (y))(x) − 1[0,bn−1,j )(x))

)

=
∑
j∈�

pj

|kn,j |1In∩[0,y)(xn,j ). (24)

Using (A4), we also get that∑
j∈�

pj

|k1,j |1(−∞,0)(k1,j )+
∑
j∈�

pj

k1,j
1[0,Tj (y))(x) + F0(x) =

∑
j∈�

pj

|k1,j |1I1∩[0,y)(x1,j ),

so the statement from (24) holds for all 1 ≤ n ≤ N . Since y ∈ In we have for Lebesgue
almost every x ∈ [0, 1] that

N−1∑
i=1

(Ei(x) + Fi(x))1Bi
(y) =

n−1∑
i=1

∑
j∈�

pj

|ki,j | (1Ii
(xi,j ) − 1) + Fn−1(x).

Combining this with (24) and the definition of C(y) from (21), we obtain that for each
y ∈ [0, 1], there is a set of x ∈ [0, 1] of full Lebesgue measure, for which

∑
j∈�

N∑
i=1

pj

|ki,j |1Ii∩[0,y)(xi,j )

=
∑
j∈�

n−1∑
i=1

pj

|ki,j |1Ii
(xi,j ) +

∑
j∈�

pj

|kn,j |1(−∞,0)(kn,j ) +
∑
j∈�

pj

kn,j
1[0,Tj (y))(x) + Fn−1(x)

=
N−1∑
i=1

(Ei(x) + Fi(x))1Bi
(y) + C(y) +

∑
j∈�

τj (y, 1)1[0,Tj (y))(x).

Hence, by (23) we also have that for Lebesgue almost every x ∈ [0, 1],

∑
j∈�

N∑
i=1

pj

|ki,j |1Ii
(xi,j )Ly(xi,j )

=
N−1∑
i=1

(Ei(x) + Fi(x))
∑
t≥0

∑
ω∈�t

δω(y, t)1Bi
(Tω(y))

+
∑
t≥0

∑
ω∈�t

δω(y, t)C(Tω(y)) +
∑
t≥1

∑
ω∈�t

δω(y, t)1[0,Tω(y))(x).

The statement now follows from the definition of KBi from (7) and Lemma 4.2.

Proof of Theorem 4.1. First note that for all 1 ≤ i ≤ N − 1 and all x ∈ [0, 1],

Ei(x) + ηi =
∑
j∈�

pj

ki,j

(
1[0,ai,j )(x) − ai,j

)

and

Fi(x) + φi =
∑
j∈�

pj

ki+1,j

(
− 1[0,bi,j )(x) + bi,j

)
.
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Together they give that

∑
�∈�

(
p�

km,�
(−1[0,am,�)(x) + am,�) − p�

km+1, �
(−1[0,bm,�)(x) + bm,�)

)

= −(Em(x) + ηm + Fm(x) + φm).

Using this together with Lemma 4.3 and Fubini’s theorem, we get by (20) that for Lebesgue
almost every x ∈ [0, 1],

PT hγ (x)

=
N−1∑
m=1

γm

N−1∑
i=1

(Ei(x) + ηi + Fi(x) + φi)
∑
�∈�

(
p�

km,�
KBi (am,�) − p�

km+1,�
KBi (bm,�)

)

−
N−1∑
m=1

γm(Em(x) + ηm + Fm(x) + φm) + hγ (x).

From the second part of Lemma 3.6 we can deduce by multiplying by Ei(x) + ηi +
Fi(x) + φi and summing over all i that

N−1∑
i=1

(Ei(x) + ηi + Fi(x) + φi)γi

=
N−1∑
i=1

(Ei(x) + ηi + Fi(x) + φi)

N−1∑
m=1

γm

∑
j∈�

(
pj

km, j

KBi (am, j ) − pj

km+1, j

KBi (bm, j )

)
.

Hence, we have obtained that hγ is a T -invariant function in L1(λ).
It remains to show that hγ 
= 0. Recall from §2 that any T -invariant L1(λ)-function is

of bounded variation. So at any point y ∈ [0, 1] the limits limx↑y hγ (x) and limx↓y hγ (x)

exist. Consider 1 ≤ � ≤ N − 1 and assume z� ∈ I�. Then for all y ∈ [0, 1], by (6) and (7),
we obtain, by the dominated convergence theorem,

lim
x↓z�

Ly(x) =
∑
t≥0

∑
ω∈�t

δω(y, t) lim
x↓z�

1[0,Tω(y))(x) =
∑
t≥0

∑
ω∈�t

δω(y, t)1B�
(Tω(y)) = KB�(y).

From this, Lemma 3.6 and the dominated convergence theorem again we then get

lim
x↓z�

hγ (x) =
N−1∑
m=1

γm

∑
j∈�

lim
x↓z�

[
pj

km,j
Lam,j (x) − pj

km+1,j
Lbm,j (x)

]

=
N−1∑
m=1

γm

∑
j∈�

[
pj

km,j
KB�(am,j ) − pj

km+1,j
KB�(bm,j )

]

= γ�. (25)

If, on the other hand, z� ∈ I�+1, then we obtain similarly that limx↑z�
Ly(x) = KB�(y) and

thus that limx↑z�
hγ (x) = γ�. Hence, hγ = 0 implies γ = 0. This proves the theorem.
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Remark 4.4. Theorem 4.1 assigns to each solution γ 
= 0 of Mγ = 0 a T -invariant
L1(λ)-function hγ 
= 0. From hγ we can get invariant densities for T as follows. If hγ

is positive or negative, then we can scale hγ to an invariant density function. If not,
then we can write hγ = h+ − h− for two positive functions h+ : [0, 1] → [0, ∞) and
h− : [0, 1] → [0, ∞) and by the linearity and positivity of PT it follows that

h+ − h− = hγ = PT hγ = PT h+ − PT h−.

Hence, h+ and h− can both be normalized to obtain invariant densities for T .

Remark 4.5. In order to compute hγ , one needs to compute the fundamental matrix M

and a vector γ first. Lemma 3.4 implies that when N is small, the computation of γ is
straightforward. Indeed, for N = 2, M is the null vector, and we can take γ = 1. This is
illustrated by the example of the random tent maps from §6.1. For N = 3, it is enough to
compute only one row of M and take γ = (

−μi,2
μi,1 )ᵀ. We see an illustration of this fact in

§6.3 and §6.4 on random β-transformations. For larger N , the computation of M can still
be simplified by using the relations from Lemma 3.2.

To end this section we give a small example to show that condition (A5) is not
necessary for Theorem 4.1 to hold. Consider the random system with � = {0, 1}, T0(x) =
2x (mod 1) the doubling map, T1(x) = 1 − T0(x) and p0 = p1 = 1

2 . Then N = 2 and
for both n = 1, 2 we have Sn = 1

2 · 1
2 − 1

2 · 1
2 = 0. Hence M = ( 0

0 )ᵀ and any γ = γ1 ∈
R \ {0} is a non-trivial solution to Mγ = 0. Since all critical points of T0 and T1 are
mapped to 0 or 1, the function h1 from (18) will be of the form c · 1[0,1) for some c 
= 0
and the function hγ = γ /c · 1[0,1) is indeed invariant for T .

5. All possible absolutely continuous invariant measures
The aim of this section is twofold. Firstly, we prove that the way T is defined on the
partition points z� does not influence the final result. In other words, the set of invariant
functions we obtain from Theorem 4.1 if z� ∈ I� is equal to the set of invariant functions we
obtain if we choose z� ∈ I�+1. This is the content of Proposition 5.1. The amount of work it
takes to compute the matrix M and the invariant functions hγ depends on whether z� ∈ I�

or z� ∈ I�+1. Proposition 5.1 tells us that we are free to choose the most convenient option.
We shall see several examples below. Next we will use Proposition 5.1 to prove that, under
the additional assumption that all maps Tj are expanding, Theorem 4.1 actually produces
all absolutely continuous invariant measures of T . We do this by proving in Theorem 5.3
that the map γ �→ hγ is a bijection between the null space of M and the subspace of L1(λ)

of all T -invariant functions.

PROPOSITION 5.1. Let T be a random system with partition {Ii}1≤i≤N and corresponding
partition points z0, . . . , zN . Let {Îi}1≤i≤N be another partition of [0, 1] given by
z0, . . . , zN and differing from {Ii}1≤i≤N only in one or more of the points z1, . . . , zN−1.
Let T̂ be the corresponding random system, that is, T̂ (x) = T (x) for all x 
= zi , 1 ≤ i ≤
N − 1. Let M̂ be the fundamental matrix of T̂ . There is a one-to-one correspondence
between the solutions γ of Mγ = 0 and the solutions γ̂ of M̂γ̂ = 0. Moreover, the
functions hγ and ĥγ̂ coincide.
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Proof. First assume that there is only one point z� on which {Ii}1≤i≤N and {Îi}1≤i≤N

differ. We show that any column of M̂ is a linear combination of columns of M . More
precisely, we show that the ith column of M̂ is a linear combination of the ith and the
�th columns of M . Assume without loss of generality that z� ∈ I� and therefore z� ∈ Î�+1.
This implies that Tj (z�) = a�,j , whereas T̂j (z�) = b�,j . This difference is reflected in the
values of the quantities KIn(ai,s) and KIn(bi,s) appearing in the matrix M if ai,s or bi,s

enters z� under some iteration of T . We will describe these changes, but first we define
some quantities.

For any y ∈ {ai,j , bi,j : 1 ≤ i ≤ N − 1, j ∈ �} let �y ⊆ �∗ be the collection of
paths that lead y to z�, that is, ω ∈ �y if and only if there is a 0 ≤ t < |ω|, such that
Tωt

1
(y) = z�. Let

�t
y := {ω ∈ �∗ | ∃ η ∈ �y : ω = ηt

1, Tω(y) = z� and Tωs
1
(y) 
= z� for s < t}.

Then �t
y is the collection of words of length t that lead y to z� via a path that does not lead

y to z� before time t . We are interested in the difference between the quantities KIn(y) and
KÎn(y) and we let C

y
n denote the part that they have in common, that is, set

C
y
n :=

∑
t≥1

∑
ω∈�t

y∪�t\�y

δω(y, t)1In(Tωt−1
1

(y)).

Then for n 
= �, we get

KIn(y) = C
y
n +

∑
t≥0

∑
ω∈�t

y

∑
u≥1

∑
η∈�u

δω(y, t)δη(z�, u)1In(Tηu−1
1

(z�))

= C
y
n +

∑
t≥0

∑
ω∈�t

y

∑
u≥1

∑
η∈�u

∑
j∈�

δω(y, t)
pj

k�,j
δη(a�,j , u)1In(Tηu−1

1
(a�,j ))

= C
y
n +

∑
t≥0

∑
ω∈�t

y

δω(y, t)
∑
j∈�

pj

k�,j
KIn(a�,j ),

and similarly, for n = � we obtain

KI�(y) = C
y

� +
∑
t≥0

∑
ω∈�t

y

δω(y, t)
∑
j∈�

pj

k�,j
(1 + KI�(a�,j )).

If we set Q(y) = ∑
t≥0

∑
ω∈�t

y
δω(y, t) as the constant that keeps track of all the paths

that lead y to z� for the first time, then we can write

KIn(y) = C
y
n + Q(y)

∑
j∈�

pj

k�,j
KIn(a�,j ) for n 
= �,

KI�(y) = C
y

� + Q(y)
∑
j∈�

pj

k�,j
(1 + KI�(a�,j )). (26)
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On the other hand, for KÎn(y) we get

KÎn(y) = C
y
n + Q(y)

∑
j∈�

pj

k�+1,j
KÎn(b�,j ) for n 
= � + 1,

KÎ�+1(y) = C
y

�+1 + Q(y)
∑
j∈�

pj

k�+1,j
(1 + KÎ�+1(b�,j )). (27)

If b�,j does not return to z�, then KIn(b�,j ) = KÎn(b�,j ). Set

B := {j ∈ � : �b�,j 
= ∅}.
Then

KÎn(y) = C
y
n + Q(y)

∑
j 
∈B

pj

k�+1,j
KIn(b�,j )

+ Q(y)
∑
j∈B

pj

k�+1,j
KÎn(b�,j ) for n 
= � + 1,

KÎ�+1(y) = C
y

�+1 + Q(y)
∑
j 
∈B

pj

k�+1,j
(1 + KI�+1(b�,j ))

+ Q(y)
∑
j∈B

pj

k�+1,j
(1 + KÎ�+1(b�,j )).

To determine the difference between KIn(y) and KÎn(y), we would like an expression for
KÎn(b�,j ) in terms of KIn(b�,j ) for j ∈ B. Fix n 
= � + 1 for a moment and set, for each
j ∈ B,

Aj = C
b�,j
n + Q(b�,j )

∑
i 
∈B

pi

k�+1,i
KIn(b�,i ).

Then we can find expressions for KÎn(b�,j ) in terms of the values KIn(b�,i ) by solving the
following system of linear equations:

KÎn(b�,j ) = Aj + Q(b�,j )
∑
i∈B

pi

k�+1,i
KÎn(b�,i ), j ∈ B.

A solution is easily computed through Cramer’s method, which gives, for j ∈ B,

KÎn(b�,j ) = Aj

(
1 − ∑

u∈B\{j} Q(b�,u)(pu/k�+1,u)
) + Q(b�,j )

∑
u∈B\{j}(pu/k�+1,u)Au

1 − ∑
i∈B Q(b�,i )(pi/k�+1,i )

.

(28)
Set

B� := 1 −
∑
j∈�

Q(b�,j )
pj

k�+1,j
.

Below we will use B−1
� . If |Q(b�,j )| ≤ 1, then∣∣∣∣∑

j∈�

Q(b�,j )
pj

k�+1,j

∣∣∣∣ ≤
∑
j∈�

|Q(b�,j )| pj

|k�+1,j | ≤
∑
j∈�

pj

|k�+1,j | ≤ ρ < 1,
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so in this case B� 
= 0 and B−1
� is well defined. We now show that |Q(b�,j )| ≤ 1. If

b�,j = z�, then �t
b�,j

= ∅ for any t ≥ 1, and so Q(b�,j ) = 1. If b�,j 
= z�, then Q(b�,j ) =∑
t≥1

∑
ω∈�t

b�,j
δω(b�,j , t). By the expanding on average property (A2), for any y ∈ I , any

t ≥ 0 and any ω ∈ �N,

|δω(y, t)| >
∑
j∈�

|δω(y, t)τj (Tωt
1
(y), 1)| =

∑
j∈�

|δωj (y, t + 1)|. (29)

Note that by the definition of Q(b�,j ) the union

⋃
t≥1

⋃
ω∈�t

b�,j

[ω] ⊆ �N (30)

is a disjoint union of cylinder sets. Hence, by repeated application of (29) we obtain for
each n ≥ 1 that

1 = |δε(b�,j , 0)| >
∑
i1∈�

|δi1(b�,j , 1)| =
∑

i1∈�b�,j

|δi1(b�,j , 1)| +
∑

i1∈�c
b�,j

|δi1(b�,j , 1)|

>
∑

i1∈�b�,j

|δi1(b�,j , 1)| +
∑

i1∈�c
b�,j

∑
i2∈�

|δi1i2(b�,j , 2)|

=
2∑

t=1

∑
ω∈�t

b�,j

|δω(b�,j , t)| +
∑

ω∈(�b�,j ∪�2
b�,j

)c

|δω(b�,j , 2)|

> · · · >

n∑
t=1

∑
ω∈�t

b�,j

|δω(b�,j , t)| +
∑

ω∈(∪n
t=1�

t
b�,j

)c

|δω(b�,j , n)|.

Since this holds for each n, we get |Q(b�,j )| ≤ 1 and B� 
= 0.
For i 
∈ B we have that KIn(b�,i ) = C

b�,i
n . Then, by the definition of B�, we get

∑
j∈B

pj

k�+1,j
KÎn(b�,j ) = B−1

�

∑
j∈B

pj

k�+1,j
Aj

= B−1
�

∑
j∈B

pj

k�+1,j

(
C

b�,j
n + Q(b�,j )

∑
i 
∈B

pi

k�+1,i
C

b�,i
n

)

= B−1
�

∑
j∈B

pj

k�+1,j
C

b�,j
n + B−1

� (1 − B�)
∑
i 
∈B

pi

k�+1,i
C

b�,i
n

= B−1
�

∑
j∈�

pj

k�+1,j
C

b�,j
n −

∑
i 
∈B

pi

k�+1,i
C

b�,i
n . (31)

We obtain similar expressions for n = � + 1. For each 1 ≤ i ≤ N − 1, let

Qi :=
∑
j∈�

(
pj

ki,j
Q(ai,j ) − pj

ki+1,j
Q(bi,j )

)
.
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We show that for each 1 ≤ n ≤ N and 1 ≤ i ≤ N − 1 we have

μ̂n,i = μn,i − QiB
−1
� μn,�,

that is, the ith column of M̂ is a linear combination of the ith and �th columns of M .
We give the proof only for n 
∈ {�, � + 1, i, i + 1}, since the other cases are very similar.
To prove this, we first rewrite μn,i − QiB

−1
� μn,�. Therefore, note that

∑
j∈�

pj

k�,j
KIn(a�,j ) − B−1

�

( ∑
j∈�

pj

k�,j
KIn(a�,j ) −

∑
j∈B

pj

k�+1,j
Q(b�,j )

∑
i∈�

pi

k�,i
KIn(a�,i )

)

=
∑
j∈�

pj

k�,j
KIn(a�,j )(1 − B−1

� B�) = 0.

Then we obtain from the definition of M , (26) and the above equation that

μn,i − QiB
−1
� μn,� =

∑
j∈�

(
pj

ki,j
C

ai,j
n − pj

ki+1,j
C

bi,j
n

)
+ Qi

∑
j∈�

pj

k�,j
KIn(a�,j )

− QiB
−1
�

∑
j∈�

pj

k�,j
KIn(a�,j ) + QiB

−1
�

∑
j 
∈B

pj

k�+1,j
KIn(b�,j )

+ QiB
−1
�

∑
j∈B

pj

k�+1,j

(
C

b�,j
n + Q(b�,j )

∑
u∈�

pu

k�,u
KIn(a�,u)

)

=
∑
j∈�

(
pj

ki,j
C

ai,j
n − pj

ki+1,j
C

bi,s
n

)
+ QiB

−1
�

∑
j∈�

pj

k�+1,j
C

b�,j
n .

For μ̂n,i we get by combining (27) and (31) that

μ̂n,i =
∑
j∈�

(
pj

ki,j
C

ai,j
n + pj

ki+1,j
C

bi,j
n

)
+ Qi

∑
j 
∈B

pj

k�+1,j
KIn(b�,j )

+ QiB
−1
�

∑
j∈�

pj

k�+1,j
C

b�,j
n − Qi

∑
j 
∈B

pj

k�+1,j
C

b�,j
n = μn,i − QiB

−1
� μn,�.

One can now easily check that if γ = (γ1, . . . , γN−1)
ᵀ is a solution of Mγ = 0, then

the vector γ̂ = (γ̂1, . . . , γ̂N−1)
ᵀ given by

γ̂� = γ� +
N−1∑
i=1

Qi

B� − Q�

γi , (32)

and γ̂i = γi if i 
= �, satisfies M̂γ̂ = 0. The fact that B� − Q� 
= 0 follows in the same way
as that B� 
= 0. Hence, there is a one-to-one relation between the solutions γ of Mγ = 0
and γ̂ of M̂γ̂ = 0.

It remains to prove that the functions hγ and ĥγ̂ coincide. For that we need to consider
the functions Ly . As we did for KIn, let Ly denote the parts that Ly and L̂y have in
common, that is, set

Ly =
∑
t≥0

∑
ω∈�t

y∪�t\�y

δω(y, t)1[0,Tω(y)).
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Set A := {j ∈ � : �a�,j 
= ∅}. Then

Ly = Ly + Q(y)
∑
t≥1

∑
ω∈�t

δω(z�, t)1[0,T̂ω(z�))

= Ly + Q(y)

( ∑
j∈�

1[0,a�,j ) +
∑
t≥1

∑
ω∈�t

pj

k�,j
δω(b�,j , u)1[0,T̂ω(a�,j ))

)

= Ly + Q(y)
∑
j 
∈A

pj

k�,j
La�,j + Q(y)

∑
j∈A

pj

k�,j
La�,j .

By Cramer’s rule we obtain for each j ∈ A, that (compare (31))∑
j∈A

pj

k�,j
La�,j = (B� − Q�)

−1
∑
j∈�

pj

k�,j
La�,j −

∑
j 
∈A

pj

k�,j
La�,j . (33)

Similarly, we obtain that

L̂y = Ly + Q(y)
∑
j 
∈B

pj

k�+1,j
Lb�,j + Q(y)

∑
j∈B

pj

k�+1,j
L̂b�,j (34)

and ∑
j∈B

pj

k�+1,j
L̂b�,j = B−1

�

∑
j∈�

pj

k�+1,j
Lb�,j −

∑
j 
∈B

pj

k�+1,j
Lb�,j . (35)

To prove that hγ = ĥγ̂ , note that, on the one hand,

hγ =
N−1∑
m=1

γm

∑
j∈�

(
pj

km,j
Lam,j − pj

km+1,j
Lbm,j

)
+

N−1∑
m=1

γmQm

∑
j∈�

pj

k�,j
La�,j .

On the other hand, using equations (32), (34) and (35), we obtain for ĥγ̂ that

ĥγ̂ =
N−1∑
m=1

γm

∑
s∈�

(
ps

km,s
Lam,s − ps

km+1,s
Lbm,s

)
+

N−1∑
m=1

γmQm

(
1 + Q�

B� − Q�

)∑
s∈�

ps

k�+1,s
L̂b�,s

+
N−1∑
m=1

γm

Qm

B� − Q�

∑
s∈�

(
ps

k�,s
La�,s − ps

k�+1,s
Lb�,s

)

=
N−1∑
m=1

γm

∑
s∈�

(
ps

km,s
Lam,s − ps

km+1,s
Lbm,s

)
+

N−1∑
m=1

γmQm

B�

B� − Q�

B−1
�

∑
s∈�

ps

k�+1,s
Lb�,s

+
N−1∑
m=1

γm

Qm

B� − Q�

∑
s∈�

(
ps

k�,s
La�,s − ps

k�+1,s
Lb�,s

)

=
N−1∑
m=1

γm

∑
s∈�

(
ps

km,s
Lam,s − ps

km+1,s
Lbm,s

)
+

N−1∑
m=1

γm

Qm

B� − Q�

∑
s∈�

ps

k�,s
La�,s .

By (33) this implies that hγ = ĥγ̂ .
If the partitions {In}1≤n≤N and {În}1≤n≤N differ in more than one partition point z�, we

can obtain the results from the above by changing one partition point at a time.
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The next lemma states that adding extra points to the set z0, . . . , zN does not influence
the set of densities obtained from Theorem 4.1. This lemma is one of the ingredients of the
proof of Theorem 5.3 below.

LEMMA 5.2. Let T be a random system with partition {Ii}1≤i≤N and corresponding
partition points z0, . . . , zN . Consider a refinement of the partition, given by adding extra
points z

†
1, . . . , z

†
s , for some s ∈ N. Let T † be the corresponding random system, that is,

T †(x) = T (x) for all x ∈ [0, 1], and let M† be the fundamental matrix of T †. There is a
one-to-one correspondence between the solutions γ of Mγ = 0 and the solutions γ † of
M†γ † = 0. Moreover, the functions hγ and h

†
γ † coincide.

Proof. Let Z† := {z†
1, . . . , z

†
s }. By introducing these extra points the fundamental matrix

M† of T † becomes an (N + s) × (N + s − 1) matrix. It is possible to construct this matrix
from M in s,

M → M
†
1 → M

†
2 → · · · → M†

s = M†,

by adding one of the points from Z† to the partition of T at a time. All of these steps
work in exactly the same way, so it is enough to prove the result for s = 1. Therefore,
assume Z† = {z†}. There is an 1 ≤ i ≤ N such that z† splits the interval Ii into two
subintervals, say IL

i and IR
i . By Proposition 5.1, it is irrelevant whether z† ∈ IL

i or
z† ∈ IR

i . By construction, z† is a continuity point of T † = T , so

a
†
i,j = b

†
i,j = ki,j z

† + di,j ,

and for each n we have

∑
j∈�

[
pj

ki,j
KIn(a

†
i,j ) − pj

ki,j
KIn(b

†
i,j )

]
= 0.

Therefore M† has, with respect to M , an extra column at the ith position, whose
entries are all zeros except for the diagonal and subdiagonal entries, which are given
by

∑
j∈�(pj/ki,j ) and − ∑

j∈�(pj/ki,j ), respectively. Moreover, the ith and (i + 1)th
rows of M† are obtained by splitting the ith row of M into two, such that KIi (an,j ) =
KI†

i (an,j ) + KI†
i+1(an,j ) for all n, and analogously for bn,j .

The null space of M† equals the null space of the (N + 1) × N matrix A obtained from
M† by replacing the (i + 1)th row by the sum of the ith and (i + 1)th rows. Then all the
entries of the ith column of A are 0 except for the diagonal entry, and the matrix M appears
as a submatrix of A, by deleting the ith column and the ith row. Hence, any solution γ

of Mγ = 0 can be transformed into a solution γ † of M†γ † = 0 by setting γ
†
j = γj for

j 
= i and by using the relation
∑N

j=1 Ai,j γ
†
j = 0 for γ

†
i . This gives the first part of the

lemma.
Finally, for corresponding solutions γ and γ † the associated densities hγ and h

†
γ †

coincide, since

∑
j∈�

[
pj

ki,j
L

a
†
i,j

(x) − pj

ki,j
L

b
†
i,j

(x)

]
= 0.
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The next theorem says that in the case where all maps Tj are expanding, Theorem 4.1
in fact produces all absolutely continuous invariant measures for the system T .

THEOREM 5.3. Let � ⊆ N and let T be a random piecewise linear system satisfying
assumptions (A1), (A3), (A4) and (A5). Furthermore, assume that |ki,j | > 1 for each j ∈ �

and 1 ≤ i ≤ N . An L1(λ)-function h is an invariant function for the random system T if
and only if h = hγ for some solution γ of the system Mγ = 0.

An essential ingredient in the proof of this theorem is the extension of a result by
Boyarksy, Góra and Islam from [GBI06] given in the next lemma. [GBI06, Theorem 3.6]
states that if we have a random system consisting of two maps that are both expanding, the
supports of the invariant densities of T are a finite union of intervals. As the next lemma
shows, this result in fact goes through for any finite or countable number of maps with only
a small change in the proof. In the case of piecewise linear maps, some small steps can be
slightly simplified. We have included the proof for the convenience of the reader.

LEMMA 5.4. (cf. Lemma 3.4 and Theorem 3.6 from [GBI06]) Let � ⊆ N and let T be a
random system of piecewise linear maps satisfying (A1) and such that for each j ∈ � the
map Tj is expanding, that is, it satisfies |ki,j | > 1 for all 1 ≤ i ≤ N . If h is a T -invariant
density, then the support of h is a finite union of open intervals.

Proof. Let H = {v1, . . . , vr} be the base of the subspace of L1(λ) of T -invariant
functions, consisting of density functions of bounded variation, mentioned in §2. Since any
invariant function h for T can be written as h = ∑r

n=1 cnvn for some constants cn ∈ R, it
is enough to prove the result for elements in H . Therefore, let h ∈ H and let U := supp(h)

denote the support of h. Since h is a function of bounded variation, we can take h to
be lower semicontinuous and U can be written as a countable union of open intervals,
each separated by an interval of positive length: U = ⋃

k≥1 Uk . Assume without loss of
generality that λ(Uk+1) ≤ λ(Uk) for each k ≥ 1. Let Z := {z1, . . . , zN−1} and let D be
the set of indices k, such that Uk contains one of the points z ∈ Z, that is,

D = {k ≥ 1 | ∃ z ∈ Z : z ∈ Uk}.
We first show that D 
= ∅ by proving that Z ∩ U1 
= ∅. Suppose to the contrary that U1

does not contain a point z. Then for each j ∈ �, Tj (U1) is an interval and since each Tj

is expanding, we have λ(Tj (U1)) > λ(U1). By the property from (3) that U is forward
invariant, we know that Tj (U1) ⊆ U for each j , so it must be contained in one of the
intervals Uk . This gives a contradiction.

Now, let J be the smallest interval in the set

{Uk ∩ In : k ∈ D, 1 ≤ n ≤ N}.
Note that this is a finite set, since Z and D are both finite. Moreover, by the above this set
is not empty, so J exists. Since each Uk is an open interval, we have λ(J ) > 0. Let F =
{k ≥ 1 : λ(Uk) ≥ λ(J )}, where k is not necessarily in J , and let S = ⋃

k∈F Uk . Since any
connected component Uk of S has Lebesgue measure bigger than λ(J ), S is a finite union
of open intervals. We first prove that Tj (S) ⊆ S for any j ∈ �. Let Uk ⊆ S and suppose
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first that k 
∈ D. Then, for each j ∈ �, as above Tj (Uk) is an interval with λ(Tj (Uk)) >

λ(Uk) ≥ λ(J ). So, Tj (Uk) is contained in another interval Ui that satisfies λ(Ui) > λ(J )

and thus satisfies Ui ⊆ S. Hence, Tj (Uk) ⊆ S. If, on the other hand, k ∈ D, then Tj (Uk)

consists of a finite union of intervals and since Tj is expanding, the Lebesgue measure of
each of these intervals exceeds λ(J ). Hence, each of the connected components of Tj (Uk)

is contained in some interval Ui that satisfies λ(Ui) > λ(J ) and therefore Ui ⊆ S. Hence,
also in this case Tj (Uk) ⊆ S, implying that Tj (S) ⊆ S for all j ∈ �.

Obviously, S ⊆ U . Using the fact that Tj (S) ⊆ S for all j ∈ �, we will now show that
U ⊆ S. Suppose this is not the case and let Us be the largest interval in U \ S. Since Uk ⊆
S for any k ∈ D, we have s 
∈ D. So, again, for each j ∈ � the set Tj (Us) is an interval
with λ(Tj (Us)) > λ(Us) and hence, Tj (Us) ⊆ S. Thus Us ⊆ T −1

j (S) and since Us 
⊆ S,

we have Us ⊆ T −1
j (S) \ S. Let μp be the absolutely continuous T -invariant measure with

density h. We show that μp(T −1
j (S) \ S) = 0. Since for each j ∈ � we have

S ⊆ T −1
j (Tj (S)) ⊆ T −1

j (S),

we obtain from (1) that

0 = μp(S) − μp(S) =
∑
j∈�

pjμp(T −1
j (S)) −

∑
j∈�

pjμp(S)

=
∑
j∈�

pj (μp(T −1
j (S)) − μp(S)) =

∑
j∈�

pjμp(T −1
j (S) \ S).

Since pj > 0 for all j , we have that μp(T −1
j (S) \ S) = 0 for each j . Hence, μp(Us) = 0,

which contradicts the fact that Us ⊆ U .

Remark 5.5. The paper [GBI06] contains an example that shows that the previous lemma
is not necessarily true if we drop the assumption that all maps Tj are expanding. In
[GBI06, Example 3.7] the authors describe a random system T using an expanding and a
non-expanding map, of which for a certain probability vector p the support of the invariant
density is a countable union of intervals. The fact that the supports of the elements from
H are finite unions of open intervals plays an essential role in the proof of Theorem 5.3,
as we will now show.

Proof of Theorem 5.3. We will show that the linear mapping from the null space of
M to the subspace of L1(λ) of all T -invariant functions is a linear isomorphism. Let
H = {v1, . . . , vr} again be the basis of density functions of bounded variation, whose
corresponding measures are ergodic, for the subspace of T -invariant L1(λ)-functions
mentioned in §2. Recall that any invariant function h for T can be written as h =∑r

n=1 cnvn for some constants cn ∈ R.
The injectivity follows from the proof of Theorem 4.1, where we showed that hγ = 0

implies γ = 0. We prove surjectivity by providing for each h ∈ H a vector γ such that
hγ = h. We will do this by altering T in several steps (see Figure 2), so that we finally
obtain a system TU that has a vector γU associated to it for which the corresponding density
hU

γU
vanishes outside the support U of h. Then, using Proposition 5.1 and Lemma 5.2, we

transform the solution γU to a solution γ for T that produces the original density h.
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{Ii}1≤i≤N

T
Mγ = 0

{Îi}1≤i≤N

T̂

M̂ γ̂ = 0

{Î†
i }1≤i≤N

T̂ †

M̂†γ̂† = 0

{Î†
i }1≤i≤N

TU

MUγU = 0

FIGURE 2. The steps we take in transforming T to TU .

Fix h ∈ H , and let U := supp(h). Let Z = {z1, . . . , zN−1} again be the set of critical
points of the system. Following [Kop90, Theorem 2], we classify the points in Z as
follows:

Z1 := {zi ∈ Z | zi is in the interior of U},
Z2 := {zi ∈ Z | zi is a left (right) endpoint of a subinterval of U and zi ∈ Ii+1 (zi ∈ Ii)},
Z3 := {zi ∈ Z | zi is a left (right) endpoint of a subinterval of U and zi ∈ Ii (zi ∈ Ii+1)},
Z4 := {zi ∈ Z | zi is an exterior point for U}.
We now modify the partition {Ii}1≤i≤N on the points in Z3, so that it corresponds better
to the set U . Let {Îi}1≤i≤N be a partition of [0, 1] given by z0, . . . , zN and differing from
{Ii}1≤i≤N only for zi ∈ Z3, that is, zi ∈ Îi if and only if zi /∈ Ii . Let T̂ be the corresponding
random system, that is, T̂ (x) = T (x) for all x 
∈ Z3. By Proposition 5.1, the corresponding
matrices M and M̂ have vectors in their null spaces that differ only on the entries i for
which zi ∈ Z3, but such that they define the same density.

There might be boundary points of U that are not in Z. Let Z† be the set of such points.
From Lemma 5.4 it follows that U is a finite union of open intervals, so the set Z† is
finite. Consider the partition {Î †

i } given by the points in Z ∪ Z† and let T̂ † be the system
with this partition and given by T̂ †(x) = T̂ (x) for all x. By Lemma 5.2, the corresponding
matrices M̂ and M̂† have vectors in their null spaces that differ only on the extra entries
corresponding to points z† ∈ Z†, but such that they define the same density.

Define a new piecewise linear random system TU by modifying T̂ † outside of U . To
be more precise, we let TU(x) = T̂ †(x) for all x ∈ U and on each connected component
of [0, 1] \ U we assume all maps TU ,j to be equal and onto, that is, mapping the interval
onto [0, 1]. Recall from (3) that the set U is forward invariant under T . Then any invariant
function of TU vanishes on [0, 1] \ U λ-a.e., since the set of points x ∈ [0, 1] \ U , such
that T n(x) ∈ [0, 1] \ U for all n ≥ 0 is a self-similar set of Hausdorff dimension less than
1. From Theorem 4.1 we get a non-trivial solution γU of MUγU = 0 with a corresponding
function hU that vanishes on [0, 1] \ U . Since T̂ and TU coincide on U , the function hU

is also invariant for T̂ and hence for T . From the fact that U is the support of one of the
densities in the basis H and supp(hU ) ⊆ U , we then conclude that hU = h, up to possibly
a set of Lebesgue measure 0.

It remains to show that γU can be transformed into a vector from the null space of M ,
leading to the same density hU . We first show that M̂†γU = 0. Note that for zi ∈ Z4, since
hU is of bounded variation,

lim
x↑zi

hU (x) = 0 = lim
x↓zi

hU (x).
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Hence, by the calculations in (25), γU ,i = 0. Similarly, for zi ∈ Z2 ∪ Z3 we have that either
limx↑zi

hU (x) = 0 or limx↓zi
hU (x) = 0, which again by the calculations in (25) gives

γU ,i = 0. Hence, γU ,i = 0 for each i such that zi ∈ Z2 ∪ Z3 ∪ Z4. Similarly, γU ,i = 0 for
each i such that zi ∈ Z†. In the multiplication M̂†γU the orbits of the points ai,j and bi,j

which are different under T̂ † and TU are multiplied by 0. Since U is forward invariant,
all orbits of points ai,j and bi,j corresponding to i such that zi ∈ Z1 will stay in U and
will thus be equal under T̂ † and TU . These facts imply that also M̂†γU = 0 and that the
corresponding invariant density for T̂ † is again hU .

From Lemma 5.2 it follows that there is a vector γ̂ in the null space of M̂ with ĥγ̂ = hU .
Finally, Proposition 5.1 then tells us how we can modify γ̂ to get a vector γ in the null space
of M with hγ = ĥγ̂ = hU = h.

6. Examples
In this section we apply Theorems 4.1 and 5.3 to various examples.

6.1. Random tent maps. For any countable set of slopes {kj }j∈� with kj ∈ (0, 2) for
each j , consider the family T := {Tj }j∈�, where each Tj is a tent map of slope kj , that is,
Tj : [0, 1] → [0, 1] is given by

Tj (x) =
{

kjx if x ∈ [0, 1/2],

kj − kjx if x ∈ (1/2, 1]

(see Figure 3(a)). So, (A1) and (A4) hold.
Let p = (pj )j≥0 be a probability vector such that T is expanding on average (i.e.∑
j∈N(pj /kj ) < 1), so (A2) holds. One easily verifies that then conditions (A3) and (A5)

hold as well. For N = 2 set

z0 = 0, z1 = 1
2 , z2 = 1,

and I1 = [z0, z1], I2 = (z1, z2]. Since z1 is the only critical point, the fundamental matrix
M is the null vector. As a consequence, we can choose γ = 1, to obtain the invariant
density

hγ = c
∑
j∈�

2pj

kj

Lkj /2,

for some normalizing constant c. If, for each j ∈ N and w ∈ �t , t ≥ 0, we set

�ω,j = #
{

1 ≤ n ≤ t : T
ωn−1

1

(
kj

2

)
∈

(
1
2

, 1
]}

,

then this becomes

hγ = c
∑
j∈�

2pj

kj

∑
t≥0

∑
ω∈�t

(−1)�ω,j

t∏
n=0

pωn

kωn

1[0,Tω(kj /2)). (36)

If we assume that kj > 1 for all j , then it follows from Theorem 5.3 that the density from
(36) is the unique invariant density for (T , p). If we do not assume this, then we can still
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(a) Countably many tent maps.

0 1
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1

1

(b) Two tent maps.

0 1
2

1

1

(c) Linear logistic maps.

FIGURE 3. Random families of tent maps.

draw the same conclusion if there are only finitely many maps. Namely, to satisfy condition
(A2) there has to be at least one j such that kj > 1. The existence and uniqueness of an
absolutely continuous invariant measure for the map Tj are then guaranteed by the results
from [LY73, LY78]. If the set {kj }j∈N is finite, it then follows from [Pel84, Corollary 7]
that there is only one invariant density for (T , p).

In [AGH18] the authors considered random combinations of logistic maps. In [AGH18,
Theorem 4.2] they proved that the random system {f0, f1} with f0(x) = 2x(1 − x) and
f1(x) = 4x(1 − x) has a σ -finite absolutely continuous invariant measure that is infinite
if the map f0 is chosen with probability p0 > 1

2 . The linear analogue of this system
paints a different picture. Fix a ∈ (1, 2] and consider the random system with two maps
T0(x) = min{x, 1 − x} and Ta,1(x) = min{ax, a − ax}. See Figure 3(b) for an example
with a = 4

3 . For any p ∈ (0, 1), set p0 = p and p1 = 1 − p and note that p0 + p1/a < 1.
Assumptions (A1)–(A5) are then met and the random system T = {T0, Ta,1} has a finite
absolutely continuous invariant measure for any such p. A straightforward computation
yields L1/2 = (1/(1 − p))1[0,1/2) + (1/a)La/2, so that up to a normalizing constant, the
unique absolutely continuous invariant density is then

hγ ,a = 2p

1 − p
1[0,1/2) + 2

a
La/2. (37)

In particular, for a = 2 as shown in Figure 3(c) we get

hγ ,2 = (1 + p)1[0,1/2] + (1 − p)1(1/2,1].

Note that for p = 1 we have a deterministic, non-expanding interval map that does not
satisfy the requirements from [Kop90]. However, the limit limp→1 hγ ,2 = 2 · 1[0,1/2] is
an invariant density for the system. On the other hand, for a fixed p ∈ (0, 1) the limit
lima→1 hγ ,a is not an absolutely continuous measure. To see this, note that hγ ,a is
determined by the random orbits of a/2 and that 1 − a/2 ≤ Tω(a/2) ≤ a/2 for any ω.
Hence, by (37) and the definition of the L-functions in (17), it follows that hγ ,a = 0 on
(a/2, 1], while on [0, 1 − a/2) we have hγ ,a = v on [0, 1 − a/2) for some constant v ∈ R.
For any point in x ∈ [0, 1 − (a/2)), the random Perron–Frobenius operator from (2)
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now yields

v = hγ ,a(x) = PT hγ ,a(x) = pv + (1 − p)
v

a
,

which holds if and only if v = 0. It follows that for any a ∈ (1, 2] and any p ∈ (0, 1),
supp(hγ ,a) ⊆ [1 − a/2, a/2]. As a consequence lima→1 hγ = δ1/2, where δ1/2 is the
Dirac delta function at 1

2 .

6.2. A random family of W -shaped maps. Keller introduced in [Kel82] a family of
piecewise expanding W -maps to study the phenomenon of instability of absolutely
continuous invariant measures. Later the stability of W -shaped maps was studied in other
papers as well; see, for example, [LGB+13, EM12]. Here we construct a random family of
W -shaped maps, where each element of the collection is an expanding on average random
map Wa := {Wa,0, Wa,1} defined on the unit interval. We give an absolutely continuous
invariant probability measure.

For a > 2, let � = {0, 1} and N = 4. Set

z0 = 0, z1 = 1/a, z2 = 1/2, z3 = (a − 1)/a, z4 = 1

and

I1 = [z0, z1], I2 = (z1, z2], I3 = (z2, z3), I4 = [z3, z4].

Let

Wa,0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ax if x ∈ I1,
2

a − 2
x − 2

(a − 2)a
if x ∈ I2,

Wa,0(1 − x) otherwise,

and

Wa,1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ax if x ∈ I1,
2(a − 1)

a − 2
x − 2(a − 1)

(a − 2)a
if x ∈ I2,

Wa,1(1 − x) otherwise.

See Figure 4(a), for some examples of Wa for different values of a.
For a>4 the map Wa,0 presents two contractive branches. Let 1>p>((a−4)(a−1))/

(a − 2)2 be arbitrary, and let pa,0 = 1 − p and pa,1 = p. With this choice of probability
vector the random map Wa satisfies (A1)–(A5). The fundamental matrix M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − a

a2 − C

a

pa0(2 − a)(a − 1)

a2 + pa1(2 − a)

a2(a − 1)
−C

a
+ 1

a2

C −C 0

0 −C C

1
a2(a − 1)

− C

a(a − 1)

pa0(2 − a)

a2(a − 1)
− pa1(2 − a)(a2 − a − 1)

a2(a − 1)2 − C

a(a − 1)
+ 1 + a − a2

a2(a − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for some constant C. Its null space consists of all vectors of the form

s
(
1 1 1

)ᵀ
, s ∈ R.
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(b)Examples of Wa for a = 8, 4, 83(a) W2

FIGURE 4. Examples of random systems Wa for various values of a.

From

L0 = 1
1 − a

, L1/a = 1
a(a − 1)

+ 1[0,1/a] and L(a−1)/a = − 1
a(a − 1)

+ 1[0,(a−1)/a],

we get the invariant density

ha,p = c

[
((a − 1) − p(a − 2)) · 1[0,1/a) + 1[1/a,(a−1)/a] +

(
1 − p

a − 2
a − 1

)
· 1((a−1)/a,1]

]
,

for the normalizing constant

c = a(a − 1)

2(a − 1)2 − pa(a − 2)
.

Theorem 5.3 implies that if a < 4, then this is the unique absolutely continuous
invariant density for Wa . Note that

lim
a→2

ha,p(x) = 1
2 1[0,1](x) + 1

2δ1/2(x).

On the other hand, for the limit map W2 shown in Figure 4(b), Lebesgue measure is the
only absolutely continuous invariant measure.

6.3. Random β-transformations. Let β > 1 be a non-integer and use �β� to denote the
largest integer not exceeding β. A β-expansion of a real number x ∈ [0, �β�/(β − 1)] is
an expression of the form x = ∑∞

n=1 bnβ
−n, where bn ∈ {0, 1, . . . , �β�} for all n ≥ 1.

The properties of β-expansions have been thoroughly studied. One of the more striking
results is that Lebesgue almost all x ∈ [0, �β�/(β − 1)] have uncountably many different
β-expansions (see [EJK90, Sid03, DdV07]). In [DK03] Dajani and Kraaikamp introduced
a random system that produces for each x ∈ [0, �β�/(β − 1)] all its possible β-expansions.
We will define this system for 1 < β < 2 for simplicity, but everything easily extends to
β > 2. Set

z0 = 0, z1 = 1
β

, z2 = 1
β(β − 1)

, z3 = 1
β − 1

,
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0 1
β(β−1)
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2−β
β−1

(a) T0

0 1
β

1
β−1

1
β−1

1

(b) T1

0 z1 z2 1
β−1

1
β−1

1

2−β
β−1

(c) T

FIGURE 5. In (a) we see the lazy β-transformation T0, in (b) the greedy β-transformation T1 and in (c) we see
them combined. Whether or not 1 > (2 − β)/(β − 1) depends on the chosen value of β.

and let

T0(x) =
{

βx if x ∈ [z0, z2],

βx − 1 if x ∈ (z2, z3],
and T1(x) =

{
βx if x ∈ [0, z1),

βx − 1 if x ∈ [z1, z3]

(see Figure 5). The map T0 is called the lazy β-transformation and the map T1 is the greedy
β-transformation. We do not bother to rescale the system to the unit interval [0, 1], since
this has no effect on the computations.

One of the reasons why people are interested in the random β-transformation is for its
relation to the infinite Bernoulli convolution; see [DdV05, DK13, Kem14]. The density of
the absolutely continuous invariant measures has been the subject of several papers. For a
special class of values β an explicit expression for the density of μp was found in [DdV07]
using a Markov chain. In [Kem14] Kempton produced an explicit formula for the invariant
density for all 1 < β < 2 when p0 = p1 = 1

2 by constructing a natural extension of the
system. He states that there is a straightforward extension of this method to β > 2. Recently
Suzuki obtained a formula for the density of μp for all β > 1 and any p in [Suz19]. Since
the random β-transformation satisfies assumptions (A1)–(A5) for any probability vector
p = (p0, p1), we can also obtain the invariant density from Theorem 4.1. To illustrate our
method we calculate the density for β ∈ (1, 2) and p0 = p1 = 1

2 .
Let � = {0, 1}, N = 3 and set

I1 = [z0, z1), I2 = [z1, z2], I3 = (z2, z3].

Define the left and right limits at each point of discontinuity:

a1,0 = 1, b1,0 = 1, a2,0 = 1
β − 1

, b2,0 = 2 − β

β − 1
,

a1,1 = 1, b1,1 = 0, a2,1 = 2 − β

β − 1
, b2,1 = 2 − β

β − 1
.

As pointed out in Remark 4.5, to determine γ it would suffice to compute only one row of
M , but for the sake of completeness we give M below. Let KIn(1) = cn. By the symmetry
of the system, for each x ∈ [z0, z3] and all (i, j) ∈ {1, 2, 3} × {0, 1},

Ti,j (z3 − x) = z3 − T4−i,1−j (x). (38)
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If for any ω = ω1 · · · ωt ∈ {0, 1}∗, we let ω̄ ∈ {0, 1}∗ denote the string ω̄ = (1 −
ω1) · · · (1 − ωt), then (38) implies that Tω(1) ∈ In if and only if Tω̄((2 − β)/(β − 1)) ∈
I4−n and so KIn((2 − β)/(β − 1)) = c4−n. We obtain

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
β

+ 1
2β

(
c1 − 1

β − 1

)
− 1

2β
c3

− 1
β

+ 1
2β

c2
1
β

− 1
2β

c2

1
2β

c3 − 1
β

− 1
2β

(
c1 − 1

β − 1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The null space consists of all vectors of the form

s(1 1)ᵀ, s ∈ R.

From Theorem 5.3 we then know that the system T has a unique invariant density. We
obtain

hγ = c

2β

∑
t≥0

∑
ω∈{0,1}t

(
1

2β

)t

(1[0,Tω(1)) + 1[Tω((2−β)/(β−1)),1/(β−1)]),

for some normalizing constant c. This matches the density found in [Kem14, Theorem 2.1]
except for possibly countably many points.

If we set p0 
= 1
2 , the computations are less straightforward. Nevertheless, we can obtain

a nice closed formula for the density in specific instances. Let p0 = p ∈ [0, 1] be arbitrary
and consider β = (1 + √

5)/2, the golden mean. Then β satisfies β2 − β − 1 = 0 and
the system has the nice property that T2,0(z1) = z2 and T2,1(z2) = z1 for z1 = 1/β

and z2 = 1. Also note that 1/(β − 1) = β. This specific case has also been studied in
[DdV07, Example 1]. The resulting matrix M is given by

M = β

β2 − p(1 − p)

⎛
⎜⎜⎜⎝

p2 −p(1 − p)

−p (1 − p)

(1 − p)p −(1 − p)2

⎞
⎟⎟⎟⎠ ,

and its null space consists of all vectors of the form

s
(
1 − p p

)ᵀ, s ∈ R.

For the functions Ly we obtain L0 = 0, Lβ = β2 and

L1/β = p2β2

β2 − p(1 − p)
+ β2

β2 − p(1 − p)
1[0,1/β) + pβ

β2 − p(1 − p)
1[0,1),

L1 = pβ3

β2 − p(1 − p)
+ (1 − p)β

β2 − p(1 − p)
1[0,1/β) + β2

β2 − p(1 − p)
1[0,1).

The unique invariant density turns out to be

hγ = β2

1 + β2 ((1 − p)β · 1[0, β−1] + 1(β−1,1) + pβ · 1[1, β]),
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which for p = 1
2 corresponds to

hγ = β2

2(1 + β2)
(β · 1[0, β−1] + 2 · 1(β−1,1) + β · 1[1, β]).

6.4. The random (α, β)-transformation. As an example of a system that is not every-
where expanding, but is expanding on average, we consider a random combination of
the greedy β-transformation and the non-expanding (α, β)-transformation introduced in
[DHK09]. More specifically, let 0 < α < 1 and 1 < β < 2 be given and

z0 = 0, z1 = 1/β, z2 = 1.

Define the (α, β)-transformation T0 on the interval [0, 1] by

T0(x) =
⎧⎨
⎩

βx if x ∈ [0, z1),
α

β
(βx − 1) if x ∈ [z1, z2].

Let T1 : [0, 1] → [0, 1] be the greedy β-transformation again, given by T1(x) = βx

(mod 1). For any 0 < p < (α(β − 1))/(β − α) the random system T with probability
vector p = (p, 1 − p) satisfies conditions (A1), (A2), (A3) and (A5). The assumptions
on the boundary points from (A4) do not hold, but this is easily solved by adding
an extra interval (z2, z3] for z3 = 1/(β − 1) and extending T0 and T1 to it by setting
T0(x) = T1(x) = βx − 1.

This random system T does not satisfy the conditions of Theorem 5.3 and we cannot
therefore conclude directly that Theorem 4.1 produces all invariant densities for T .
However, the set � = {0, 1} is finite and the map T1 is expanding with T ′

1(x) = β > 1
for all x and therefore T satisfies the conditions from [Pel84, Corollary 7] on the number
of ergodic components of the pseudo skew-product R. Since the greedy β-transformation
T1 has a unique absolutely continuous invariant measure, this corollary implies that also
the random system T has a unique invariant density. We use Theorem 4.1 to obtain this
density.

Let 0 < p < (α(β − 1))/(β − α) be arbitrary and set

I1 = [z0, z1), I2 = [z1, z2], I3 = (z2, z3].

The left and right limits at each point of discontinuity are given by

a1,0 = 1, b1,0 = 0, a2,0 = α − α/β, b2,0 = β − 1,
a1,1 = 1, b1,1 = 0, a2,1 = β − 1, b2,1 = β − 1.

By construction, none of the points in [0, 1] will ever enter the interval I3, therefore
KI3(y) = 0 for all y ∈ [0, 1]. As a consequence, the last row of the 3 × 2 fundamental
matrix M is given by μ3,1 = 0 and μ3,2 = −1/β. This fact, together with the fact that we
know from Lemma 3.4 that the null space of M is non-trivial, forces the first column of
M to be zero, that is, μ1,1 = μ2,1 = μ3,1 = 0. Hence, the null space of M consists of all
vectors of the form

s
(
1 0

)ᵀ, s ∈ R,
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0 1
β3

1
β2

1
β

1

1

β

1
β

1
β3

β

FIGURE 6. The random (α, β)-transformation for β = (1 + √
5)/2 and α = 1/β.

and the unique invariant density of the system T is

hγ = c

β
L1 = c

β

∑
t≥0

∑
ω∈�t

δω(1, t)1[0,Tω(1)),

for some normalizing constant c. For our choice of β = (1 + √
5)/2 and α = 1/β as in

Figure 6, we can compute further to get

hγ = β2

β2 + 1 + 2p

(
pβ1[0,1/β3] + p1[0,1/β2] + 1

β
1[0,1/β] + 1[0,1]

)
.

7. The random Lüroth map with bounded digits
In 1883 Lüroth introduced in [Lür83] a representation of real numbers of the unit interval,
as a generalization of the decimal expansion. The standard Lüroth map on [0, 1] is defined
by TL(0) = 0 and

TL(x) := n(n − 1)x − (n − 1) if x ∈
(

1
n

,
1

n − 1

]
, n ≥ 2.

From TL we can obtain the Lüroth expansion of any number x ∈ (0, 1] by assigning to it a
sequence of positive integers (ln)n≥1, where ln is the unique integer such that T n−1

L (x) ∈
((1/ln), 1/(ln − 1)]. The Lüroth expansion of x is then the expression

x =
∞∑

n=1

(
(ln − 1)

n∏
k=1

1
lk(lk − 1)

)
.

The map TL was later generalized in various different ways. In [KKK90] the alternating
Lüroth map was introduced as

TA(x) := 1 − TL(x).

This map is essentially a piecewise linear version of the Gauss map x �→ 1/x (mod 1),
which can be used to obtain regular continued fraction expansions. This yields for each
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0 1
5

1
4

1
3

1
2

1

1

(a) TL

0 1
5

1
4

1
3

1
2

1

1

(b) TA

0 1
3

1
2

1

1

(c) T

FIGURE 7. In (a) we see the Lüroth map and in (b) the alternating Lüroth map. (c) shows the open random system
T consisting of random combinations of TL and TA restricted to the interval [ 1

3 , 1].

x ∈ [0, 1] that is not a pre-image of 0 the alternating Lüroth expansion given by

x =
∞∑

n=1

(
(−1)n+1an

n∏
k=1

1
ak(ak − 1)

)
,

where an is the unique integer such that T n−1
A (x) ∈ (1/an, 1/(an − 1)]. Further general-

izations and ergodic properties of such maps were studied in [Sal68, JdV69, BBDK94]
for example. In [BBDK94] it was shown among other things that among a whole family
of Lüroth-type maps, the alternating Lüroth map is the one with the best approximation
properties.

In this section we consider a random Lüroth map, using T0 := TL and T1 := TA as its
base maps. See Figure 7 for the graphs of TL, TA and an example of a random Lüroth map
T . Then for each realization of the random system ω ∈ {0, 1}N and each x ∈ [0, 1] that
is not a pre-image of 0 under the realization ω we obtain a random Lüroth expansion by
setting, for each k ≥ 0,

rk+1(ω, x) = n, if Tωk
1
(x) ∈

(
1
n

,
1

n − 1

]
.

Observe that

Tωk
1
(x) = (−1)ωk rk(rk − 1)x + (−1)ωk−1(rk + ωk − 1).

If we set sn = ∑n
k=1 ωk with s0 = 0, then we obtain the following expression for x:

x =
∑
n≥1

(−1)sn−1(rn + ωn − 1)

n∏
k=1

1
rk(rk − 1)

.

We call this expression a random Lüroth expansion of x.
Many people have considered digit properties of Lüroth expansions, such as digit

frequencies and the sizes of sets of numbers for which the digit sequence (ln)n≥1 is
bounded. See for example [BI09, FLMW10, SF11, MT13, GL16]. The set of points that
have all Lüroth digits bounded by some integer a corresponds to the set of points that
avoid the set [0, 1/a] under all iterations of the map TL. For a deterministic system, such
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0 1

1

1
3

1
2

2
3

(a) T0

0 1

1

1
3

1
2

2
3

(b) T1

1
3 1

1

I1I2I3 I4 I5 I6

2
3

(c) T

FIGURE 8. The systems T0, T1 and T on the interval I = [ 1
3 , 1].

a set is usually a fractal no matter how large we take the upper bound a. In the random
setting, the situation is drastically different. Fix, for example, a = 3. We show below that
all x ∈ [ 1

3 , 1] have a random Lüroth expansion using only digits 2 and 3. Using the density
given by Theorem 4.1, we can compute the frequency of each of these digits for any typical
point x ∈ [ 1

3 , 1].
Partition the interval [ 1

3 , 1] by setting

I1 =
[

1
3

,
7
18

]
, I2 =

(
7
18

,
4
9

]
, I3 =

(
4
9

,
1
2

]
, I4 =

(
1
2

,
2
3

]
, I5 =

(
2
3

,
5
6

]
, I6 =

(
5
6

, 1
]

.

Let

T0(x) :=

⎧⎪⎪⎨
⎪⎪⎩

TL(x) if x ∈ I2 ∪ I3 ∪ I5 ∪ I6,

TA(x) if x ∈ I1 ∪ I4,

and T1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

TA(x) if x ∈ I1 ∪ I2 ∪ I4 ∪ I5,

TL(x) if x ∈ I3 ∪ I6.

For 0 ≤ p ≤ 1 with p 
= 1
2 let p0 := p and p1 := 1 − p and let T now be the random

Lüroth system with digits 2 and 3 defined on [ 1
3 , 1] by setting T (x) = Tj (x) with

probability pj ; see Figure 8. Note that we have to exclude p = 1
2 , since condition (A5)

is not satisfied in that case.
To use Theorem 4.1, we need to determine the orbits of all the points an,j and bn,j ,

which in this case are 1
3 , 2

3 and 1. One can easily check that all KIn(ai,j ) and KIn(bi,j ) are
zero, except for

KI1

(
1
3

)
= −1

6
, KI6

(
1
3

)
= −1

6
, KI6(1) = 1 and KI4

(
2
3

)
= −1

3
.
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The fundamental matrix M of the system is therefore given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p − 6
36

1 − p

36
0

p

12
1 − p

12
1 − 2p

6
2p − 1

6
0 0 0

0 −1
6

1
6

0 0

p

18
1 − p

18
1
2

p − 3
6

1 − p

6

0 0 0
1 − 2p

2
2p − 1

2
p

36
1 − p

36
2
3

p

12
−p + 5

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and its null space consists of all vectors of the form

s
(
3 3 3 5 5

)ᵀ, s ∈ R.

Again this is a one-dimensional space, so, by Theorem 5.3, T has a unique invariant
density. The corresponding measure mp × μp is necessarily ergodic for R. From

L1/3 = −1
3

, L2/3 = 2
3

· 1[1/3,2/3] and L1 = 2

we get the invariant density

hγ = 3
8
(3 · 1[1/3,2/3] + 5 · 1(2/3,1]).

Let R : {0, 1}N × [ 1
3 , 1] → {0, 1}N × [ 1

3 , 1] be the pseudo skew-product associated to
T . For any point (ω, x) ∈ {0, 1}N × [ 1

3 , 1] the frequency of the digit 2 in its random Lüroth
expansion is given by

lim
n→∞

1
n

n−1∑
k=0

1{0,1}N×(1/2,1](R
k(ω, x)).

Since mp × μp is ergodic, by the ergodic theorem we have that for mp × μp-almost every
(ω, x) ∈ {0, 1}N × [ 1

3 , 1] the frequency of 2 in the associated random Lüroth expansion is∫
(1/2,1]

hγ dλ = 13
16

,

giving also that the frequency of the digit 3 is 3/16.
Even though condition (A5) is not satisfied for p = 1

2 , the fundamental matrix M can
still be computed and its null space is still given by s(3 3 3 5 5)ᵀ, s ∈ R. Moreover, the
function hγ = 3

8 (3 · 1[1/3,2/3] + 5 · 1(2/3,1]) is still the unique invariant density. We believe
that Theorems 4.1 and 5.3 should still hold without assumption (A5).

Remark 7.1. Note that our method is also capable of handling more general versions of
restricted random Lüroth maps. If, instead of considering holes of the form [0, 1

3 ), we
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restricted the system {TL, TA} to an interval [η, 1] for some 0 < η < 1, then by the same
arguments as above, the restricted random Lüroth system would have a unique absolutely
continuous invariant measure for which the density can be obtained from Theorem 4.1.
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