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Abstract
We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The
classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the
orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period
map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided
and involves Hermitian lattices over number fields.
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1. Introduction

We work over the field C of complex numbers. A K3 surface is a compact, complex manifold X of
dimension 2 with a nowhere vanishing symplectic, holomorphic 2-form 𝜎𝑋 ∈ H0(𝑋,Ω2

𝑋 ) and vanishing
irregularity ℎ1 (𝑋,O𝑋 ).

Since a K3 surface does not admit nontrivial global vector fields, its automorphism group is discrete.
For a very general K3 surface it is even trivial. However, there are (families of) K3 surfaces with a non-
trivial and even infinite automorphism group. Typical examples of groups that appear as automorphism
groups are Z ∗ Z, Z𝑟 or Z/2Z.

K3 surfaces with a finite automorphism group have been classified by Nikulin [61, 62], Vinberg [75]
and Kondo [47] with a further recent refinement due to Roulleau [70]. The purpose of this work is to
classify finite subgroups 𝐺 ≤ Aut(𝑋), more precisely, pairs (𝑋, 𝐺) consisting of a K3 surface X and a
finite subgroup of automorphisms 𝐺 ≤ Aut(𝑋).

Let X be a K3 surface with cotangent sheaf Ω𝑋 . Its automorphisms act on the symplectic forms
C𝜎𝑋 = H0 (𝑋,Ω2

𝑋 ) by scalar multiplication. We call the ones with trivial action symplectic and the ones
with a nontrivial action nonsymplectic. The action on the symplectic form gives rise to an exact sequence

1→ Aut𝑠 (𝑋) → Aut(𝑋) → GL(C𝜎𝑋 ),

where by Aut𝑠 (𝑋) we denote the normal subgroup of symplectic automorphisms. Now, let 𝐺 ≤ Aut(𝑋)
be a finite subgroup and set 𝐺𝑠 = 𝐺 ∩ Aut𝑠 (𝑋). Then for 𝑛 = |𝐺/𝐺𝑠 |, we get an exact sequence

1→ 𝐺𝑠 → 𝐺 → 𝜇𝑛 → 1,

where 𝜇𝑛 is the cyclic group of order n. We call the index 𝑛 = [𝐺 : 𝐺𝑠] the transcendental value of G.
Let 𝜑 denote Euler’s totient function. By a result of Oguiso and Machida [51], we know that 𝜑(𝑛) ≤ 20
and 𝑛 ≠ 60.

The distinction between symplectic and nonsymplectic is crucial. For instance, a nonsymplectic
automorphism of finite order may fix smooth curves whereas a symplectic automorphism of finite order
k fixes only finitely many points and their number 𝑛𝑘 depends only on k. Let 𝑀24 denote the Mathieu
group on 24 points and 𝑀23 the stabilizer group of a point. Then the number of fixed points of an
element of 𝑀23 of order k depends only on k and is equal to 𝑛𝑘 . This observation sparked the following
theorem of Mukai.

Theorem 1.1 [57]. A finite group admits a faithful and symplectic action on some K3 surface if and
only if it admits an embedding into the Mathieu group 𝑀23 which decomposes the 24 points into at least
five orbits.

Later, Xiao [76] gave a new proof shedding light on the combinatorics of the fixed points using the
relation between X, its quotient 𝑋/𝐺𝑠 and its resolution which is a K3 surface again. A conceptual
proof involving the Niemeier lattices was given by Kondo [48]. Finally, Hashimoto [34] classified all
the symplectic actions on the K3 lattice. Since the corresponding period domains are connected, this is
a classification up to deformation. See [49] for a survey of symplectic automorphisms.

In view of these results, it is fair to say that our knowledge of finite symplectic subgroups of
automorphisms is fairly complete.
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Similar to Hashimoto’s classification for symplectic actions, our main result is a classification up to
deformation (see Definition 3.1 for a precise definition). Let X be a K3 surface and G a finite subgroup
of automorphisms of X. We call the largest subgroup 𝑆 ≤ Aut(𝑋) such that the fixed lattices satisfy
H2(𝑋,Z)𝐺𝑠 = H2 (𝑋,Z)𝑆 the saturation of 𝐺𝑠 . Necessarily, the group S is finite and symplectic. The
group generated by G and S is finite as well. It is called the saturation of G. We call G saturated if it
is equal to its saturation. The subgroup 𝐺 ≤ Aut(𝑋) is called nonsymplectic, if 𝐺𝑠 ≠ 𝐺 and mixed if
further 1 ≠ 𝐺𝑠 . If 𝐺𝑠 = 1, then it is called purely nonsymplectic. If G is nonsymplectic, then X is in
fact projective. Therefore, all K3 surfaces are henceforth assumed to be projective.

Theorem 1.2. There are exactly 4, 167 deformation classes of pairs (𝑋, 𝐺) consisting of a complex K3
surface X and a saturated, nonsymplectic, finite subgroup 𝐺 ≤ Aut(𝑋) of automorphisms. For each
such pair, the action of G on some lattice 𝐿 � H2 (𝑋,Z) is listed in [21].

While a list of the actions of these finite groups G is too large to reproduce here, we present a
condensed version of the data in Table 3 in Appendix A. More precisely, we list all finite groups G
admitting a faithful, saturated, mixed action on some K3 surface and their symplectic subgroups as well
as the number 𝑘 (𝐺) of deformation types.

Since the natural representation Aut(𝑋) → 𝑂 (H2 (𝑋,Z)) is faithful and K3 surfaces are determined
up to isomorphism by their Hodge structure, a large extent of geometric information is easily extracted
from our Hodge-theoretical model of the family of surfaces and its subgroup of automorphisms. For
instance, one can compute the Néron–Severi and transcendental lattice of a very-general member of
the family, the invariant lattice, invariant ample polarizations, the (holomorphic and topological) Euler
characteristic of the fixed locus of an automorphism, the isomorphism class of the group, its subgroup
consisting of symplectic automorphisms, the number of connected components of the moduli space and
the dimension of the moduli space. The pairs (𝑋, 𝐺) with 𝐺𝑠 among the 11 maximal groups have been
classified in [20]. In many cases, projective models are listed.

Purely nonsymplectic automorphisms

On the other end of the spectrum are purely nonsymplectic groups, which are the groups G with 𝐺𝑠 = 1.
These groups satisfy 𝐺 � 𝜇𝑛 and, by a result of Oguiso and Machida [51], we know that n satisfies
𝜑(𝑛) ≤ 20 and 𝑛 ≠ 60. To the best of our knowledge, the following corollary completes the existing
partial classifications for orders 4 [7], 6 [28], 8 [2], 16 [3], 20, 22, 24, 30 [6], n with (𝜑(𝑛) ≥ 12) [18] and
is completely new for orders 10, 12, 14 and 18. For order 26, it provides a missing case in [18, Thm 1.1].
For order 6, [28, Thm. 4.1] misses the case of a genus 1 curve and four isolated fixed points (0.6.2.29).

Corollary 1.3. Let 𝑘 (𝑛) be the number of deformation classes of K3 surfaces with a purely nonsymplectic
automorphism acting by 𝜁𝑛 on the symplectic form. The values 𝑘 (𝑛) are given in Table 1.

The most satisfying picture is for nonsymplectic automorphisms of odd prime order, where the fixed
locus alone determines the deformation class; see [8]. The key tools to this result are the holomorphic
and topological Lefschetz’ fixed point formulas as well as Smith theory. These relate properties of
the fixed locus with the action of the automorphism on cohomology. Conversely, given the action on
cohomology as per our classification, we determine its fixed locus.

Table 1. Counts of purely nonsymplectic automorphisms..

n 𝑘 (𝑛) n 𝑘 (𝑛) n 𝑘 (𝑛) n 𝑘 (𝑛) n 𝑘 (𝑛) n 𝑘 (𝑛) n 𝑘 (𝑛)

2 75 8 38 14 12 20 7 27 2 36 3 50 1
3 24 9 13 15 8 21 4 28 3 38 2 54 1
4 79 10 37 16 7 22 4 30 10 40 1 60 0
5 7 11 3 17 1 24 9 32 2 42 3 66 1
6 150 12 48 18 16 25 1 33 1 44 1
7 5 13 1 19 1 26 3 34 2 48 1
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Table 2. Exceptional types of purely nonsymplectic automorphisms..

n G1 G2 G3 n G1 G2 G3

6 II1,829
1 II1,173−3 II1,829

1 6 II1,728
2 II1,1533 II1,728

2

6 II1,526
4 II1,153−4 II1,726

4 6 II1,324
6 II1,1135 II1,324

6

6 II1,223
7 II1,93−6 II1,323

7 4 II1,928 II1,1722 -

In what follows, 𝜎 is an automorphism of order n on a K3 surface acting by multiplication with
𝜁𝑛 = exp(2𝜋𝑖/𝑛) on the holomorphic 2-form of X. We denote by

𝑋𝜎 = {𝑥 ∈ 𝑋 | 𝜎(𝑥) = 𝑥}

the fixed point set of 𝜎 on X. A curve 𝐶 ⊆ 𝑋 is fixed by 𝜎 if 𝐶 ⊆ 𝑋𝜎 , and it is called invariant by 𝜎
if 𝜎(𝐶) = 𝐶. Let 𝑃 ∈ 𝑋𝜎 be a fixed point. By [24, lemme 1], 𝜎 can be linearized locally at P. Hence,
there are local coordinates (𝑥, 𝑦) in a small neighborhood centered at P such that

𝜎(𝑥, 𝑦) = (𝜁 𝑖+1𝑛 𝑥, 𝜁−𝑖𝑛 𝑦) with 0 ≤ 𝑖 ≤ 𝑠 =

⌊
𝑛 − 1

2

⌋
.

We call P a fixed point of type i and denote the number of fixed points of type i by 𝑎𝑖 . If 𝑖 = 0, then P
lies on a smooth curve fixed by 𝜎. Otherwise, P is an isolated fixed point. Note that for 𝑛 = 2 there are
no isolated fixed points and at most 2 invariant curves pass through a fixed point.

In general, the fixed point set 𝑋𝜎 is a disjoint union of 𝑁 =
∑𝑠
𝑖=1 𝑎𝑖 isolated fixed points, k smooth

rational curves and either a curve of genus > 1 or 0, 1, 2 curves of genus 1. Denote by l the number of
genus 𝑔 ≥ 1 curves fixed by 𝜎. If no such curve is fixed, set 𝑔 = 1. We describe the fixed locus by the
tuple ((𝑎1, . . . , 𝑎𝑠), 𝑘, 𝑙, 𝑔). It is a deformation invariant. To sum up:

𝑋𝜎 = {𝑝1, . . . , 𝑝𝑁 } 	 𝑅1 	 · · · 	 𝑅𝑘 	 𝐶1 	 · · · 	 𝐶𝑙 ,

where the 𝑅𝑖’s are smooth rational curves and the 𝐶 𝑗 ’s smooth curves of genus 𝑔 ≥ 1.
Let L be a Z-lattice and 𝑓 ∈ 𝑂 (𝐿) an isometry of order n. Set 𝐿𝑘 := {𝑥 ∈ 𝐿 | 𝑓 𝑘 (𝑥) = 𝑥}. The

small local type of f is the collection of genera G (𝐿𝑘 )𝑘 |𝑛. If the genus of L is understood, then we omit
G (𝐿𝑛) = G (𝐿) from notation. Let Φ𝑘 (𝑥) ∈ Z[𝑥] denote the k-th cyclotomic polynomial. The global
type of f consists of the small local type as well as the isomorphism classes of the Z-lattices kerΦ𝑘 ( 𝑓 ),
where 𝑘 | 𝑛. A genus of Z-lattices is denoted by its Conway–Sloane symbol [26]. The type of an
automorphism 𝜎 of a K3 surface X is defined as the type of the isometry 𝜎∗−1 |H2(𝑋,Z).

Theorem 1.4. Let X be a K3 surface and 𝜎 ∈ Aut(𝑋) of order n acting by 𝜁𝑛 on H0 (𝑋,Ω2
𝑋 ). The

deformation class of (𝑋, 𝜎) is determined by the small local type of 𝜎 unless 𝜎 is one the six exceptional
types in Table 2. For each deformation class, the invariants ((𝑎1, . . . , 𝑎𝑠), 𝑘, 𝑙, 𝑔) of the fixed locus are
given in Appendix B.

Remark 1.5. For each of the 5 exceptional types of order 6, there are exactly two deformation classes.
They are separated by the global type. For order 4, the two classes have the same global-type. They are
separated by the isometry class of the glue between 𝐿2 and 𝐿4. It is given by the image 𝐿4 → 𝐷𝐿2

induced by orthogonal projection.

Remark 1.6. The first 5 exceptional types in Table 2 are due to a failure of the local to global principle
for conjugacy of isometries. For the last one, the example shows that the small local type is not fine
enough to determine local conjugacy.
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Enriques surfaces

Since the universal cover X of a complex Enriques surface S is a K3 surface, our results apply to classify
finite subgroups of automorphisms of Enriques surfaces. The kernel of Aut(𝑆) → GL(H0 (2𝐾𝑆))
consists of the so called semisymplectic automorphisms of S. They lift to automorphisms acting by ±1
on H0(𝑋,Ω2

𝑋 ). Cyclic semisymplectic automorphisms are studied by Ohashi in [65]. Mukai’s theorem
on symplectic actions and the Mathieu group has an analogue for Enriques surfaces; see [58]. However,
not every semisymplectic action is of ‘Mathieu type’.

Corollary 1.7. A group 𝐻𝑠 admits a faithful semisymplectic action on some complex Enriques surface
if and only if 𝐻𝑠 embeds into one of the following 6 groups

G id G id G id

𝐴6 (360, 118) 𝐻192 (192, 955) 𝑆5 (120, 34)
𝐴4,4 (288, 1026) 24𝐷10 (160, 234) 𝑁72 (72, 40)

A group H admits a faithful action on some complex Enriques surface if and only if it embeds into
one of the following 9 groups:

G id G id G id

𝐴6.𝜇2 (720, 765) 𝐻192 (192, 955) Γ25𝑎1.𝜇2 (128, 929)
𝐴4,4.𝜇2 (576, 8652) 𝑁72.𝜇2 (144, 182) 𝑆5 (120, 34)
24𝐷10.𝜇2 (320, 1635) (𝑄8 ∗𝑄8) .𝜇4 (128, 135) (𝐶2 × 𝐷8) .𝜇4 (64, 6)

Proof. Let S be an Enriques surface and X its covering K3 surface. Let 𝜖 be the covering involution of
𝑋 → 𝑆. Let Aut(𝑋, 𝜖) denote the centralizer of 𝜖 . Then 1→ 〈𝜖〉 → Aut(𝑋, 𝜖) → Aut(𝑆) → 1 is exact.
In particular, if 𝐻 ≤ Aut(𝑆) is a finite group, then it is the image of a finite group 𝐺 ≤ Aut(𝑋) containing
the covering involution. Conversely, 𝜖 ∈ Aut(𝑋) is the covering involution of some Enriques surface if
and only if H2(𝑋,Z) 𝜖 ∈ II1,9210. Thus, we can obtain the list of all finite groups acting on some Enriques
surface by taking the corresponding list for K3 surfaces. For each group G in the list, one computes the
Enriques involutions 𝜖 , their centralizer 𝐶 (𝜖) in G, 𝐶 (𝜖)𝑠 � 𝐻𝑠 and the quotient 𝐻 � 𝐶 (𝜖)/〈𝜖〉. �

Our method of classification applies as soon as a Torelli-type theorem is available, for instance to
supersingular K3 surfaces in positive characteristic and compact hyperkähler manifolds.

Outline of the paper

In Section 2, we recall basic notions of lattices with an emphasis towards primitive extensions and
lattices with isometry. The geometric setting of K3 surfaces is treated in Section 3. We set up a coarse
moduli space parametrizing K3 surfaces together with finite subgroups of automorphisms. Next, we
determine the connected components of the respective moduli spaces. We show that this translates the
problem of classifying pairs of K3 surfaces and finite subgroups of automorphisms into a classification
problem for lattices with isometry and extensions thereof.

The next sections deal with these algorithmic problems related to lattices, where it is shown that
practical solutions exist. In particular, in Section 4 it is described how isomorphism classes of lattices
with isometry can be enumerated. This leads to questions related to canonical images of orthogonal
and unitary groups, which are addressed in the final sections. For the classical case of Z-lattices, we
review Miranda–Morison theory in Section 5. For Hermitian lattices we develop the necessary tools in
Section 6.
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Finally, in Section 7 we classify the fixed point sets of purely nonsymplectic automorphisms of finite
order on complex K3 surfaces.

2. Preliminaries on lattices and isometries

In this section, we fix notation on lattices, and refer the reader to [60, 26, 46] for standard facts and proofs.

2.1. Lattices

Let R be an integral domain of characteristic 0 and K its field of fractions. We denote by 𝑅× its
group of units. In this paper, an R-lattice consists of a finitely generated projective R-module M and a
nondegenerate, symmetric bilinear form 〈·, : 〉𝑀 × 𝑀 → 𝐾 .

We call it integral if the bilinear form is R-valued, and we call it even if the square-norm of every
element with respect to the bilinear form is in 2𝑅. If confusion is unlikely, we drop the bilinear form
from notation and denote for 𝑥, 𝑦 ∈ 𝑀 the value 〈𝑥, 𝑦〉 by 𝑥𝑦 and 〈𝑥, 𝑥〉 by 𝑥2. The associated quadratic
form is 𝑄(𝑥) = 𝑥2/2. We denote the dual lattice of M by 𝑀∨. We call M unimodular if 𝑀 = 𝑀∨. For two
lattices M and N, we denote by 𝑀 ⊥ 𝑁 their orthogonal direct sum. The scale of M is 𝔰(𝑀) = 〈𝑀, 𝑀〉,
and its norm 𝔫(𝐿) is the fractional ideal generated by 〈𝑥, 𝑥〉 for 𝑥 ∈ 𝑀 . The set of self-isometries of M
is the orthogonal group 𝑂 (𝑀) of M.

We fix the following convention for the spinor norm: Let L be an R-lattice and 𝑉 = 𝐿 ⊗ 𝐾 . Let 𝑣 ∈ 𝑉
with 𝑣2 ≠ 0. The reflection 𝜏𝑣 (𝑥) = 𝑥 − 2𝑥𝑣/𝑣2 · 𝑣 is an isometry of V. The spinor norm of 𝜏𝑣 is defined
to be 𝑄(𝑣) = 𝑣2/2 ∈ 𝑘×/(𝑘×)2. By the Cartan–Dieudonné theorem 𝑂 (𝑉) is generated by reflections.
One can show that this defines a homomorphism spin : 𝑂 (𝑉) → 𝑘×/(𝑘×)2 by using the Clifford algebra
of (𝑉,𝑄).

An embedding 𝑀 → 𝐿 of lattices is said to be primitive if its cokernel is torsion-free. For 𝑀 ⊆ 𝐿,
we denote by 𝑀⊥𝐿 = {𝑥 ∈ 𝐿 | 〈𝑥, 𝑀〉 = 0} the maximal submodule of L orthogonal to M. If confusion
is unlikely, we denote it simply by 𝑀⊥. The minimum number of generators of a finitely generated
R-module A will be denoted by 𝑙 (𝐴).

Let L be an even integral R-lattice. Its discriminant group is the group 𝐷𝐿 = 𝐿∨/𝐿 equipped with
the discriminant quadratic form 𝑞𝐿 : 𝐿 → 𝐾/2𝑅. Note that 𝑙 (𝐷𝐿) ≤ 𝑙 (𝐿) = rk 𝐿. Denote by 𝑂 (𝐷𝐿)
its orthogonal group, that is, the group of linear automorphisms preserving the discriminant form. If
𝑓 : 𝐿 → 𝑀 is an isometry of evenZ-lattices, then it induces an isomorphism 𝐷 𝑓 : 𝐷𝐿 → 𝐷𝑀 . Likewise,
we obtain a natural map 𝑂 (𝐿) → 𝑂 (𝐷𝐿), whose kernel is denoted by 𝑂♯ (𝐿). For an isometry 𝑓 ∈ 𝑂 (𝐿)
and H some subquotient of 𝐿 ⊗ 𝐾 preserved by f, we denote by 𝑓 |𝐻 the induced automorphism of H.
Let 𝐺 ≤ 𝑂 (𝐿) be a subgroup. We denote the fixed lattice by 𝐿𝐺 = {𝑥 ∈ 𝐿 | ∀𝑔 ∈ 𝐺 : 𝑔(𝑥) = 𝑥} and its
orthogonal complement by 𝐿𝐺 = (𝐿𝐺)⊥.

For 𝑅 = R, let 𝑠+ be the number of positive eigenvalues of a gram matrix and 𝑠− the number of
negative eigenvalues. We call (𝑠+, 𝑠−) the signature pair or just signature of L.

2.2. Primitive extensions and glue

Let 𝑅 ∈ {Z,Z𝑝} and L be an even integral R-lattice. We call 𝑀 ⊥ 𝑁 ⊆ 𝐿 a primitive extension of 𝑀 ⊥ 𝑁
if M and N are primitive in L and rk 𝐿 = rk 𝑀 + rk 𝑁 . Since L is integral, we have a chain of inclusions

𝑀 ⊥ 𝑁 ⊆ 𝐿 ⊆ 𝐿∨ ⊆ 𝑀∨ ⊥ 𝑁∨.

The projection 𝑀∨ ⊥ 𝑁∨ → 𝑀∨ induces a homomorphism 𝐿/(𝑀 ⊥ 𝑁) → 𝐷𝑀 . This homomorphism
is injective if and only if N is primitive in L. Let 𝐻𝑀 denote its image, and define 𝐻𝑁 analogously. The
composition

𝜙 : 𝐻𝑀 → 𝐿/(𝑀 ⊥ 𝑁) → 𝐻𝑁
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is called a glue map. It is an anti-isometry, that is, 𝑞𝑀 (𝑥) = −𝑞𝑁 (𝜙(𝑥)) for all 𝑥 ∈ 𝐻𝑀 . Note that
𝐿/(𝑀 ⊥ 𝑁) ≤ 𝐻𝑀 ⊥ 𝐻𝑁 ≤ 𝐷𝑀 ⊥ 𝐷𝑁 is the graph of 𝜙 : 𝐻𝑀 → 𝐻𝑁 .

Conversely, any anti-isometry 𝜙 : 𝐻𝑀 → 𝐻𝑁 between subgroups 𝐻𝑀 ⊆ 𝐷𝑀 and 𝐻𝑁 ⊆ 𝐷𝑁 is the
glue map of a primitive extension: 𝑀 ⊥ 𝑁 ⊆ 𝐿𝜙 , where 𝐿𝜙 is defined by the property that 𝐿𝜙/(𝑀 ⊥ 𝑁)
is the graph of 𝜙.

The determinants of the lattices in play are related as follows:

|det 𝐿 | = |𝐷𝑀/𝐻𝑀 | · |𝐷𝑁 /𝐻𝑁 | = |det 𝑀 | · |det 𝑁 |/[𝐿 : (𝑀 ⊥ 𝑁)]2.

If 𝑓𝑀 ∈ 𝑂 (𝑀) and 𝑓𝑁 ∈ 𝑂 (𝑁) are isometries, then 𝑔 = 𝑓𝑀 ⊕ 𝑓𝑁 preserves the primitive extension 𝐿𝜙

if and only if 𝜙 ◦ 𝐷 𝑓𝑀 = 𝐷 𝑓𝑁 ◦ 𝜙. We call 𝜙 an equivariant glue map with respect to 𝑓𝑀 and 𝑓𝑁 .

2.3. Lattices with isometry

We are interested in classifying conjugacy classes of isometries of a given Z-lattice. If the lattice in
question is definite, its orthogonal group is finite. Using computer algebra systems, one can compute the
group as well as representatives for its conjugacy classes. This approach breaks down if L is indefinite.

Definition 2.1. A lattice with isometry is a pair (𝐿, 𝑓 ) consisting of a lattice L and an isometry 𝑓 ∈ 𝑂 (𝐿).
We frequently omit f from the notation and denote the lattice with isometry simply by L. Its isometry
f is then denoted by 𝑓𝐿 . We say that two lattices with isometry M and N are isomorphic if they are
equivariantly isometric, that is, if there exists an isometry 𝜓 : 𝑀 → 𝑁 with 𝜓 ◦ 𝑓𝑀 = 𝑓𝑁 ◦ 𝜓. We view
L as a Z[𝑥, 𝑥−1] module via the action 𝑥 · 𝑚 = 𝑓 (𝑚), 𝑥−1 · 𝑚 = 𝑓 −1(𝑚).

The unitary group 𝑈 (𝐿) of the lattice with isometry L is the centralizer of 𝑓𝐿 in 𝑂 (𝐿). This is nothing
but Aut(𝐿) in the category of lattices with isometry.

Terminology for lattices applies to lattices with isometry verbatim. For instance, the discriminant
group 𝐷𝐿 of a lattice with isometry comes equipped with the induced isometry 𝐷 𝑓𝐿 ∈ 𝑂 (𝐷𝐿) and
𝑈 (𝐷𝐿) is the centralizer of 𝐷 𝑓𝐿 in 𝑂 (𝐷𝐿). We denote by 𝐺𝐿 = Im(𝑈 (𝐿) → 𝑈 (𝐷𝐿)).

Proposition 2.2. Let 𝑀, 𝑁 be lattices with isometry. Suppose that the characteristic polynomials of 𝑓𝑀
and 𝑓𝑁 are coprime. Then the double coset

𝑈 (𝑁)\{equivariant glue maps 𝐷𝑀 ⊇ 𝐻𝑀
𝜙
−→ 𝐻𝑁 ⊆ 𝐷𝑁 }/𝑈 (𝑀)

is in bijection with the set of isomorphism classes of lattices with isometry (𝐿, 𝑓 ) with characteristic
polynomial 𝜒 𝑓 (𝑥) = 𝜒 𝑓𝑀 (𝑥)𝜒 𝑓𝑁 (𝑥) and 𝑀 � (ker 𝜒 𝑓𝑀 ( 𝑓 )) and 𝑁 � (ker 𝜒 𝑓𝑁 ( 𝑓 )).

Proof. We work in the category of lattices with isometry. Let 𝐿𝜙 and 𝐿𝜓 be primitive extensions
of 𝑀 ⊥ 𝑁 and ℎ : 𝐿𝜙 → 𝐿𝜓 an isomorphism. Then ℎ|𝑀 ∈ 𝑈 (𝑀) and ℎ|𝑁 ∈ 𝑈 (𝑁). We have
𝐷ℎ |𝑁 𝜙𝐷−1

ℎ |𝑀 = 𝜓, so 𝜓 ∈ 𝑈 (𝑀)𝜙𝑈 (𝑁). Conversely, if 𝐷𝑎𝜙𝐷𝑏 = 𝜓. Then 𝑎 ⊕ 𝑏 : 𝐿𝜙 → 𝐿𝜓 is an
isomorphism. �

3. K3 surfaces with a group of automorphisms

See [11] or [36] for generalities on K3 surfaces.

3.1. H-markings

Let X be a K3 surface. We denote by

𝜌𝑋 : Aut(𝑋) → 𝑂 (H2(𝑋,Z)), 𝑔 ↦→ (𝑔−1)∗
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the natural representation of the automorphism group Aut(𝑋) on the second integral cohomology group
of X. It is faithful.

Definition 3.1. Let X, 𝑋 ′ be K3 surfaces and 𝐺 ≤ Aut(𝑋), 𝐺 ′ ≤ Aut(𝑋 ′). We call (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′)
conjugate, if there is an isomorphism 𝜙 : 𝑋 → 𝑋 ′ such that 𝜙𝐺𝜙−1 = 𝐺 ′. They are called deformation
equivalent if there exists a connected family X → 𝐵 of K3 surfaces, a group of automorphisms
G ≤ Aut(X /𝐵) and two points 𝑏, 𝑏′ ∈ 𝐵 such that the restriction of (X ,G) to the fiber above b is
conjugate to (𝑋, 𝐺) and to the fiber above 𝑏′ is conjugate to (𝑋 ′, 𝐺 ′).

Let L be a fixed even unimodular lattice of signature (3, 19). An L-marking of a K3 surface X is an
isometry 𝜂 : H2 (𝑋,Z) → 𝐿. The pair (𝑋, 𝜂) is called an L-marked K3-surface. A family of L-marked
K3 surfaces is a family 𝜋 : X → 𝐵 of K3 surfaces with an isomorphism of local systems 𝜂 : 𝑅2𝜋∗Z→ 𝐿.
If the base B is simply connected, then a marking of a single fiber extends to the whole family.

Definition 3.2. Let 𝐻 ≤ 𝑂 (𝐿) be a finite subgroup. An H-marked K3 surface is a triple (𝑋, 𝜂, 𝐺)
such that (𝑋, 𝜂) is an L-marked K3 surface and 𝐺 ≤ Aut(𝑋) is a group of automorphisms with
𝜂𝜌𝑋 (𝐺)𝜂−1 = 𝐻. We say that (𝑋, 𝐺) is H-markable if there exists some marking by H.

Two H-marked K3 surfaces (𝑋1, 𝜂1, 𝐺1) and (𝑋2, 𝜂2, 𝐺2) are called conjugate if there exists an
isomorphism 𝑓 : 𝑋1 → 𝑋2 such that 𝜂1 ◦ 𝑓 ∗ = 𝜂2. In particular, 𝑓 𝐺1 𝑓 −1 = 𝐺2. We call H effective if
there exists at least one H-marked K3 surface.

A family of H-marked K3 surfaces is a family of L-marked K3 surfaces 𝜋 : X → 𝐵 of K3 surfaces
with an isomorphism of local systems 𝜂 : 𝑅2𝜋∗Z → 𝐿 and group of automorphisms G ≤ Aut(X /𝐵)
such that for each 𝑏 ∈ 𝐵 the fiber (X𝑏 , 𝜂𝑏 , G𝑏) is an H-marked K3 surface.

Let (𝑋, 𝜂, 𝐺) be an H-marked K3 surface. The action of G on H2,0 (𝑋) induces via the marking 𝜂 a
character 𝜒 : 𝐻 → C×. We call such a character effective. We denote complex conjugation by a bar ·̄.
Set 𝐻𝑠 = ker 𝜒, and denote the 𝜒-eigenspace by

𝐿
𝜒
C
= {𝑥 ∈ 𝐿 ⊗ C | ℎ(𝑥) = 𝜒(ℎ) · 𝑥 for all ℎ ∈ 𝐻}.

Similarly let

𝐿
𝜒+�̄�
R

= {𝑥 ∈ 𝐿R | (ℎ + ℎ−1) (𝑥) = 𝜒(ℎ)𝑥 + �̄�(ℎ)𝑥 for all ℎ ∈ 𝐻}.

The generic transcendental lattice 𝑇 (𝜒) is the smallest primitive sublattice of L such that 𝑇 (𝜒) ⊗ C
contains (𝐿 ⊗ C)𝜒. We call NS(𝜒) = 𝑇 (𝜒)⊥ the generic Néron–Severi lattice. Recall that 𝐿𝐻𝑠 is the
complement of the fixed lattice 𝐿𝐻𝑠 .
Proposition 3.3. Let 𝐻 ≤ 𝑂 (𝐿) be a finite group and 𝜒 : 𝐻 → C× a nontrivial character. Recall that
𝐻𝑠 := ker 𝜒. Then 𝜒 is effective if and only if the following hold:

1. 𝐿𝐻𝑠 is negative definite;
2. 𝐿𝐻𝑠 does not contain any (−2)-vector;
3. the signature of 𝐿𝐻 is (1, ∗);
4. 𝐿

𝜒+�̄�
R

is of signature (2, ∗);
5. NS(𝜒)𝐻 does not contain any vector of square (−2).

If 𝜒 is trivial, then 𝜒 is effective if and only if (1) and (2) hold.

Proof. If 𝜒 is trivial, this is known (cf. [59, 4.2, 4.3]). So let 𝜒 be nontrivial. We show that (1)–(5)
are necessary. (1) and (2) follow from [59, 4.2]. Let H be an effective subgroup and (𝑋, 𝜂, 𝐺) an H-
marked K3 surface. Since 𝑇 (𝜒) ⊗ C contains the period 𝜂(𝜔) of (𝑋, 𝜂), we have 𝜂(𝜔 + �̄�) ∈ 𝐿

𝜒+�̄�
R

.
Recall that 𝜔.�̄� > 0. Thus 𝐿

𝜒+�̄�
R

has at least two positive squares. Let ℎ ∈ NS(𝑋) be ample. Then
ℎ′ =

∑
𝑔∈𝐺 𝑔∗ℎ is ample and G-invariant, that is, ℎ′ ∈ 𝐻2 (𝑋,Z)𝐺 = 𝜂−1(𝐿𝐻 ). Since ℎ′2 > 0, 𝐿𝐻

has at least one positive square. Since 𝐻1,1 (𝑋) and 𝐻2,0(𝑋) ⊕ 𝐻0,2 (𝑋) are orthogonal so are h and
𝐿
𝜒+�̄�
R
⊆ 𝜂(𝐻2,0 (𝑋) ⊕ 𝐻0,2 (𝑋)). Therefore, all 3 positive squares of L are accounted for. This proves (3)
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and (4). For (5), we note that NS(𝜒) ⊆ 𝜂(NS(𝑋)). For 𝛿 ∈ NS(𝑋) with 𝛿2 = −2, we know that 𝛿 or −𝛿
is effective by Riemann–Roch. Therefore, ℎ′.𝛿 ≠ 0, because ℎ′ is ample. Since NS(𝑋)𝐺 ⊆ ℎ⊥ ∩NS(𝑋),
NS(𝑋)𝐺 does not contain any vector of square (-2). The same holds true for NS(𝜒)𝐻 ⊆ 𝜂(NS(𝑋)𝐺).

Since the signature of 𝐿
𝜒+�̄�
R

is (2, ∗), we can find an element 𝜔 in (𝐿⊗C)𝜒 such that 𝜔.�̄� > 0, 𝜔2 = 0.
Choosing 𝜔 general enough we achieve 𝜔⊥ ∩ 𝑇 (𝜒) = 0. By the surjectivity of the period map [11, VII
(14.1)], we can find an L-marked K3 surface (𝑋, 𝜂) with period 𝜔. By construction 𝜂(𝑇 (𝑋)) = 𝑇 (𝜒),
so X is projective and 𝜂(NS(𝑋)) = NS(𝜒). Since 𝐿𝐻 is of signature (1, ∗) and 𝐿𝐻 does not contain any
(−2)-roots, we find ℎ ∈ 𝐿𝐻 with ℎ2 > 0 and ℎ⊥ ∩ NS(𝜒) not containing any −2 roots either and after
possibly replacing h by −ℎ, we can assume that h lies in the positive cone. Thus, h lies in the interior
of a Weyl chamber. Since the Weyl group 𝑊 (NS(𝑋)) acts transitively on the Weyl chambers of the
positive cone, we find an element 𝑤 ∈ 𝑊 (NS(𝜒)) such that that (𝜂 ◦ 𝑤)−1(ℎ) is ample. Let 𝜂′ = 𝜂 ◦ 𝑤.
By construction, every element of 𝐺 ′ = 𝜂′−1𝐻𝜂′ preserves this ample class and the period of X. So
𝐺 ′ is a group of effective Hodge isometries. By the strong Torelli theorem (see, e.g., [11, VIII §11]),
𝐺 ′ = 𝜌𝑋 (𝐺) for some 𝐺 ≤ Aut(𝑋). �

Note that for any effective character 𝜒 : 𝐻 → C× of H,

ker 𝜒 = 𝐻𝑠 = {ℎ ∈ 𝐻 | 𝐿ℎ is of signature (3, ∗)}

is independent of 𝜒. Indeed, because 𝐿𝐻𝑠 is negative definite, 𝐿𝐻𝑠 ⊆ 𝐿ℎ is of signature (3, ∗) for any
ℎ ∈ 𝐻𝑠 . On the other hand, if 𝑔 ∈ 𝐻 is not in 𝐻𝑠 , then 𝜒(𝑔) ≠ 1 and so 𝐿𝑔 is orthogonal to 𝐿

𝜒+�̄�
R

and
contains 𝐿𝐻 . Therefore, 𝐿𝑔 is of signature (1, ∗). The kernel is a normal subgroup and 𝐻/𝐻𝑠 � 𝜇𝑛 is
cyclic. We say that an effective group H is symplectic if 𝐻 = 𝐻𝑠 and nonsymplectic otherwise.

Lemma 3.4. Let 𝐻 ≤ 𝑂 (𝐿) be effective. There are at most two effective characters 𝜒 : 𝐻 → C×. They
are complex conjugate.

Proof. Fix a generator ℎ𝐻𝑠 of 𝐻/𝐻𝑠 , and let 𝜒 be an effective character. It is determined by its value
𝜒(ℎ), which is a primitive n-th root of unity. Set 𝑇 = 𝑇 (𝜒). Since 𝜒 is effective, 𝐿

𝜒+�̄�
R

= 𝑇
𝜒+�̄�
R

is of
signature (2, ∗). It is equal to the 𝜒(ℎ) + �̄�(ℎ) eigenspace of (ℎ + ℎ−1) |𝑇R. The other real eigenspaces
of (ℎ + ℎ−1) |𝑇R are negative definite. Thus, any effective character 𝜒′ is equal to 𝜒 or �̄�. �

In particular, this shows that 𝑇 (𝜒) and NS(𝜒) do not depend on the choice of the effective character
𝜒 but only on H. We may denote them as 𝑇 (𝐻) and NS(𝐻).

3.2. Moduli spaces and periods

Let M𝐻 denote the fine moduli space parametrizing isomorphism classes of H-marked K3 surfaces
(𝑋, 𝜂, 𝐺). It is a non-Hausdorff complex manifold. It can be obtained by gluing the base spaces of the
universal deformations of (𝑋, 𝜂, 𝐺); see [19, §3].

Let 𝜒 : 𝐻 → C× be an effective character. We have M𝐻 = M𝜒
𝐻 ∪M�̄�

𝐻 , where M𝜒
𝐻 parametrizes

isomorphism classes of H-marked K3 surfaces (𝑋, 𝜂, 𝐺) with 𝜒(𝜂𝜌𝑋 (𝑔)𝜂−1) · 𝜔𝑋 = (𝑔∗)−1𝜔𝑋 for all
𝑔 ∈ 𝐺. By [19, Prop. 3.9], the forgetful map M𝐻 →M𝐿 , (𝑋, 𝜂, 𝐺) ↦→ (𝑋, 𝜂) into the moduli space of
L-marked K3 surfaces is a closed embedding.

Definition 3.5. Let 𝐻 ≤ 𝑂 (𝐿) be effective and 𝜒 : 𝐻 → C× be a nontrivial effective character. We
denote by

D𝜒 = {C𝜔 ∈ P((𝐿 ⊗ C)𝜒) | 〈𝜔, 𝜔〉 = 0, 〈𝜔, �̄�〉 > 0}

the corresponding period domain and its period map by

P : M𝜒
𝐻 → D

𝜒 .

https://doi.org/10.1017/fms.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.50


10 S. Brandhorst and T. Hofmann

It is a local isomorphism (see, e.g., [19]). The discriminant locus isΔ =
⋃{
P(𝛿⊥) | 𝛿 ∈ 𝐿𝐻 , 𝛿2 = −2

}
⊆

P(𝐿C).
Proposition 3.6. Let 𝜒 : 𝐻 → C× be an effective and nontrivial character.
1. The image of P is D𝜒 \ Δ .
2. If (𝑋1, 𝜂1, 𝐺1) and (𝑋2, 𝜂2, 𝐺2) lie in the same fiber P−1(C𝜔), then (𝑋1, 𝐺1) and (𝑋2, 𝐺2) are

conjugate.
3. If 𝜒 is real, thenD𝜒 \Δ has two connected components. They are complex conjugate. If 𝜒 is not real,

then D𝜒 \ Δ is connected.
Proof. (1) Let C𝜔 ∈ D𝜒. By the surjectivity of the period map, we find a marked K3 surface (𝑋, 𝜂)
with period C𝜔. Set 𝑁 = C𝜔⊥ ∩ 𝐿. By Lefschetz’ theorem on (1, 1)-classes, we have 𝜂(NS(𝑋)) = 𝑁 .

If C𝜔 ∉ Δ , we have that NS(𝐻)𝐻 = NS(𝐻) ∩ (𝐿𝐻 )⊥ does not contain any roots. This means that
𝜂−1 (NS(𝐻)𝐻 ) ⊆ NS(𝑋) contains an ample class. Thus, 𝜂−1𝐻𝜂 preserves the period and the ample
cone. By the strong Torelli theorem, there is a (unique) group of automorphisms 𝐺 ≤ Aut(𝑋) with
𝜂𝜌𝑋 (𝐺)𝜂−1 = 𝐻.

If conversely C𝜔 ∈ Δ , then H does not preserve a Weyl chamber of N so that H cannot come from a
group of automorphisms of X.

(2) Let (𝑋1, 𝜂1, 𝐺1) and (𝑋2, 𝜂2, 𝐺2) be H-marked K3 surfaces in the fiber of C𝜔. Then 𝜑 = 𝜂−1
1 ◦ 𝜂2

is a Hodge isometry which conjugates 𝜌𝑋1 (𝐺1) and 𝜌𝑋2 (𝐺2). However, it may not preserve the ample
cones. By [64, Lemma 1.7 and Theorem 1.8], there exists a unique element 𝑤 ∈ 〈±1〉 ×𝑊 (NS(𝑋1))
such that 𝑤 ◦𝜑 preserves the ample cones and 𝑤𝑔∗ = 𝑔∗𝑤 for all 𝑔 ∈ 𝐺1. Since now 𝑤 ◦𝜑 is an effective
Hodge isometry, the strong Torelli theorem applies and provides an isomorphism 𝐹 : 𝑋1 → 𝑋2 with
𝐹∗ = 𝑤 ◦ 𝜑. By construction, we have 𝐹𝐺1𝐹

−1 = 𝐺2 as desired.
(3) By [29, §9 & §11], the period domain D𝜒 has 2 connected components if 𝜒 is real and one else.

The discriminant locus is a locally finite union of real codimension two hyperplanes. Removing it does
not affect the number of connected components. �

Remark 3.7. If 𝜔 ∈ 𝐿
𝜒
C

, then we have 𝜔2 = 𝜒(𝑔)2𝜔2 for any 𝑔 ∈ 𝐺. Thus, (1 − 𝜒(𝑔)2)𝜔2 = 0. Let
𝑛 = [𝐻 : 𝐻𝑠] = |Im 𝜒 |. For 𝑛 > 2, this condition implies 𝜔2 = 0 and hence the dimension of D𝜒 is
dimC 𝐿

𝜒
C
− 1, while for 𝑛 = 2 it is dim 𝐿

𝜒
C
− 2.

Denote by 𝑁 (𝐻) = { 𝑓 ∈ 𝑂 (𝐿) | 𝑓 𝐻 = 𝐻 𝑓 } the normalizer of H in 𝑂 (𝐿). If (𝑋, 𝜂, 𝐺) is an H-
marked K3 surface and 𝑓 ∈ 𝑁 (𝐻), then (𝑋, 𝑓 ◦ 𝜂, 𝐺) is an H-marked K3 surface as well. In fact, all
H-markings of (𝑋, 𝐺) arise in this way. So 𝑁 (𝐻) is the group of changes of marking.

SetD𝐻 = D𝜒∪D�̄�. The group 𝑁 (𝐻) acts onD𝐻 via an arithmetic subgroup of𝑂 (𝑇 (𝐻)), respectively
𝑈 (𝑇 (𝐻)). Therefore, by [10] the space D𝐻 /𝑁 (𝐻) is a quasi-projective variety with only finite quotient
singularities.
Theorem 3.8. The coarse moduli space F𝐻 := M𝐻 /𝑁 (𝐻) of H-markable K3 surfaces admits a
bijective period map F𝐻 → (D𝐻 \ Δ)/𝑁 (𝐻).
Proof. We can use the action of the normalizer to forget the marking and thus obtain a period map
F𝐻 = M𝐻 /𝑁 (𝐻) → (D𝐻 \ Δ)/𝑁 (𝐻). That it is bijective follows from Proposition 3.6. Part (1) gives
surjectivity and part (2) injectivity. Indeed, if two H polarizable K3 surfaces have the same image, then
we can find markings on them such that they lie in the same fiber of the period map M𝐻 → D𝐻 . Then
they are conjugate by Proposition 3.6 (2). �

See [4, 5] for more on moduli of K3 surfaces and their compactifications.

3.3. Connected components

We next show that deformation classes of K3 surfaces with finite groups of automorphisms are precisely
the connected components of the coarse moduli space of H-markable K3 surfaces F𝐻 . In the following,
for a topological space Y we denote by 𝜋0 (𝑌 ) the set of (path) connected components of Y.
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Theorem 3.9. Let (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′) be two pairs consisting of K3 surfaces 𝑋, 𝑋 ′ and finite groups
of automorphisms 𝐺 ≤ Aut(𝑋), 𝐺 ′ ≤ Aut(𝑋 ′). Then (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′) are deformation equivalent
if and only if they are markable by the same effective subgroup 𝐻 ≤ 𝑂 (𝐿) and they lie in the same
connected component of F𝐻 .

Proof. Every pair (𝑋, 𝐺) is H-markable for some effective subgroup 𝐻 ≤ 𝑂 (𝐿).
Let (𝑋 ′, 𝐺 ′) be deformation equivalent to (𝑋, 𝐺). This means that we find a connected family

X → 𝐵, a group of automorphisms G ≤ Aut(X /𝐵) and points 𝑏, 𝑏′ ∈ 𝐵 such that the fibers above b and
𝑏′ are conjugate to (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′). The H-marking of (𝑋, 𝐺) induces an H-marking of the fiber
above b. By parallel transport in the local system 𝑅2𝜋∗Z, we move the marking from (𝑋, 𝐺) to (𝑋 ′, 𝐺 ′)
along some continuous path 𝛾 in B connecting b and 𝑏′. Therefore, the fiber above 𝑏′ is H-markable. The
isomorphism of the fiber with (𝑋 ′, 𝐺 ′) allows transporting this marking to (𝑋 ′, 𝐺 ′). Therefore, (𝑋 ′, 𝐺 ′)
is H-markable. Its point in the moduli space F𝐻 of H-markable K3-surfaces coincides with that of the
fiber above 𝑏′. Likewise, (𝑋, 𝐺) gives the same point in F𝐻 as the fiber above b. Since the two fibers lie
in the same connected component of M𝐻 , their images lie in the same connected component of F𝐻 .

Conversely, let (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′) be H-markable and in the same connected component of F𝐻 .
Then we can find markings 𝜂, and 𝜂′ such that (𝑋, 𝜂, 𝐺) and (𝑋, 𝜂′, 𝐺 ′) are H-marked. Then 𝜋0 (F𝐻 ) =
𝜋0 (M𝐻 /𝑁 (𝐻)) � 𝜋0 (M𝐻 )/𝑁 (𝐻). Since (𝑋, 𝐺) and (𝑋 ′, 𝐺 ′) lie in the same connected component
of F𝐻 , we find 𝑛 ∈ 𝑁 (𝐻) such that (𝑋, 𝜂, 𝐺) and (𝑋, 𝑛 ◦ 𝜂′, 𝐺) lie in the same connected component
of M𝐻 . Since M𝐻 is a fine moduli space, it has a universal family, and this gives a deformation
of (𝑋, 𝜂, 𝐺) and (𝑋, 𝑛 ◦ 𝜂′, 𝐺) as H-marked K3 surfaces. By forgetting the markings, we obtain a
deformation of (𝑋, 𝐺) with (𝑋 ′, 𝐺 ′). �

Corollary 3.10. The set of deformation classes of pairs (𝑋, 𝐺) with X a K3 surface and 𝐺 ≤ Aut(𝑋)
with 𝐺 ≠ 𝐺𝑠 is in bijection with the set

⋃
𝐻 ∈𝑇 𝜋0 (F𝐻 ), where T is a transversal of the set of conjugacy

classes effective, nonsymplectic subgroups of 𝑂 (𝐿).

Let L be a K3 lattice and 𝐻 ≤ 𝑂 (𝐿) an effective subgroup. Our next goal is to determine the
connected components of the coarse moduli space F𝐻 of H-markable K3 surfaces. Since the period
domain D𝐻 \ Δ has exactly two connected components (Proposition 3.6 (3)), F𝐻 has at most two
components as well. It has only one connected component if and only if the action of 𝑁 (𝐻) on D𝐻
exchanges the two components.

Let 𝜒 : 𝐻 → C× be an effective character. For 𝑛 ∈ 𝑁 (𝐻), denote by 𝜒𝑛 the character defined by
𝜒𝑛 (ℎ) = 𝜒(𝑛−1ℎ𝑛). Denote by 𝑁 (𝜒) the stabilizer of 𝜒 in 𝑁 (𝐻). For completeness sake, we mention
the following proposition.

Proposition 3.11. Let 𝜒 : 𝐻 → C× be an effective character and [𝐻 : 𝐻𝑠] > 2. Then the number of
connected components of F𝐻 is 2/[𝑁 (𝐻) : 𝑁 (𝜒)].

Proof. Since [𝐻 : 𝐻𝑠] > 2, the connected components of M𝐻 are M𝜒
𝐻 and M�̄�

𝐻 . If (𝑋, 𝜂, 𝐺) ∈M𝜒
𝐻

and 𝑛 ∈ 𝑁 (𝐻), then (𝑋, 𝑛 ◦ 𝜂, 𝐺) ∈M𝜒𝑛

𝐻 . �

Let now [𝐻 : 𝐻𝑠] = 2. Then we have seen that 𝜒 = �̄� and D𝜒 has two connected components. This
can be dealt with by introducing positive sign structures. Our account follows [72]. A period C𝜔 ∈ D𝜒
can be seen as an oriented, positive definite real 2-plane. Indeed, the two real vectors Re 𝜔, Im 𝜔 ∈ 𝐿R
give an ordered (and thus oriented), orthogonal basis of a positive definite plane in L.

Definition 3.12. Let L be a Z-lattice of signature (𝑠+, 𝑠−). Then a sign structure on L is defined as a
choice of one of the connected components 𝜃 of the manifold parametrizing oriented, 𝑠+-dimensional,
positive definite, real subspaces S of 𝐿R. Unless L is negative definite, it has exactly two positive sign
structures.

For [𝐻 : 𝐻𝑠] > 2, the periods in D𝜒 all give the same sign structure. But for [𝐻 : 𝐻𝑠] = 2, there
are two sign structures which give the two connected components of the period domain. Whether or not
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𝑁 (𝐻) preserves the sign structure is encoded by a certain character. See section 2.1 for our conventions
on the spinor norm.

Proposition 3.13 [50, 55]. Let L be anR-lattice so that the spinor norm takes values in {±1} � R×/R×2.
The action of an isometry 𝑔 ∈ 𝑂 (𝐿) on the set of positive sign structures of L is trivial if and only if
det(𝑔) · spin(𝑔) > 0.

Let L be an R-lattice. We denote by 𝑂+(𝐿) = ker(det · spin) the subgroup of orientation preserving
isometries. If 𝐺 ≤ 𝑂 (𝐿) is a subgroup, we denote by 𝐺+ = 𝐺∩𝑂+(𝐿) its normal subgroup of orientation
preserving elements.

Proposition 3.14. Let 𝜒 : 𝐻 → C× be an effective character and [𝐻 : 𝐻𝑠] = 2. Set 𝑇 = 𝑇 (𝜒), let
𝜋 : 𝑁 (𝐻) → 𝑂 (𝑇) be the restriction and 𝑁𝑇 = 𝜋(𝑁 (𝐻)). Then the number of connected components
of F𝐻 is 2/[𝑁𝑇 : 𝑁+𝑇 ].

Proof. The subgroup of 𝑁 (𝐻) fixing the sign structures of𝑇 (𝜒) is by the definition 𝜋−1 (𝑁+𝑇 ). Therefore,
2/[𝜋(𝑁 (𝐻)) : 𝜋(𝑁 (𝐻))+] is the number of connected components of 𝑁 (𝐻). �

Lemma 3.15. Keep the notation of Proposition 3.14. Let 𝐷 : 𝑂 (𝑇) → 𝑂 (𝐷𝑇 ) be the natural map,
𝐽 = 𝐷 (𝑁𝑇 ), 𝐽+ = 𝐷 (𝑁+𝑇 ) and 𝐾 = ker 𝐷 . Then [𝑁𝑇 : 𝑁+𝑇 ] = [𝐾 : 𝐾+] [𝐽 : 𝐽+].

Proof. We claim that that 𝐾 ⊆ 𝑁𝑇 . By definition any element 𝑔 ∈ 𝐾 acts trivially on the discriminant
group 𝐷𝑇 . Therefore, 𝑔 ⊕ idNS(𝜒) extends to L. Since the restriction of any ℎ ∈ 𝐻 to T is given by ± id𝑇 ,
𝑔 ⊕ idNS(𝜒) commutes with h. The claim is proven. As a consequence, we have 𝑁𝑇 = 𝐷−1 (𝐽). Thus, we
have a commutative diagram with exact rows

1 𝐾+ 𝑁+𝑇 𝐽+ 1

1 𝐾 𝑁𝑇 𝐽 1,𝐷

where the vertical arrows are inclusions of normal subgroups. Hence, the cokernels exist and so we
obtain the corresponding exact sequence

1→ 𝐾/𝐾+ → 𝑁𝑇 /𝑁+𝑇 → 𝐽/𝐽+ → 1

of the cokernels. To see this follow the proof of the snake lemma, which indeed is valid in this
situation. �

Remark 3.16. We will see in Proposition 5.4 how to compute the number of components [𝑁𝑇 : 𝑁+𝑇 ] =
[𝐾 : 𝐾+] [𝐽 : 𝐽+] using the Miranda–Morrison theory.

3.4. Saturated effective subgroups

By Theorem 3.9, the set of connected components of F𝐻 is in bijection with the deformation classes of
H-markable K3 surfaces. Our next goal is to enumerate all possible effective groups H up to conjugacy in
𝑂 (𝐿). The symplectic fixed and cofixed lattices 𝐿𝐻𝑠 and 𝐿𝐻𝑠 turn out to be the crucial invariants for this
task. Let L be a Z-lattice and M a subset of 𝐿 ⊗ C. We denote by 𝑂 (𝐿, 𝑀) = { 𝑓 ∈ 𝑂 (𝐿) | 𝑓C(𝑀) = 𝑀}
the stabilizer of M.

Definition 3.17. Let L be a K3 lattice and 𝐻 ≤ 𝑂 (𝐿) an effective subgroup. Then we call the kernel S of
𝑂 (𝐿, 𝐿𝐻𝑠 ) → 𝑂 (𝐿𝐻𝑠 ) the saturation of 𝐻𝑠 . The group generated by H and S is called the saturation of
H. For a K3 surface X, we call a finite subgroup 𝐺 ≤ Aut(𝑋) saturated if its image 𝜌𝑋 (𝐺𝑠) is saturated.
We call a saturated symplectic group 𝐻𝑠 ≤ 𝑂 (𝐿) a heart.
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Remark 3.18. Note that the saturation S of 𝐻𝑠 is the largest subgroup 𝑆 ≤ 𝑂 (𝐿) with 𝐿𝑆 = 𝐿𝐻𝑠 .
Further, the saturation of an effective group 𝐻 ≤ 𝑂 (𝐿) is effective. Indeed, if 𝐿 = H2(𝑋,Z) for some
K3 surface X and 𝐺𝑠 a finite group of symplectic automorphisms, then the strong Torelli theorem implies
that the saturation of 𝜌𝑋 (𝐺𝑠) = 𝐻𝑠 is in the image of 𝜌𝑋 by a finite group of symplectic automorphisms
containing 𝐺𝑠 and with the same fixed lattice. We conclude that if a pair (𝑋, 𝐺) is markable by H, then
it is also markable by the saturation of H. Therefore, it is enough to enumerate the saturated effective
subgroups of 𝑂 (𝐿).
Remark 3.19. For the symplectic groups, the saturated subgroups are known: By a theorem of
Hashimoto [34], there are exactly 44 conjugacy classes of effective, saturated subgroups 𝐻𝑠 ≤ 𝑂 (𝐿).
They are determined by the isometry classes of their fixed and cofixed lattices. The fixed lattices are
listed by Hashimoto while the cofixed lattices can be obtained from the permutation representation of
the Mathieu group 𝑀24 on the type 24𝐴1 Niemeier lattice. Alternatively, one may obtain them from
isometries of the Leech lattice and the tables enumerated in [35].

3.5. Enumerating effective characters

Let 𝐻𝑠 ≤ 𝑂 (𝐿) be a symplectic effective subgroup. We would like to enumerate conjugacy classes of
effective characters 𝜒 : 𝐻 → C× with the given heart 𝐻𝑠 .

Definition 3.20. Let 𝜒 : 𝐻 → C× be an effective character and 𝑛 = [𝐻 : 𝐻𝑠]. The distinguished
generator of 𝐻/𝐻𝑠 is 𝑔𝐻𝑠 with 𝜒(𝑔) = 𝜁𝑛 := exp(2𝜋𝑖/𝑛). Set 𝐹 = 𝐿𝐻𝑠 and 𝐶 = 𝐿𝐻𝑠 . The distinguished
generator 𝑔𝐻𝑠 restricts to an isometry 𝑓 = 𝑔 |𝐹 of F of order n. We call the lattice with isometry (𝐹, 𝑓 )
the head of H and 𝐻𝑠 its heart. The spine of 𝜒 is the glue map 𝜙 : 𝐷𝐹 → 𝐷𝐶 with 𝐿𝜙 = 𝐿.

Our next goal is to see how heart, head and spine determine the character. The first step is to make
the definition of heart and head independent of a character.

Definition 3.21. Let 𝐻𝑠 ≤ 𝑂 (𝐿) be a heart, 𝐹 = 𝐿𝐻𝑠 its fixed lattice and 𝑓 ∈ 𝑂 (𝐹) of order n. We call
the lattice with isometry (𝐹, 𝑓 ) a head (of 𝐻𝑠) if the following hold:

1. ker( 𝑓 + 𝑓 −1 − 𝜁𝑛 − 𝜁𝑛) is of signature (2, ∗),
2. (kerΦ𝑛 ( 𝑓 )Φ1( 𝑓 ))⊥ does not contain any vector of square (−2).

By abuse of notation, we will identify 𝑂 (𝐶) with 𝑂 (𝐶) × {id𝐹 } ⊆ 𝑂 (𝐿 ⊗ Q). Recall that for a
glue map 𝜙 : 𝐷𝐹 → 𝐷𝐶 , we denote by 𝐹 ⊥ 𝐶 ⊆ 𝐿𝜙 the corresponding primitive extension. Note
that 𝐿𝜙 � 𝐿 is a K3 lattice as well and 𝐻𝑠 preserves 𝐿𝜙 because all its elements act trivially on the
discriminant group of C. Suppose that 𝜙𝐷 𝑓 𝜙

−1 = 𝐷𝑐 for some 𝑐 ∈ 𝑂 (𝐶). Then 𝑔 = 𝑓 ⊕ 𝑐 preserves
𝐿𝜙 . Set 𝐻𝜙 = 〈𝑔, 𝐻𝑠〉. Since 𝐻𝑠 is saturated, any other choice of c is in 𝑐𝐻𝑠 , so 𝐻𝜙 is independent of
this choice. Let 𝜒𝜙 : 𝐻𝜙 → C× be defined by 𝜒(𝑔) = 𝜁𝑛.

Definition 3.22. Let 𝐻𝑠 be a heart and (𝐹, 𝑓 ) a head. A glue map 𝜙 : 𝐷𝐹 → 𝐷𝐶 is called a spine if

1. 𝜙 ◦ 𝐷 𝑓 ◦ 𝜙−1 is in the image of 𝑂 (𝐶) → 𝑂 (𝐷𝐶 ) and
2. NS(𝜒𝜙)𝐻𝜙 does not contain any vector of square (−2).
Proposition 3.23. Let 𝐻𝑠 be a heart, (𝐹, 𝑓 ) a head and 𝜙 : 𝐷𝐹 → 𝐷𝐶 a spine. Then the corresponding
character 𝜒𝜙 : 𝐻𝜙 → C× is effective.

Proof. This follows immediately from Proposition 3.3 and the definitions. �

Definition 3.24. Let 𝑖 = 1, 2, 𝐻𝑖 ≤ 𝑂 (𝐿𝑖) two effective subgroups and 𝜒𝑖 : 𝐻𝑖 → C× two effective
characters. We say that 𝜒1 is isomorphic to 𝜒2 if and only if there is an isometry 𝜓 : 𝐿1 → 𝐿2 with
𝐻2 = 𝜓𝐻1𝜓

−1 and 𝜒1(ℎ) = 𝜒2 (𝜓 ◦ ℎ ◦ 𝜓−1) for all ℎ ∈ 𝐻1.

If 𝐿1 = 𝐿2, then 𝜒1 and 𝜒2 are isomorphic if and only if they are conjugate. If moreover 𝐻1 = 𝐻2,
then they are isomorphic if and only if they are conjugate by an element of 𝑁 (𝐻). Recall that 𝑈 (𝐹, 𝑓 )
denotes the centralizer of f in 𝑂 (𝐹).
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Theorem 3.25. Let 𝐻𝑠 be a heart, (𝐹, 𝑓 ) a head of 𝐻𝑠 and S the set of spines 𝜙 : 𝐷𝐹 → 𝐷𝐶 . Then the
double coset

𝑂 (𝐶)\𝑆/𝑈 (𝐹, 𝑓 )

is in bijection with the set of isomorphism classes of effective characters 𝜒 with the given heart and head.

Proof. By Proposition 3.23, any spine 𝜙 ∈ 𝑆 determines an effective character 𝜒𝜙 : 𝐻𝜙 → C× with 𝐿𝜙

a K3 lattice. Conversely, any effective character with the given heart and head arises in this fashion.
Let 𝜙 and 𝜙′ be two spines. We have to show that 𝜒𝜙 and 𝜒𝜙′ are conjugate if and only if 𝜙′ ∈

𝑂 (𝐶)𝜙𝑈 (𝐹, 𝑓 ).
Suppose 𝜙′ = 𝐷𝑎𝜙𝐷𝑏 with 𝑎 ∈ 𝑂 (𝐶) and 𝑏 ∈ 𝑈 (𝐹, 𝑓 ). Then 𝑎 ⊕ 𝑏 : 𝐿𝜙 → 𝐿𝜙′ gives the desired

isomorphism of the characters.
Conversely, let 𝜓 : 𝐿𝜙 → 𝐿𝜙′ be an isomorphism of 𝜒 and 𝜒′. By construction, 𝑉 := 𝐿𝜙 ⊗ Q =

𝐿𝜙′ ⊗Q. We may view 𝜓 as an element of 𝑂 (𝑉). Note that 𝐹 ⊥ 𝐶 ⊆ 𝑉 . Since 𝜓 preserves the common
heart 𝐻𝑠 and head (𝐹, 𝑓 ) of 𝜒1 and 𝜒2, we can write it as 𝜓 = 𝑎 ⊕ 𝑏 with 𝑎 ∈ 𝑂 (𝐶) and 𝑏 ∈ 𝑈 (𝐹, 𝑓 ).
Then 𝐷𝑎 ◦ 𝜙 ◦ 𝐷𝑏 = 𝜙′. �

Remark 3.26. The previous results yield the following procedure for determining a transversal of the
set of isomorphism classes of effective characters.

1. Let H be the set of possible hearts up to conjugacy, which have been determined by Hashimoto [34]
(see Remark 3.19).

2. For each 𝐻𝑠 ∈ H, determine a transversal of the isomorphism classes of the heads (𝐹, 𝑓 ), which
amounts to classifying conjugacy classes of isometries of finite order n of a given Z-lattice. This is
explained in Section 4; see in particular Remark 4.25 for the possible values of n.

3. For each heart 𝐻𝑠 ∈ H and possible head (𝐿, 𝑓 ) apply Theorem 3.25 to determine a transversal of
the double coset of spines and therefore a transversal of the isomorphism classes of the effective
characters with the given heart and head.

Altogether, we obtain a transversal of the isomorphism classes of effective characters. Each is represented
by some K3 lattice L depending on the character, a finite subgroup 𝐻 ≤ 𝑂 (𝐿), a normal subgroup
𝐻𝑠 ≤ 𝐻 and a distinguished generator of 𝐻/𝐻𝑠 .

4. Conjugacy classes of isometries

We have seen that to classify finite subgroups of automorphisms of K3 surfaces up to deformation
equivalence we need to classify conjugacy classes of isometries of finite order of a given Z-lattice. So
given a polynomial 𝜇(𝑥) ∈ Z[𝑥] and a Z-lattice L, we seek to classify all conjugacy classes of isometries
of L with the given characteristic polynomial p. By general results of Grunewald and Segal [33, Cor. 1]
from the theory of arithmetic groups, we know that the number of such conjugacy classes is finite and
(in theory) computable. Necessary and sufficient conditions for the existence of an isometry of some
unimodular lattice L with a given characteristic polynomial have been worked out by Bayer-Fluckiger
and Taelman in [14, 12, 13].

4.1. Hermitian lattices and transfer

In this subsection, E is an étale Q-algebra with a Q-linear involution : 𝐸 → 𝐸 .

Definition 4.1. Let V be an E-module. A Hermitian form on V is a sesquilinear form ℎ : 𝑉×𝑉 → 𝐸 with
ℎ(𝑥, 𝑦) = ℎ(𝑦, 𝑥). We call (𝑉, ℎ) a Hermitian space over E. For a Z-order Λ ⊆ 𝐸 , we call a Λ-module
𝐿 ⊆ 𝑉 a Hermitian Λ-lattice. All Hermitian forms and lattices are assumed nondegenerate.

Let Tr : 𝐸 → Q be the trace. Note that E being étale is equivalent to the trace form 𝐸 × 𝐸 →
Q, (𝑥, 𝑦) ↦→ Tr(𝑥𝑦) being nondegenerate.
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Definition 4.2 (Transfer). AQ-bilinear form 𝑏 : 𝑉×𝑉 → Q on an E-module V is said to be an E-bilinear
form if 𝑏(𝑒𝑣, 𝑤) = 𝑏(𝑣, 𝑒𝑤) for all 𝑣, 𝑤 ∈ 𝑉 and 𝑒 ∈ 𝐸 . Let (𝑉, ℎ) be a Hermitian space over E. Then
𝑏 = Tr ◦ℎ is an E-bilinear form. It is called the trace form of h.

Proposition 4.3 [53]. Every E-bilinear form on V is the trace form of a unique Hermitian form on V.

Note that an E-linear map preserves a Hermitian form if and only if it preserves the respective
trace form. In view of these facts, we may work with E-bilinear forms and Hermitian forms over E
interchangeably.

Given 𝑥𝑛 − 1 = 𝜇(𝑥) ∈ Z[𝑥] and a lattice L, we seek to classify the conjugacy classes of isometries
𝑓 ∈ 𝑂 (𝐿) satisfying 𝜇( 𝑓 ) = 0. To this aim, we put 𝐸 := Q[𝑥, 𝑥−1]/(𝜇) � Q[𝑥]/(𝜇). This is an
étale algebra and 𝑥 ↦→ 𝑥−1 defines an involution on E. For 𝑖 ∈ 𝐼 =: {𝑖 ∈ N | 𝑖 divides 𝑛} set
𝐸𝑖 = Q[𝑥]/(Φ𝑖 (𝑥)). The algebra E splits as a direct product 𝐸 =

∏
𝑖∈𝐼 𝐸𝑖 of cyclotomic fields with

the induced involution. Let (𝑒𝑖)𝑖∈𝐼 be the corresponding system of primitive idempotents in E such that
𝑒𝑖 = 𝑒𝑖 and 𝐸𝑖 = 𝐸𝑒𝑖 .

Let Λ = Z[𝑥]/(𝜇) and Γ =
∏

𝑖∈𝐼 Λ𝑒𝑖 . The conductor of Γ in Λ is

𝔣Γ = {𝑥 ∈ Λ | Γ𝑥 ⊆ Λ}.

It is the largest Γ-ideal contained in Λ. We obtain the following series of inclusions:

𝔣Γ ⊆ Λ ⊆ Γ =
∏
𝑖∈𝐼

Λ𝑒𝑖 (4.1)

Lemma 4.4. The conductor satisfies 𝔣Γ =
⊕

𝑖∈𝐼 (Λ ∩ 𝑒𝑖Λ).

Proof. For 𝑥 ∈ Λ, we have 𝑥 = 1𝑥 =
∑
𝑖 𝑒𝑖𝑥 and so 𝑥Γ =

⊕
𝑖∈𝐼 Λ𝑒𝑖𝑥 is contained in Λ if and only if

𝑒𝑖𝑥 ∈ Λ for all 𝑖 ∈ 𝐼. This means that 𝑒𝑖𝑥 ∈ Λ ∩ 𝑒𝑖Λ. �

Example 4.5. Let 𝑝 ∈ Z be a prime. For 𝜇(𝑥) = 𝑥𝑝 − 1 = (𝑥 − 1)Φ𝑝 (𝑥), we obtain

𝐸 = Q[𝑥]/(𝑥𝑝 − 1) � Q[𝑥]/(𝑥 − 1) × Q[𝑥]/Φ𝑝 (𝑥) � Q × Q[𝜁𝑝] .

Set 𝑔(𝑥) =
∑𝑝−2
𝑖=0 (𝑖 + 1 − 𝑝)𝑥𝑖 . One finds that 𝑝 = (𝑥 − 1)𝑔(𝑥) + Φ𝑝 (𝑥). Hence, 𝑒1 = Φ𝑝 (𝑥)/𝑝 and

𝑒𝑝 = (𝑥 − 1)𝑔(𝑥)/𝑝. The conductor ideal is 𝔣Γ = 𝑝𝑒1Λ + 𝑝𝑒𝑝Λ. It contains p.

Let b be the bilinear form of the lattice L. A given isometry 𝑓 ∈ 𝑂 (𝐿, 𝑏) with minimal polynomial 𝜇
turns (𝐿, 𝑏) into a Hermitian Λ-lattice (𝐿, ℎ) by letting the class of x act as f. Note that for 𝑥, 𝑦 ∈ 𝐿 ⊗ 𝐸
we have

ℎ(𝑒𝑖𝑥, 𝑒 𝑗𝑥) = 𝑒𝑖𝑒 𝑗ℎ(𝑥, 𝑦) = 𝑒𝑖𝑒 𝑗ℎ(𝑥, 𝑦) = 𝛿𝑖 𝑗ℎ(𝑥, 𝑦).

Thus 𝑒𝑖𝐿 is orthogonal to 𝑒 𝑗𝐿 for 𝑖 ≠ 𝑗 . Equation (4.1) yields the corresponding chain of finite index
inclusions

𝔣Γ𝐿 ⊆ 𝐿 ⊆ Γ𝐿. (4.2)

Setting 𝐿𝑖 = 𝑒𝑖𝔣Γ𝐿 = 𝐿 ∩ 𝑒𝑖𝐿 = kerΦ𝑖 ( 𝑓 ) and 𝐿 ′𝑖 = 𝑒𝑖Γ𝐿 the outermost lattices are

(𝔣Γ𝐿, ℎ) =⊥
𝑖∈𝐼
(𝐿𝑖 , ℎ𝑖) and (Γ𝐿, ℎ) =⊥

𝑖∈𝐼
(𝐿 ′𝑖 , ℎ𝑖).

Since Λ𝑒𝑖 = Z[𝑥]/Φ𝑖 (𝑥) = Z𝐸𝑖 is the maximal order in 𝐸𝑖 , 𝐿𝑖 and 𝐿 ′𝑖 are Hermitian lattices over the
ring of integers of a number field. Such lattices are well understood. We use the outermost lattices of
the sandwich to study the Λ-lattice (𝐿, ℎ).
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Example 4.6. Let L be a Z-lattice and 𝑓 ∈ 𝑂 (𝐿) an isometry of prime order p. Then 𝐿1 = kerΦ1( 𝑓 )
and 𝐿𝑝 = kerΦ𝑝 ( 𝑓 ). Since, by Example 4.5, 𝑝 ∈ 𝔣Γ we have

𝑝𝐿 ⊆ 𝔣Γ𝐿 = 𝐿1 ⊥ 𝐿𝑝 ⊆ 𝐿. (4.3)

The idea for the classification is as follows: Given 𝜇(𝑥) and the Z-lattice (𝐿, 𝑏), we get restrictions on
the possible genera of the lattices (𝐿𝑖 , ℎ𝑖) from (𝐿, 𝑏) and the conductor. We take L as an overlattice of
the orthogonal direct sum⊥𝑖∈𝐼 (𝐿𝑖 , ℎ𝑖) up to the action of the product of unitary groups

∏
𝑖∈𝐼 𝑈 (𝐿𝑖 , ℎ𝑖).

Thanks to eq. (4.2), this is a finite problem. In practice, we successively take equivariant primitive
extensions.

4.2. Glue estimates

The caveat of dealing with primitive extensions 𝐴 ⊥ 𝐵 ⊆ 𝐶 is that we do not know how to predict the
genus of C. Or more precisely, how to enumerate all glue maps such that C lies in a given genus. So we
have to resort to check this in line 19 of Algorithm 2 only after constructing C. To reduce the number
of glue maps that have to be checked, in this section we prove various necessary conditions.

Proposition 4.7. Let C be an integral Z-lattice and 𝑓 ∈ 𝑂 (𝐶) an isometry of prime order p with char-
acteristic polynomial Φ𝑒1

1 Φ
𝑒𝑝
𝑝 . Set 𝐴 = kerΦ1( 𝑓 ), 𝐵 = kerΦ𝑝 ( 𝑓 ) and 𝑚 = min{𝑒1, 𝑒𝑝 , 𝑙 (𝐷𝐴), 𝑙 (𝐷𝐵)}.

Then 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 and [𝐶 : 𝐴 ⊥ 𝐵] | 𝑝𝑚.

Proof. By Equation (4.3) 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵. Let 𝐷𝐴 ≥ 𝐻𝐴 � 𝐶/(𝐴 ⊥ 𝐵) = 𝐻 � 𝐻𝐵 ≤ 𝐷𝐵 be the glue
between A and B. Note that these are isomorphisms as Z[𝑥]-modules and 𝑝𝐻 = 0 by Example 4.6.

The polynomial Φ𝑝 annihilates B; hence, it annihilates 𝐵∨ and 𝐻𝐵 ≤ 𝐷𝐵 = 𝐵∨/𝐵. Let 𝐵′ ≤ 𝑝−1𝐵
be defined by 𝐵′/𝐵 = 𝐻𝐵. The Z[𝜁𝑝]-module 𝐵′ is a finitely generated torsion-free module of rank 𝑒𝑝 .
By the invariant factor theorem over Dedekind domains [27, (22.13)], any torsion quotient module of
𝐵′ is generated by at most 𝑒𝑝 elements. On the other hand, since 𝐻𝐵 ≤ 𝐷𝐵, it is generated by at most
𝑙 (𝐷𝐵) elements as a Z-module, in particular as Z[𝑥]-module.

Similarly, 𝐻𝐴 is annihilated by Φ1 and generated by at most min{𝑒1, 𝑙 (𝐷𝐴)} elements. Since the
glue map is equivariant, the minimal number n of generators of H as Z[𝑥]-module satisfies 𝑛 ≤ 𝑚. As
𝐻 = 𝐶/(𝐴 ⊥ 𝐵), viewed as a Z[𝜁𝑝]-module, is annihilated by the prime ideal P generated by Φ1(𝜁𝑝),
we have 𝐻 � (Z[𝜁𝑝]/𝑃)𝑛. Since p is totally ramified in Z[𝜁𝑝], the ideal P has norm p and thus

[𝐶 : 𝐴 ⊥ 𝐵] = |Z[𝜁𝑝]/𝑃 |𝑛 = 𝑝𝑛 | 𝑝𝑚. �

We call a torsion bilinear form 𝑏 : 𝐴 × 𝐴 → Q2/Z2 evenif 𝑏(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐴, otherwise we
call it odd. Imitating [54, II §2], we define the functors 𝜌𝑘 .

Definition 4.8. Let N be an integral lattice over Z𝑝 . Set 𝐺𝑘 = 𝐺𝑘 (𝑁) = 𝑝−𝑘𝑁 ∩ 𝑁∨, and define
𝜌𝑘 (𝑁) = 𝐺𝑘/(𝐺𝑘−1 + 𝑝𝐺𝑘+1). It is equipped with the nondegenerate torsion bilinear form 𝑏𝑘 (𝑥, �̄�) =
𝑝𝑘−1𝑥𝑦 mod Z𝑝 . If 𝑝 = 2 and both 𝜌𝑘−1(𝑁) and 𝜌𝑘+1(𝑁) are even, then we call 𝜌𝑘 (𝑁) free. Otherwise,
we call it bound. If it is free, 𝜌𝑘 (𝑁) carries the torsion quadratic form 𝑞𝑘 (𝑥) = 2𝑘−1𝑥2 mod 2Z2.

Let 𝐿 = ⊥𝑙
𝑗=0 (𝐿 𝑗 , 𝑝

𝑗 𝑓 𝑗 ) be a Jordan decomposition with 𝑓 𝑗 a unimodular bilinear form. Then
one checks that 𝜌 𝑗 (𝐿) � (𝐿 𝑗/𝑝𝐿 𝑗 , 𝑓𝑖), where 𝑓𝑖 is the composition of 𝑝−1 𝑓𝑖 and the natural map
Q𝑝 → Q𝑝/Z𝑝 .

Remark 4.9. Note that 𝑓𝑖 determines the rank of 𝑓𝑖 , its parity and its determinant modulo p. Thus, if p
is odd, it determines 𝑓 𝑗 up to isometry. For 𝑝 = 2, this is not the case.
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Let N be an integral lattice over Z𝑝 and 𝑙 ∈ Z such that 𝑝𝑙+1𝑁∨ ⊆ 𝑁 . Then 𝐺𝑙+1(𝑁) = 𝐺𝑙+2(𝑁) = 𝑁∨

and 𝐺𝑙 (𝑁) = 𝑝−𝑙𝑁 ∩ 𝑁∨. Using 𝑝𝑁∨ ⊆ 𝑝−𝑙𝑁 , we obtain

𝜌𝑙+1 (𝑁) = 𝑁∨/(𝑝−𝑙𝑁 ∩ 𝑁∨).

Multiplication by 𝑝𝑙 gives the isomorphism

𝜌𝑙+1(𝑁) � 𝑝𝑙𝑁∨/(𝑁 ∩ 𝑝𝑙𝑁∨) � 𝑝𝑙𝐷𝑁 .

Proposition 4.10. Let 𝑁1 ⊥ 𝑁2 ⊆ 𝐿 be a primitive extension of Z𝑝-lattices with corresponding glue

map 𝐷1 ⊇ 𝐻1
𝜙
−→ 𝐻2 ⊆ 𝐷2, where 𝐷𝑖 = 𝑁∨𝑖 /𝑁𝑖 is the discriminant group of 𝑁𝑖 , 𝑖 ∈ {1, 2}. Suppose

that 𝑝𝐿 ⊆ 𝑁1 ⊥ 𝑁2.
Then 𝑝𝑙𝐿∨ ⊆ 𝐿 if and only if the following four conditions are met.

1. 𝑝𝑙+1𝐷𝑖 = 0, that is, 𝑝𝑙+1𝑁∨𝑖 ⊆ 𝑁𝑖 ,
2. 𝑝𝑙𝐷𝑖 ⊆ 𝐻𝑖 ,
3. 𝜙(𝑝𝑙𝐷1) = 𝑝𝑙𝐷2,
4. 𝜙 : 𝜌𝑙+1 (𝑁1) � 𝑝𝑙𝐷1 → 𝑝𝑙𝐷2 � 𝜌𝑙+1(𝑁𝑖) is an anti-isometry with respect to the bilinear forms 𝑏𝑙+1.

If moreover both 𝜌𝑙+1(𝑁𝑖) are free, then 𝜌𝑙 (𝐿) is even if and only if

(4’) 𝜙 is an anti-isometry with respect to the quadratic forms 𝑞𝑙+1.

Proof. Suppose that 𝑝𝑙𝐿∨ ⊆ 𝐿. We prove (1)–(4).
Let 𝑖 ∈ {1, 2}. By the assumptions,

𝑝𝑙+1𝐿∨ ⊆ 𝑝𝐿 ⊆ 𝑁1 ⊥ 𝑁2.

Since the extension is primitive, the orthogonal projection 𝜋𝑖 : 𝐿∨ → 𝑁∨𝑖 is surjective. Applying 𝜋𝑖 to
the chain of inclusions yields

𝑝𝑙+1𝑁∨𝑖 ⊆ 𝑝𝜋𝑖 (𝐿) ⊆ 𝑁𝑖

which proves (1).
For (2), consider the inclusion 𝑝𝑙𝐿∨ ⊆ 𝐿. A projection yields 𝑝𝑙𝑁∨𝑖 ⊆ 𝜋𝑖 (𝐿). Now (2) follows with

𝐷𝑖 = 𝑁∨𝑖 /𝑁𝑖 and 𝐻𝑖 = 𝜋𝑖 (𝐿)/𝑁𝑖 .
(3) We have 𝜋𝑖 (𝑝𝑙𝐿∨) = 𝑝𝑙𝑁∨𝑖 . Recall that the glue map 𝜙 is defined by its graph 𝐿/(𝑁1 ⊥ 𝑁2). Its

subset

𝑝𝑙𝐿∨/((𝑁1 ⊥ 𝑁2) ∩ 𝑝𝑙𝐿∨)

projects onto both 𝑝𝑙𝐷1 and 𝑝𝑙𝐷2. This proves the claim.
(4) Let 𝑖 ∈ 1, 2, 𝑥𝑖 ∈ 𝑁∨1 and 𝑦𝑖 ∈ 𝑁∨2 with 𝜙(𝑥𝑖) = �̄�𝑖 , that is, 𝜙(𝑝𝑙𝑥𝑖 + 𝑁1) = 𝑝𝑙𝑦𝑖 + 𝑁2, that is,

𝑝𝑙 (𝑥𝑖 + 𝑦𝑖) ∈ 𝐿.

In fact, from the proof of (3), we know a little more, namely that 𝑝𝑙 (𝑥𝑖 + 𝑦𝑖) ∈ 𝑝𝑙𝐿∨ so that 𝑥𝑖 + 𝑦𝑖 ∈ 𝐿∨.
This implies that 〈𝑝𝑙 (𝑥1 + 𝑦1), 𝑥2 + 𝑦2〉 ∈ Z𝑝 which results in

𝑏𝑙+1(𝑥1, 𝑥2) ≡ 𝑝𝑙 〈𝑥1, 𝑥2〉 ≡ −𝑝𝑙 〈𝑦1, 𝑦2〉 ≡ −𝑏𝑙+1 ( �̄�1, �̄�2) mod Z𝑝 .

(4’) Suppose furthermore that both 𝜌𝑙+1 (𝑁𝑖) are free and that 𝜌𝑙 (𝐿) is even. Take 𝑥 = 𝑥1 = 𝑥2 ∈ 𝑁∨1
and 𝑦 = 𝑦1 = 𝑦2 ∈ 𝑁∨2 . Then 2𝑙−1〈𝑥 + 𝑦, 𝑥 + 𝑦〉 ∈ Z2 since 𝜌𝑙 (𝐿) is even. Therefore, 2𝑙 〈𝑥, 𝑥〉 ≡ 2𝑙 〈𝑦, 𝑦〉
mod 2Z.

Now, suppose that (1–4) hold for the glue map 𝜙. Let 𝑥 + 𝑦 ∈ 𝐿∨. We have to show that 𝑝𝑙 (𝑥 + 𝑦) ∈ 𝐿.
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Let 𝑤 ∈ 𝑁∨1 , and 𝑧 ∈ 𝑁∨2 with 𝜙(�̄�) = 𝑧. By the definition of 𝜙 and 𝜙, this implies that 𝑝𝑙 (𝑤 + 𝑧) ∈ 𝐿.
Therefore,

𝑏𝑙+1( �̄� − 𝜙(𝑥), 𝑧) = 𝑏𝑙+1( �̄�, 𝑧) − 𝑏𝑙+1(𝜙(𝑥), 𝜙(�̄�))
= 𝑏𝑙+1( �̄�, 𝑧) + 𝑏𝑙+1(𝑥, �̄�)
≡ 𝑝𝑙 〈𝑦, 𝑧〉 + 𝑝𝑙 〈𝑥, 𝑤〉
≡ 〈𝑥 + 𝑦, 𝑝𝑙 (𝑤 + 𝑧)〉
≡ 0 mod Z𝑝 .

Since the bilinear form on 𝜌𝑙+1(𝑁2) is nondegenerate, this shows that 𝜙(𝑥) = �̄�. By the definition of a
glue map, we obtain 𝑝𝑙 (𝑥 + 𝑦) ∈ 𝐿.

Suppose furthermore that (4’) holds, so 𝑝 = 2, 𝜌𝑙+1(𝑁𝑖) is free and 𝜙 preserves the induced quadratic
forms. Let 𝑥 + 𝑦 ∈ 𝐿∨; we have to show that 𝑞𝑙 (𝑥 + 𝑦) ≡ 0 mod Z. Indeed,

2𝑞𝑙 (𝑥 + 𝑦) = 2𝑙 〈𝑥 + 𝑦, 𝑥 + 𝑦〉
≡ 𝑞𝑙+1 (𝑥) + 𝑞𝑙+1 ( �̄�)
≡ 𝑞𝑙+1 (𝑥) + 𝑞𝑙+1 (𝜙(𝑥))
≡ 0 mod 2Z. �

Definition 4.11. We call a glue map admissible if it satisfies Proposition 4.10 (1)–(3) and (4) respectively
(4’).

Example 4.12. In the special case that 𝑙 = 0, we recover the result that the discriminant bilinear forms
of 𝑁1 and 𝑁2 are anti-isometric. And if further L is even, that the discriminant quadratic forms are
anti-isometric.

Definition 4.13. Let p be a prime number and 𝐴, 𝐵, 𝐶 be integral Z-lattices. Let 𝑝−𝑙Z = 𝔰(𝐶∨). We say
that the triple (𝐴, 𝐵, 𝐶) is p-admissible if the following hold:

1. (𝐴 ⊥ 𝐵) ⊗ Z𝑞 � 𝐶 ⊗ Z𝑞 for all primes 𝑞 ≠ 𝑝,
2. det 𝐴 · det 𝐵 = 𝑝2𝑔 det𝐶, where 𝑔 ≤ 𝑙 (𝐷𝐴), (rk 𝐵)/(𝑝 − 1), 𝑙 (𝐷𝐵),
3. 𝔰(𝐴 ⊥ 𝐵) ⊆ 𝔰(𝐶) and 𝑝 𝔰(𝐴∨ ⊥ 𝐵∨) ⊆ 𝔰(𝐶∨)
4. 𝜌𝑙+1 (𝐴 ⊗ Z𝑝) and 𝜌𝑙+1 (𝐵 ⊗ Z𝑝) are anti-isometric as torsion bilinear modules. If further 𝑝 = 2, both

are free and 𝜌𝑙 (𝐶 ⊗ Z2) is even, then they are anti-isometric as torsion quadratic modules,
5. there exist embeddings 𝑝𝐶 ⊗ Z𝑝 ↩→ (𝐴 ⊥ 𝐵) ⊗ Z𝑝 ↩→ 𝐶 ⊗ Z𝑝 ,
6. dim 𝜌𝑙+1(𝐴 ⊗ Z𝑝) ⊕ 𝜌𝑙+1 (𝐵 ⊗ Z𝑝) ≤ dim 𝜌𝑙 (𝐶 ⊗ Z𝑝).

Note that (𝐶, 0, 𝐶) and (0, 𝐶, 𝐶) are p-admissible for all p. We call a triple (A,B, C) of genera of
Z-lattices p-admissible if for any representatives A of A, B of B and C of C the triple (𝐴, 𝐵, 𝐶) is
p-admissible.

Remark 4.14. For the existence of the (not necessarily primitive!) embeddings in (6), there is a necessary
and sufficient criterion found in [66, Theorem 3]. Note that condition (V) in said theorem is wrong. The
correct condition is

(V) 2𝑖 (1 + 4𝜔) → (2𝑖 ⊕ 𝔏𝑖+1)/𝔩 [𝑖 ] .

Thus, being p-admissible is a condition that can be checked easily algorithmically.

Lemma 4.15. Let C be a Z-lattice and 𝑓 ∈ 𝑂 (𝐶) an isometry of order p. Let 𝐴 = kerΦ1( 𝑓 ) and
𝐵 = kerΦ𝑝 ( 𝑓 ). Then (𝐴, 𝐵, 𝐶) is p-admissible.

Proof. Let 𝑝−𝑙Z = 𝔰(𝐶∨). First note that Proposition 4.10 is applicable to 𝐿 = 𝐶 since 𝑝𝑙𝐶∨ ⊆ 𝐶 by
the definition of l.
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(1) From Proposition 4.7, we obtain 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 ⊆ 𝐶. After tensoring with Z𝑞 for 𝑞 ≠ 𝑝, we obtain
(since p is a unit in Z𝑞) that 𝐶 ⊗ Z𝑞 = (𝐴 ⊥ 𝐵) ⊗ Z𝑞 .

(2) This is Proposition 4.7.
(3) 𝐴 ⊥ 𝐵 ⊆ 𝐶 gives 𝔰(𝐴 ⊥ 𝐵) ⊆ 𝔰(𝐶). Dualizing 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 yields 𝑝(𝐴∨ ⊥ 𝐵∨) ⊆ 𝐶∨. Now, take

the scales.
(4) This is Proposition 4.10 (4) and (4’).
(5) We know that 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 ⊆ 𝐶.
(6) Let 𝑥 ∈ 𝐴∨ and 𝑦 ∈ 𝐵∨ with 𝜙(𝑥) = �̄�, that is, 𝑝𝑙 (𝑥 + 𝑦) ∈ 𝐶. By the proof of Proposition

4.10 (4), 𝑥 + 𝑦 ∈ 𝐶∨. Suppose that 𝑥 + 𝑦 is zero in 𝜌𝑙 (𝐶), that is, 𝑥 + 𝑦 ∈ 𝑝−𝑙+1𝐶 ∩ 𝐶∨. Then
𝑝𝑙−1 (𝑥 + 𝑦) ∈ 𝐶 ⊆ 𝑝−1 (𝐴 ⊥ 𝐵), therefore 𝑥 ∈ 𝑝−𝑙𝐴. Thus, 𝑥 = 0 in 𝜌𝑙+1 (𝐴). Similarly, �̄� = 0 in
𝜌𝑙+1(𝐵). This shows that the graph Γ of 𝜙 injects naturally into 𝜌𝑙 (𝐶). Note that 𝑝𝐶 ⊆ 𝐴∨ ⊥ 𝐵∨

gives 𝑝𝐴∨ ⊆ 𝐶∨. Suppose that 𝑥 ≠ 0. Since 𝑏𝑙+1 is nondegenerate, we find 𝑎 ∈ 𝐴∨ with

1/𝑝 = 𝑏𝑙+1 (𝑥, �̄�) ≡ 𝑝𝑙 〈𝑥, 𝑎〉 = 𝑝𝑙−1〈𝑥, 𝑝𝑎〉 ≡ 𝑏𝑙 (𝑥 + 𝑦, 𝑝𝑎) mod Z𝑝 .

This shows that the span of 𝑝𝐴∨ and Γ in 𝜌𝑙 (𝐶) = 𝐶∨/(𝑝−𝑙𝐶 +𝐶∨) is a nondegenerate subspace
of dimension 2 dim 𝜌𝑙+1(𝐴). �

Definition 4.16. Let L be a Z-lattice with 𝑝𝑙+1𝐿∨ ⊆ 𝐿, and let 𝐻 ≤ 𝐷𝐿 with 𝑝𝑙𝐷𝐿 ≤ 𝐻. We denote by
𝑂 (𝐻, 𝜌𝑙 (𝐿)) the set of isometries g of H which preserve 𝑝𝑙𝐷𝐿 and such that the map �̂� induced by g
on 𝜌𝐿 (𝐿) preserves the torsion bilinear (respectively quadratic) form of 𝜌𝑙 (𝐿).

Algorithm 1 AdmissibleTriples
Input: A prime 𝑝 and a Z-lattice 𝐶.
Output: All tuples (A,B) of genera of Z-lattices such that (A,B, C) is 𝑝-admissible with C the genus

of 𝐶 and rkB divisible by 𝑝 − 1.
1: 𝑛← rk𝐶
2: 𝑑 ← det(𝐶)
3: Initialize the empty list 𝐿 = [ ].
4: for 𝑒𝑝 ∈ {𝑟 ∈ Z | 0 ≤ 𝑟 ≤ 𝑛/(𝑝 − 1)} do
5: 𝑟𝑝 ← (𝑝 − 1)𝑒𝑝
6: 𝑟1 ← 𝑛 − 𝑟𝑝
7: 𝑚 ← min{𝑒𝑝, 𝑟1}
8: Form the set

𝐷 =
{
(𝑑1, 𝑑𝑝) ∈ N2 ∃𝑔 | gcd

(
𝑑1, 𝑑𝑝 , 𝑝

𝑚) : 𝑑𝑔2 = 𝑑1𝑑𝑝
}
.

9: for (𝑑1, 𝑑𝑝) ∈ 𝐷 do
10: Form the set L1 consisting of all genera of Z-lattices 𝐴 with

rk 𝐴 = 𝑟1, det 𝐴 = 𝑑1, 𝔰(𝐴) ⊆ 𝔰(𝐶), 𝔰(𝐴∨) ⊆ 𝑝 𝔰(𝐴∨).

11: Form the set L𝑝 consisting of all genera of Z-lattices 𝐵 with

rk 𝐵 = 𝑟𝑝 , det 𝐵 = 𝑑𝑝 , 𝔰(𝐵) ⊆ 𝔰(𝐶), 𝔰(𝐵∨) ⊆ 𝑝 𝔰(𝐶∨).

12: for (A,B) ∈ L1 × L𝑝 do
13: if (A,B, C) is 𝑝-admissible then
14: Append (A,B) to 𝐿.
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15: end if
16: end for
17: end for
18: end for
19: return L

Remark 4.17. Genera of Z-lattices can be described by the Conway–Sloane genus symbol [26, 15 §7].
We have implemented an enumeration of all such genus symbols with a given signature and bounds on
the scales of the Jordan components in SageMath [74] and Hecke/Oscar [31].

4.3. Enumeration of conjugacy classes of isometries.

Let 𝑝 ≠ 𝑞 be prime numbers. In this subsection, we give an algorithm which, for a given genus of
Z-lattices L, computes a complete set of representatives for the isomorphism classes of lattices with
isometry (𝐿, 𝑓 ) of order 𝑝𝑖𝑞 𝑗 such that L is in L.

Let (𝐿, 𝑓 ) be a lattice with isometry. As before, we will drop f from the notation and simply denote it
by L and the corresponding isometry by 𝑓𝐿 . If 𝑁 ≤ 𝐿 is an f -invariant sublattice, we view it as a lattice
with isometry 𝑓𝑁 = 𝑓 |𝑁 .

The data structure we use for lattices with isometry is a triple (𝐿, 𝑓𝐿 , 𝐺𝐿), where 𝐺𝐿 is the image of
𝑈 (𝐿) → 𝑂 (𝐷𝐿) and 𝑈 (𝐿) denotes the centralizer of 𝑓𝐿 in 𝑂 (𝐿).

By abuse of terminology, we call such a triple a lattice with isometry as well. So every algorithm in
this section which returns lattices with isometry actually returns such triples (𝐿, 𝑓𝐿 , 𝐺𝐿) (or at least a
function which is able to compute 𝐺𝐿 when needed). We omit 𝑓𝐿 and 𝐺𝐿 from notation and denote the
triple simply by L.

Definition 4.18. Let A be a lattice with an isometry of finite order m. For a divisor l of m, denote by
𝐻𝑙 the sublattice kerΦ𝑙 ( 𝑓𝐴) viewed as a Hermitian Z[𝜁𝑙]-lattice with 𝜁𝑙 acting as 𝑓𝐴|𝐻𝑙 . Denote by H𝑙

its genus as Hermitian lattice. For a divisor 𝑙 | 𝑚, let 𝐴𝑙 = ker( 𝑓 𝑙𝐴 − 1) and denote by A𝑙 its genus as
Z-lattice. The type of A is the collection (A𝑙 ,H𝑙)𝑙 |𝑚 and will be denoted by 𝑡 (𝐴) = 𝑡 (𝐴, 𝑓𝐴).

Since we can encode a genus in terms of its symbol and can check for equivalence of two given
symbols efficiently, the type is an effectively computable invariant.

Algorithm 2 PrimitiveExtensions
Input: Lattices 𝐴, 𝐵, 𝐶 ′ with isometry such that (𝐴, 𝐵, 𝐶 ′) is 𝑝-admissible and 𝑘 ∈ N.
Output: A set of representatives of the double coset 𝐺𝐵\𝑆/𝐺𝐴, where 𝑆 is the set of all primitive

extensions 𝐴 ⊥ 𝐵 ⊆ 𝐶 with 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 and 𝑡 (𝐶 ′) = 𝑡 (𝐶, 𝑓 𝑘𝐶 ).
1: Initialize the empty list 𝐿 = [ ].
2: Let 𝑔 ∈ N be such that 𝑝2𝑔 det 𝐴 det 𝐵 = det𝐶 ′.
3: Let 𝜇𝐴 (resp. 𝜇𝐵) be the minimal polynomial of 𝑓𝐴 (resp. 𝑓𝐵).
4: 𝑉𝐴← ker 𝜇𝐵 (𝐷 𝑓𝐴 |(𝑝−1𝐴∩𝐴∨)/𝐴)
5: 𝑉𝐵 ← ker 𝜇𝐴(𝐷 𝑓𝐵 |(𝑝−1𝐵∩𝐵∨)/𝐵)
6: Let Gr𝐴 be the set of 𝑓𝐴-stable subspaces of dimension 𝑔 of 𝑉𝐴 containing 𝑝𝑙𝐷𝐴, where 𝑝−𝑙Z =

𝔰(𝐶∨). Define Gr𝐵 analogously. Form the set 𝑅 consisting of anti-isometric pairs (𝐻𝐴, 𝐻𝐵), that
is, (𝐻𝐴, 𝑞𝐴 |𝐻𝐴) � (𝐻𝐵,−𝑞𝐵 |𝐻𝐵), as (𝐻𝐴, 𝐻𝐵) runs through a set of representatives of Gr𝐴/𝐺𝐴

and Gr𝐵/𝐺𝐵, respectively.
7: for (𝐻𝐴, 𝐻𝐵) ∈ 𝑅 do
8: Compute an admissible glue map 𝜓0 : 𝐻𝐴→ 𝐻𝐵; see Definition 4.11.
9: Let 𝑆𝐴 ≤ 𝐺𝐴 (resp. 𝑆𝐵 ≤ 𝐺𝐵) be the stabilizer of 𝐻𝐴 (resp. of 𝐻𝐵).

10: 𝑆
𝜓0
𝐴 ← 𝜓0 Im(𝑆𝐴→ 𝑂 (𝐻𝐵))𝜓−1

0
11: 𝑓

𝜓0
𝐴 ← 𝜓0 ( 𝑓𝐴 |𝐻𝐴)𝜓−1

0
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12: Compute an element 𝑔 ∈ 𝑂 (𝐻𝐵, 𝜌𝑙+1 (𝐵)) such that 𝑔 𝑓
𝜓0
𝐴 𝑔−1 = 𝑓𝐵 |𝐻𝐵. If such an element does

not exist, discard 𝜓0 and continue the for loop in line 7.
13: 𝜓 ← 𝑔 ◦ 𝜓0, 𝑆𝜓𝐴 ← 𝑔𝑆

𝜓0
𝐴 𝑔−1

14: Let 𝑂 (𝐻𝐵, 𝜌𝑙+1 (𝐵), 𝑓𝐵) be the group of isometries of 𝐻𝐵 preserving 𝜌𝑙+1(𝐵) and commuting
with the action of 𝑓𝐵.

15: for 𝑆𝐵ℎ𝑆
𝜓
𝐴 ∈ 𝑆𝐵\𝑂 (𝐻𝐵, 𝜌𝑙+1(𝐵), 𝑓𝐵)/𝑆𝜓𝐴 do

16: Let Γℎ𝜓 be the graph of ℎ𝜓.
17: Define 𝐶 by 𝐶/(𝐴 ⊥ 𝐵) = Γℎ𝜓 .
18: 𝑓𝐶 ← 𝑓𝐴 ⊕ 𝑓𝐵
19: if 𝑡 (𝐶, 𝑓 𝑘𝐶 ) ≠ 𝑡 (𝐶 ′) then
20: Discard 𝐶.
21: end if
22: 𝑆𝐶 ← {(𝑎, 𝑏) ∈ 𝑆𝐴 × 𝑆𝐵 | 𝑏 |𝐻𝐵 ◦ ℎ𝜓 = ℎ𝜓 ◦ 𝑎 |𝐻𝐴}
23: 𝐺𝐶 ← Im(𝑆𝐶 → 𝑂 (𝐷𝐶 ))
24: Append (𝐶, 𝑓𝐶 , 𝐺𝐶 ) to 𝐿.
25: end for
26: end for
27: return L

Lemma 4.19. Algorithm 2 is correct.

Proof. Suppose that 𝐴 ⊥ 𝐵 ⊆ 𝐶 is an equivariant primitive extension with 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵 and
𝑡 (𝐶, 𝑓 𝑝𝐶 ) = 𝑡 (𝐶 ′). Let 𝜙 : 𝐻𝐴 → 𝐻𝐵 be the corresponding glue map. It is admissible by Proposition
4.10. The existence of g in line 2 follows from (𝐴, 𝐵, 𝐶 ′) being p-admissible. Further, 𝑝𝐶 ⊆ 𝐴 ⊥ 𝐵,
gives 𝐻𝐴 ⊆ (𝑝−1𝐴 ∩ 𝐴∨)/𝐴.

Since 𝜙 is equivariant, we get that 𝜇𝐵 (𝐺 𝑓𝐴) vanishes on 𝐻𝐴. Hence, 𝐻𝐴 is a g-dimensional subspace
of the F𝑝-vector space𝑉𝐴. It is stable under 𝑓𝐴. Further, by Proposition 4.10, it contains 𝑝𝑙𝐷𝐴. Similarly,
𝐻𝐵 is preserved by 𝑓𝐵, contains 𝑝𝑙𝐷𝐵 and is contained in 𝑉𝐵. Therefore, (𝐻𝐴, 𝐻𝐵) appears in the for
loop in line 7.

Since (𝐴, 𝐵, 𝐶 ′) is p-admissible, there exists an admissible glue map 𝜓0 : 𝐻𝐴 → 𝐻𝐵. It can be
computed using normal forms of quadratic or bilinear forms over finite fields. The set of admissible
glue maps from 𝐻𝐴 to 𝐻𝐵 is given by 𝑂 (𝐻𝐵, 𝜌𝑙+1 (𝐵))𝜓0. There exists an admissible equivariant glue
map from 𝐻𝐴 to 𝐻𝐵 if and only if we find 𝑔 ∈ 𝑂 (𝐻𝐵, 𝜌𝑙+1 (𝐵)) with

𝑔𝜓0( 𝑓𝐴|𝐻𝐴) = ( 𝑓𝐵 |𝐻𝐵)𝑔𝜓0.

Reordering we find 𝑔𝜓0 ( 𝑓𝐴|𝐻𝐴)𝜓−1
0 𝑔−1 = 𝑓𝐵 |𝐻𝐵. This justifies lines 8 to 12 of the algorithm. So we

continue with 𝜓 an equivariant admissible glue map. Now, the set of equivariant admissible glue maps
is 𝑂 (𝐻𝐵, 𝜌𝑙+1(𝐵), 𝑓𝐵)𝜓. Let ℎ𝜓, ℎ ∈ 𝑂 (𝐻𝐵, 𝜌𝑙+1 (𝐵), 𝑓𝐵) be an equivariant admissible glue map, and
let 𝑎 ∈ 𝑆𝐴 and 𝑏 ∈ 𝑆𝐵. Then

𝑏ℎ𝜓𝑎 = (𝑏 |𝐻𝐵 )ℎ(𝜓𝑎𝜓−1)𝜓 = ℎ′𝜓.

Therefore, 𝑆𝐵ℎ𝜓𝑆𝐴 ↦→ 𝑆𝐵ℎ𝑆
𝜓
𝐴𝜓 defines a bijection of

𝑆𝐵\{equivariant admissible glue maps 𝜓 : 𝐻𝐴→ 𝐻𝐵}/𝑆𝐴

with the double coset

𝑆𝐵\𝑂 (𝐻𝐵, 𝜌𝑙+1(𝐵), 𝑓𝐵)/𝑆𝜓𝐴 .
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Finally, the condition on (𝑎, 𝑏) in the equation for 𝑆𝐶 in line 22 of the algorithm is indeed the one to
preserve 𝐶/(𝐴 ⊥ 𝐵) ≤ 𝐷𝐴⊥𝐵. Thus, 𝑆𝐶 is the stabilizer of 𝐶/(𝐴 ⊥ 𝐵) in 𝐺𝐴 × 𝐺𝐵. �

Remark 4.20. The computation of representatives and their stabilizers in Steps 6 and 9 of Algorithm 2
can be very costly. In Magma [17], based on the algorithms in [63], a specialized method OrbitsOfS-
paces for linear actions on Grassmannians is provided.

Algorithm 3 Representatives
Input: A lattice with isometry 𝐴 such that Φ𝑛 ( 𝑓𝐴) = 0 and an integer 𝑚, or just its type 𝑡 (𝐴).
Output: Representatives of isomorphism classes of lattices with isometry 𝐵 of order 𝑚 ·𝑛 and minimal

polynomial Φ𝑚𝑛 such that 𝑡 (𝐵, 𝑓 𝑚𝐵 ) = 𝑡 (𝐴).

Algorithm 3 relies on an enumeration of genera of Hermitian lattices over maximal orders of number
fields with bounds on the determinant and level. Then for each genus a single representative is computed
[42, Algorithm 3.5.6] and its type is compared with that of A. Finally, Kneser’s neighbor method [42,
§5] is used to compute representatives for the isometry classes of the genus.

Algorithm 4 Split
Input: Two prime numbers 𝑝 ≠ 𝑞, an integer 𝑒 ≥ 0 and a lattice with isometry𝐶 such thatΦ𝑞𝑒 ( 𝑓𝐶 ) = 0.
Output: Representatives of the isomorphism classes of lattices with isometry 𝑀 such that (𝑀, 𝑓 𝑝𝑀 ) is

of the same type as 𝐶.
1: Initialize an empty list 𝐿 = [ ].
2: for (A0,B0) ∈ AdmissibleTriples(𝑝, 𝐶) do
3: 𝑅1 ← Representatives(𝐴0, id𝐴0 , 𝑞𝑒), where 𝐴0 is any representative of A0
4: 𝑅2 ← Representatives(𝐵0, id𝐵0 , 𝑝𝑞𝑒), where 𝐵0 is any representative of B0
5: for (𝐴, 𝐵) ∈ 𝑅1 × 𝑅2 do
6: 𝐸 ← PrimitiveExtensions(𝐴, 𝐵, 𝐶, 𝑝, 𝑝)
7: Append the elements of 𝐸 to 𝐿.
8: end for
9: end for

10: return L

Lemma 4.21. Algorithm 4 is correct.

Proof. Let M be a lattice with isometry such that (𝑀, 𝑓 𝑝𝑀 ) is of the same type as C. Then the minimal
polynomial of 𝑓𝑀 is a divisor of Φ𝑝𝑞𝑒Φ𝑞𝑒 . Let 𝑀𝑝𝑑𝑞 = kerΦ𝑝𝑞𝑒 ( 𝑓𝑀 ) and 𝑀𝑝𝑑 = kerΦ𝑞𝑒 ( 𝑓𝑀 ) be the
corresponding sublattices. Then (𝑀𝑝𝑞𝑒 , 𝑀𝑞𝑒 , 𝐶) is p-admissible by Lemma 4.15 applied to 𝑓 𝑞

𝑒

𝑀 . Hence,
their Z-genera appear at some point in the for loop in line 2. Similarly, at some point in the for loop in
line 5, 𝐴 � 𝑀𝑝𝑞𝑒 and 𝐵 � 𝑀𝑞𝑒 as Hermitian lattices. Then some lattice with isometry isomorphic to
M is a member of E by Proposition 2.2.

Conversely, only lattices with isometry (𝑀, 𝑓𝑀 ) with (𝑀, 𝑓 𝑝𝑀 ) of the same type as C are contained in
E. No two pairs (𝐴, 𝐵) in line 5 are isomorphic and for a given pair the extensions computed are mutually
nonisomorphic by the correctness of Algorithm 2. Thus, no two elements of L can be isomorphic. �
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Algorithm 5 FirstP
Input: Two prime numbers 𝑝 ≠ 𝑞, 𝑏 ∈ {0, 1}, an integer 𝑒 ≥ 0 and a lattice with isometry 𝐶 of order 𝑞𝑒.
Output: Representatives of the isomorphism classes of lattices with isometry 𝑀 such that (𝑀, 𝑓 𝑝𝑀 ) is

of the same type as 𝐶. If 𝑏 = 1, return only 𝑀 such that 𝑓𝑀 is of order 𝑝𝑞𝑒.
1: Initialize an empty list 𝐿 = [ ].
2: if 𝑒 = 0 then
3: return Split(𝐶, 𝑝), where in case 𝑏 = 1 we return only those lattices 𝑀 with 𝑓𝑀 of order 𝑝.
4: end if
5: 𝐴0 ← ker(Φ𝑞𝑒 ( 𝑓𝐶 ))
6: 𝐵0 ← ker( 𝑓 𝑞

𝑒−1

𝐶 − 1)
7: A← Split(𝐴0, 𝑝, 𝑑, 𝑞, 𝑒)
8: Let 𝑒′ be defined by 𝑞𝑒

′
= ord( 𝑓𝐵0).

9: B ← FirstP(𝐵0, 𝑝, 𝑞, 𝑒
′, 0)

10: for (𝐴, 𝐵) ∈ A × B do
11: if 𝑏 = 1 and 𝑝 � ord( 𝑓𝐴) and 𝑝 � ord( 𝑓𝐵) then
12: Discard (𝐴, 𝐵) and continue the for loop with the next pair.
13: end if
14: 𝐸 ← PrimitiveExtensions(𝐴, 𝐵, 𝐶, 𝑞, 𝑝)
15: Append the elements of 𝐸 to 𝐿.
16: end for
17: return 𝐿

Lemma 4.22. Algorithm 5 is correct.
Proof. If 𝑒 = 0, then 𝑓𝐶 is the identity. So the call of Algorithm 4 in line 3 is valid and returns the
correct result.

Let 𝑒 ≥ 1 and M be a lattice with isometry such that 𝑡 (𝑀, 𝑓 𝑝𝑀 ) = 𝑡 (𝐶). Then 𝑓 𝑝𝑞
𝑒

𝑀 = 1. Set 𝑓 = 𝑓 𝑝𝑞
𝑒−1

𝑀
which is of order q. We see that 𝐴0 = ker(Φ𝑞 ( 𝑓 )) and 𝐵0 = ker(Φ1( 𝑓 )). Therefore, 𝐴0 ⊥ 𝐵0 ⊆ 𝑀 is a
primitive extension and (𝐴0, 𝐵0, 𝑀) is q-admissible.

Note that Φ𝑞𝑒 ( 𝑓𝐴0) = 0 so the input to Split (Algorithm 4) is valid and A is a transversal of the
classes of lattices A with isometry 𝑓𝐴 such that (𝐴, 𝑓 𝑝𝐴 ) has the same type as 𝐴0. The order of 𝑓𝐵0 is a
divisor of 𝑞𝑒−1. By induction on e, B consists of all lattices B with isometry 𝑓𝐵 such that (𝐵, 𝑓 𝑝𝐵 ) is of
the same type as 𝐵0.

Thus, in line 10 we have (Φ𝑝𝑞𝑒Φ𝑞𝑒 ) ( 𝑓𝐴) = 0 and 𝑓 𝑝𝑞
𝑒−1

𝐵 = 1 (possibly 𝑝 � ord 𝑓𝐵). The condition
in line 11 assures that if 𝑏 = 1, then the order of 𝑓𝐴 ⊕ 𝑓𝐵 is indeed 𝑝𝑞𝑒. Note that (𝐴, 𝐵, 𝐶) in line 10
is indeed q-admissible because (𝐴0, 𝐵0, 𝐶) is. Therefore, the call to PrimitiveExtensions is valid and
returns a transversal of the isomorphism classes of lattices with isometry M with (𝑀, 𝑓 𝑝𝑀 ) of the same
type as C. �

Algorithm 6 PureUp
Input: Two prime numbers 𝑝 ≠ 𝑞, integers 𝑑 > 0, 𝑒 ≥ 0 and a lattice with isometry 𝐶 such that∏𝑒

𝑖=0 Φ𝑝𝑑𝑞𝑖 ( 𝑓𝐶 ) = 0.
Output: Representatives of the isomorphism classes of lattices with isometry 𝑀 such that (𝑀, 𝑓 𝑝𝑀 ) is

of the same type as 𝐶.
1: Initialize an empty list 𝐿
2: if 𝑒 = 0 then
3: return Representatives(𝐶, 𝑝)
4: end if
5: 𝐴0 ← ker(Φ𝑝𝑑𝑞𝑒 ( 𝑓𝐶 ))
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6: 𝐵0 ← 𝐴⊥0
7: Let 𝑒′ be defined by 𝑝𝑑𝑞𝑒

′
= ord( 𝑓𝐵0 ).

8: A← Representatives(𝐴0, 𝑝)
9: B = PureUp(𝐵0, 𝑝, 𝑑, 𝑞, 𝑒

′)
10: for (𝐴, 𝐵) ∈ A × B do
11: 𝐸 ← PrimitiveExtensions(𝐴, 𝐵, 𝐶, 𝑞, 𝑝)
12: Append the elements of 𝐸 to 𝐿.
13: end for
14: return 𝐿

Lemma 4.23. Algorithm 6 is correct.

Proof. If 𝑒 = 0, then Φ𝑝𝑑 ( 𝑓𝐶 ) = 0, so Representatives does the job. Let M be in the output of PureUp.
Since 𝑑 > 0, we have

∏𝑒
𝑖=0 Φ𝑝𝑑+1𝑞𝑖 ( 𝑓𝑀 ) = 0. Therefore, M is a valid input to PureUp and we can

proceed by induction on e. The details are similar to the proof of Algorithm 5. �

Algorithm 7 NextP
Input: Two prime numbers 𝑝 ≠ 𝑞, integers 𝑑, 𝑒 ≥ 0 and a lattice with isometry 𝐶 of order 𝑝𝑑𝑞𝑒.
Output: Representatives of the isomorphism classes of lattices with isometry 𝑀 of order 𝑝𝑑+1𝑞𝑒 such

that (𝑀, 𝑓 𝑝𝑀 ) is of the same type as 𝐶.
1: Initialize an empty list 𝐿
2: if 𝑑 = 0 then
3: return FirstP(𝐶, 𝑝, 𝑞, 𝑒, 1)
4: end if
5: 𝐵0 ← ker( 𝑓 𝑝

𝑑−1𝑞𝑒

𝐶 − 1)
6: 𝐴0 ← 𝐵⊥0 = ker

∏𝑒
𝑖=0 Φ𝑝𝑑𝑞𝑖 ( 𝑓𝐶 )

7: Let 𝑒′ be defined by 𝑝𝑑𝑞𝑒
′
= ord( 𝑓𝐴0).

8: A← PureUp(𝐴0, 𝑝, 𝑑, 𝑞, 𝑒
′)

9: Let 𝑑 ′ and 𝑒′′ be defined by 𝑝𝑑
′
𝑞𝑒
′′
= ord( 𝑓𝐵0 ).

10: B ← NextP(𝐵0, 𝑝, 𝑑
′, 𝑞, 𝑒′′)

11: for (𝐴, 𝐵) ∈ A × B do
12: 𝐸 ← PrimitiveExtensions(𝐴, 𝐵, 𝐶, 𝑝, 𝑝)
13: Append the elements of 𝐸 to 𝐿.
14: end for
15: return 𝐿

Lemma 4.24. Algorithm 7 is correct.

Proof. If 𝑑 = 0, then 𝑓𝐶 has order 𝑞𝑒. Hence, we can call FirstP. For 𝑑 > 0, 𝐴0 is a valid input for
PureUp. The proof proceeds by induction on d since 𝑓𝐵0 has order at most 𝑝𝑑−1𝑞𝑒 �

By calling NextP on a complete set of representatives of the types of lattices with isometry of order
𝑝𝑑𝑞𝑒, we can obtain a complete set of representatives for the isomorphism classes of lattices with
isometry of order 𝑝𝑑+1𝑞𝑒. By iterating this process, we have an algorithm to enumerate representatives
for all isomorphism classes of lattices with isometries of a given order 𝑝𝑑𝑞𝑒.

Remark 4.25. For the application to classifying finite groups of automorphisms of K3 surfaces, we
note the following:

1. We only enumerate those lattices with the correct signatures and discard at each stage the lattices
which are negative definite and contain (−2)-vectors since they do not lead to isometries preserving
the ample cone.
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2. Let G be a finite subgroup of automorphisms of a complex K3 surface. Recall that [𝐺 : 𝐺𝑠] = 𝑛
satisfies 𝜑(𝑛) ≤ 20 and 𝑛 ≠ 60. The integers with 𝜑(𝑛) ≤ 20 and three prime factors are 30, 42 60,
66 with 𝜑(𝑛) = 8, 12, 16, 20. Suppose 𝑛 = 66. Since 𝜑(66) = 20 > 12, we have 𝐺𝑠 = 1. So G is
cyclic and we know by [40] that the pair is unique. We can treat 42 with similar arguments. Finally,
30 is treated by hand with the help of some of the algorithms described above.
The actual computation was carried out using SageMath [74], Pari [67], GAP [32] and Magma [17].

4.4. Computation of the group 𝐺𝐿

The algorithms of the previous section for enumerating isomorphism classes of lattices with isometry
require as input for each lattice with isometry L the group 𝐺𝐿 , which is the image of the natural map
𝑈 (𝐿) → 𝑈 (𝐷𝐿). Recall that we use a recursive approach and for primitive extensions C of lattices
with isometry A and B, the group 𝐺𝐶 can be determined using 𝐺𝐴 and 𝐺𝐵 (see Algorithm 2). It is
therefore sufficient to explain how 𝐺𝐿 can computed for the lattices constructed in Algorithm 3, which
form the base case of the recursive strategy. We therefore consider lattices with isometry L such that
𝑓𝐿 has irreducible minimal polynomial and Z[ 𝑓𝐿] is the maximal order of Q[ 𝑓𝐿]. We distinguish the
following four cases:
1. The lattice L is definite. Then 𝑂 (𝐿) is finite and can be computed using an algorithm of Plesken and

Souvignier [68].
2. The lattice L is indefinite of rank 2 and 𝑓𝐿 = ±1. For this situation, the computation of 𝐺𝐿 will be

explained in the remainder of this section.
3. The lattice L is indefinite of rank ≥ 3 and 𝑓𝐿 = ±1. In this case, Miranda–Morison theory [55, 56]

along with some algorithms by Shimada [72] solve the problem. A short account of this is given in
Section 5.

4. The automorphism satisfies 𝑓𝐿 ≠ ±1. This will be addressed in Section 6, where we extend the
theory of Miranda–Morison to the Hermitian case.
We end this section by describing the computation of𝐺𝐿 in case (2). Therefore, let L be be an indefinite

binary lattice over Z and 𝑉 = 𝐿 ⊗ Q the ambient quadratic space of discriminant 𝑑 ∈ Q×/(Q×)2.
It follows from [30, §5] that we may assume that V is a two-dimensional étale Q-algebra and 𝐿 ⊆ 𝑉

is a Z-lattice of rank 2. More precisely, V is isomorphic to the Clifford algebra 𝐶+, which in turn is
isomorphic to Q(

√
𝑑). The Q-algebra V is a quadratic extension of Q if and only if d is not a square,

which is the case if and only if V is anisotropic. If d is a square, then 𝑉 � Q × Q. If 𝜎 : 𝑉 → 𝑉
denotes the nontrivial automorphism of V as a Q-algebra, then the quadratic form q on V is given by
𝑞(𝑥) = 𝑥𝜎(𝑥) for 𝑥 ∈ 𝑉 . Note that 𝜎 ∈ 𝑂 (𝑉) and det(𝜎) = −1.

Every element 𝑦 ∈ 𝑉 induces an endomorphism 𝜏𝑦 : 𝑉 → 𝑉, 𝑥 ↦→ 𝑦𝑥 of determinant det(𝜏𝑦) =
𝑦𝜎(𝑦) = 𝑞(𝑦). For a subset 𝑋 ⊆ 𝑉 , set 𝑋1 = {𝑥 ∈ 𝑋 | 𝑞(𝑥) = 1}. The proper automorphism group
𝑆𝑂 (𝑉) of V is equal to {𝜏𝑦 | 𝑦 ∈ 𝑉1} and 𝑂 (𝑉) = {𝜏𝑦 , 𝜎𝜏𝑦 | 𝑦 ∈ 𝑉1}. We call two Z-lattices 𝐼, 𝐽 of V
equivalent, if there exists 𝛼 ∈ 𝑉1 such that 𝐼 = 𝛼𝐽. Finally, set

Λ = {𝑥 ∈ 𝑉 | 𝑥𝐿 ⊆ 𝐿},

which is a Z-order of V.
Proposition 4.26. The following hold:
1. We have 𝑆𝑂 (𝐿) = {𝜏𝑦 | 𝑦 ∈ (Λ×)1}.
2. If L is not equivalent to 𝜎(𝐿), then 𝑂 (𝐿) = 𝑆𝑂 (𝐿).
3. If L is equivalent to 𝜎(𝐿), say 𝐿 = 𝛼𝜎(𝐿), then 𝑂 (𝐿) = 〈𝑆𝑂 (𝐿), 𝜎𝜏𝜎 (𝛼) 〉.
Proof. First, note that for 𝑦 ∈ 𝑉 we have 𝜏𝑦 (𝐿) ⊆ 𝐿 if and only if 𝑦 ∈ Λ. This shows part (1).

Any isometry of L extends uniquely to an isometry of V and is—if the determinant is not 1—thus of
the form 𝜎𝜏𝛼 for some 𝛼 ∈ 𝑉 . Hence, 𝐿 = (𝜎𝜏𝛼) (𝐿) = 𝜎(𝛼)𝜎(𝐿), that is, L and 𝜎(𝐿) are equivalent.

https://doi.org/10.1017/fms.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.50


26 S. Brandhorst and T. Hofmann

This shows part (2).
Now, assume that 𝐿 = 𝛼𝜎(𝐿). Then (𝜎𝜏𝜎 (𝛼) ) (𝐿) = 𝐿 and thus 𝜎𝜏𝜎 (𝛼) ∈ 𝑂 (𝐿) \ 𝑆𝑂 (𝐿). If

𝜎𝜏𝜎 (𝛽) ∈ 𝑂 (𝐿) is any nonproper isometry, then 𝜎(𝛽)𝐿 = 𝜎(𝐿) = 𝜎(𝛼)𝐿 and thus 𝜎(𝛽𝛼−1) ∈ (Λ×)1.
This shows part (3) since 𝜎𝜏𝜎 (𝛽) = 𝜎𝜏𝜎 (𝛼)𝜏𝜎 (𝛽𝛼−1) . �

Remark 4.27. We briefly describe how the previous result can be turned into an algorithm for determin-
ing generators of 𝑂 (𝐿) for an indefinite binary lattice. We may assume that the ambient space V is an
étaleQ-algebra of dimension two. The group Λ× is a finitely generated abelian group and generators can
be computed as described in [16, 44]. Given generators of Λ×, determining generators of (Λ×)1 is just
a kernel computation. Finally, testing whether two Z-lattices of V are equivalent can be accomplished
using [16, 52].

5. Quadratic Miranda–Morrison theory

In this section, we review classical Miranda–Morrison theory for even indefinite Z-lattices L of rank
at least 3, as introduced by Miranda and Morrison in [55, 56]. Akyol and Degtyarev [1] incorporated
sign structures to study connected components of the moduli spaces of plane sextics. We follow their
example.

The purpose of this is twofold. First, this allows us to sketch the computation of the image of

𝑂 (𝐿) → 𝑂 (𝐷𝐿)

settling case (3) in Section 4.4. Second by incorporating the action on the sign structure, we obtain a
way to compute the image of

𝑂+(𝐿) → 𝑂 (𝐷𝐿)

which yields the number of connected components of the moduli space F𝐻 (see Proposition 3.14 and
Remark 3.16).

We denote by A the ring of finite adeles and by ZA the ring of finite integral adeles. For a ring R, set
Γ𝑅 = {±1} × 𝑅×/(𝑅×)2. We define 𝑂♯ (𝐿 ⊗ 𝑅) as the kernel of 𝑂 (𝐿 ⊗ 𝑅) → 𝑂 (𝐷𝐿 ⊗ 𝑅). We note that
ΓQ has a natural diagonal embedding into ΓA and 𝐷𝐿 � 𝐷𝐿 ⊗ ZA � 𝐷𝐿⊗ZA naturally.

The homomorphisms

𝜎𝑝 : 𝑂 (𝐿 ⊗ Q𝑝) → ΓQ𝑝 , 𝑔 ↦→ (det(𝑔), spin(𝑔))

induce a homomorphism

𝜎 : 𝑂 (𝐿 ⊗ A) → ΓA.

LetΣ♯ (𝐿⊗Z𝑝) be the image of𝑂♯ (𝐿⊗Z𝑝) under 𝜎𝑝 . We setΣ(𝐿) = 𝜎(𝑂 (𝐿⊗ZA)) =
∏

𝑝 Σ(𝐿⊗Z𝑝) and
Σ♯ (𝐿) = 𝜎(𝑂♯ (𝐿⊗ZA)) =

∏
𝑝 Σ

♯ (𝐿⊗Z𝑝). By [54, VII 12.11], we haveΣ(𝐿⊗Z𝑝) = Σ♯ (𝐿⊗Z𝑝) = ΓZ𝑝
whenever 𝐿 ⊗ Z𝑝 is unimodular. By [54, IV.2.14 and IV.5.9], the natural map 𝑂 (𝐿 ⊗ A) → 𝑂 (𝐷𝐿) is
surjective. The following commutative diagram with exact rows and columns summarizes the situation
(where by abuse of notation we denote restriction of 𝜎 by 𝜎 as well).
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1 𝑂♯ (𝐿 ⊗ ZA) 𝑂 (𝐿 ⊗ ZA) 𝑂 (𝐷𝐿) 1

1 Σ♯ (𝐿) Σ(𝐿) Σ(𝐿)/Σ♯ (𝐿) 1

1 1 1

𝜎

If V is an indefinite Q-lattice of rank ≥ 3, then the restriction 𝑂 (𝑉) → ΓQ of 𝜎 is surjective by [54,
VIII 3.1].

Theorem 5.1 [54, VIII 5.1]. Let L be an indefinite Z-lattice of rank at least 3. Then we have the following
exact sequence

1→ 𝑂♯ (𝐿) → 𝑂 (𝐿) → 𝑂 (𝐷𝐿)
�̄�−→ Σ(𝐿)/(Σ♯ (𝐿) · (ΓQ ∩ Σ(𝐿))) → 1.

We need an analogous sequence with 𝑂 (𝐿) replaced by 𝑂+(𝐿) to compute connected components
of the coarse moduli space of H-markable K3 surfaces. Define Γ+

Q
as the kernel of ΓQ → {±1},

(𝑑, 𝑠) ↦→ sign(𝑑𝑠). Then for any indefiniteQ-lattice V of rank≥ 3 the homomorphism 𝜎+ : 𝑂+(𝑉) → Γ+
Q

is surjective.

Theorem 5.2. Let L be an indefinite Z-lattice of rank at least 3. Then we have the following exact
sequence

𝑂+(𝐿) 𝐷+−−→ 𝑂 (𝐷𝐿)
�̄�+−−→ Σ(𝐿)/(Σ♯ (𝐿) · (Γ+Q ∩ Σ(𝐿))) → 1.

Proof. We prove ker �̄�+ ⊆ Im 𝐷+: Let �̄� ∈ 𝑂 (𝐷𝐿), and suppose that �̄�+(�̄�) = 1. This means that �̄� lifts
to an element 𝑔 ∈ 𝑂 (𝐿 ⊗ ZA) with 𝐷𝑔 = �̄� and 𝜎(𝑔) ∈ Σ♯ (𝐿) · (Γ+

Q
∩ Σ(𝐿)). After multiplying g with

an element in 𝑂♯ (𝐿 ⊗ ZA), we may assume that

𝜎(𝑔) ∈ Γ+Q ∩ Σ(𝐿).

Hence, there exists an element ℎ ∈ 𝑂 (𝐿 ⊗ Q) with 𝜎(ℎ) = 𝜎(𝑔).
Since 𝜎(ℎ−1𝑔) = 1 and ℎ−1𝑔(𝐿 ⊗ Z𝑝) = 𝐿 ⊗ Z𝑝 for all but finitely many primes, we can use the

strong approximation theorem (see, e.g.,[42, 5.1.3], [45]) to get 𝑓 ∈ 𝑂 (𝐿 ⊗ Q) with 𝜎( 𝑓 ) = 1 and
𝑓 (𝐿 ⊗ Z𝑝) = ℎ−1𝑔(𝐿 ⊗ Z𝑝) at all primes and approximating ℎ−1𝑔 at the finitely many primes dividing
the discriminant. This yields (once the approximation is good enough) 𝐷 𝑓 = 𝐷ℎ−1𝑔 (cf [54, VIII 2.2]).

By construction, ℎ 𝑓 ∈ 𝑂 (𝐿 ⊗ Q) preserves L and

𝐷ℎ 𝑓 = 𝐷ℎ ◦ 𝐷 𝑓 = 𝐷ℎ ◦ 𝐷ℎ−1𝑔 = 𝐷𝑔

as desired. We have 𝜎(ℎ 𝑓 ) = 𝜎(ℎ) ∈ Γ+
Q

. So ℎ 𝑓 ∈ 𝑂+(𝐿).
We prove ker �̄�+ ⊇ Im 𝐷+: Let 𝑔 ∈ 𝑂+(𝐿). Then 𝜎(𝑔) ∈ Γ+

Q
and since 𝑂 (𝐿) ⊆ 𝑂 (𝐿 ⊗ ZA) we have

𝜎(𝑔) ∈ Σ(𝐿) as well. �

The group Σ(𝐿) appearing in Theorems 5.1 and 5.2 is infinite and infinitely generated. However its
quotient by Σ♯ (𝐿) is a finite group. We explain how to write it in terms of finite groups only so that it
may be represented in a computer. Let T be the set of primes with Σ♯ (𝐿 ⊗ Z𝑝) = Σ(𝐿 ⊗ Z𝑝) = ΓZ𝑝 and
S its complement. We know that S is contained in the set of primes dividing det 𝐿. We can project the
quotient Σ(𝐿)/Σ♯ (𝐿) isomorphically to a subquotient of the finite group Γ′𝑆 =

∏
𝑝∈𝑆 ΓQ𝑝 and are thus

reduced to a finite computation.
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Indeed, denote by 𝜋𝑆 : ΓA → Γ′𝑆 the natural projection. Set

Σ𝑆 (𝐿) = 𝜋𝑆 (Σ(𝐿)), Σ♯𝑆 (𝐿) = 𝜋𝑆 (Σ♯ (𝐿)), Γ𝑇 =
∏
𝑝∈𝑇

ΓZ𝑝 ,

Γ𝑆 = 𝜋𝑆 (ΓQ ∩ Γ𝑇 × Γ′𝑆) Γ+𝑆 = 𝜋𝑆 (Γ+Q ∩ Γ𝑇 × Γ′𝑆).

Γ+𝑆 is spanned by the images of {(1, 𝑝) | 𝑝 ∈ 𝑆} ∪ {(−1,−1)} ⊆ Γ+
Q
⊆ ΓA under 𝜋𝑆 . Since ΓQ/Γ+Q is

spanned by (−1, 1), Γ𝑆 is spanned by the generators of Γ+𝑆 together with 𝜋𝑆 ((−1, 1)).

Proposition 5.3. The projection 𝜋𝑆 induces isomorphisms

Σ(𝐿)/(Σ♯ (𝐿) · (Γ+Q ∩ Σ(𝐿))) � Σ𝑆 (𝐿)/(Σ♯𝑆 (𝐿) · (Γ
+
𝑆 ∩ Σ𝑆 (𝐿)))

and

Σ(𝐿)/(Σ♯ (𝐿) · (ΓQ ∩ Σ(𝐿))) � Σ𝑆 (𝐿)/(Σ♯𝑆 (𝐿) · (Γ𝑆 ∩ Σ𝑆 (𝐿))).

Proof. Note that 𝜋𝑆 (Γ+Q ∩ Σ(𝐿)) = Γ+𝑆 ∩ Σ𝑆 (𝐿). Therefore

𝐾 := 𝜋−1
𝑆 (Σ

♯
𝑆 (𝐿) · (Γ

+
𝑆 ∩ Σ𝑆 (𝐿))) = Σ♯ (𝐿) · (Γ+Q ∩ Σ(𝐿)).

Hence, the surjection

𝜓 : Σ(𝐿) → Σ𝑆 (𝐿)/(Σ♯𝑆 (𝐿) · (Γ
+
𝑆 ∩ Σ𝑆 (𝐿)))

induced by 𝜋𝑆 has kernel K. We conclude by applying the homomorphism theorem to 𝜓. To prove the
second isomorphism remove the +. �

The groups Σ𝑆 (𝐿) and Σ♯𝑆 (𝐿) are found in the tables in [54, VII] in terms of the discriminant form
of L and its signature pair.

Proposition 5.4. Let L be an indefinite Z-lattice of rank at least 3 and J a subgroup of the image of
the natural map 𝐷 : 𝑂 (𝐿) → 𝑂 (𝐷𝐿). Set 𝐽+ = 𝐷 (𝑂+(𝐿)) ∩ 𝐽 and let 𝐾 = ker 𝐷 = 𝑂♯ (𝐿). Then
[𝐽 : 𝐽+] = |𝜎+(𝐽) | and

[𝐾 : 𝐾+] = [ΓQ ∩ Σ♯ (𝐿) : Γ+
Q
∩ Σ♯ (𝐿)] = [Γ𝑆 ∩ Σ♯𝑆 (𝐿) : Γ+𝑆 ∩ Σ♯𝑆 (𝐿)] .

Proof. We have 𝐽+ = ker( ¯̄𝜎+) ∩ 𝐽 = ker(�̄�+|𝐽 ). Therefore, 𝐽/𝐽+ � 𝜎+(𝐽).
The strong approximation theorem implies the equality 𝜎(𝑂♯ (𝐿)) = Σ♯ (𝐿) ∩ ΓQ and that

𝜎(𝑂♯ (𝐿)+) = Σ♯ (𝐿) ∩ ΓQ. �

Remark 5.5. The theorems allow us to compute the image of 𝑂 (𝐿) → 𝑂 (𝐷𝐿) for L an indefinite
Z-lattice of rank at least 3. Namely, one computes generators of 𝑂 (𝐷𝐿) and lifts them p-adically to
elements of 𝐿 ⊗ Z𝑝 with sufficient precision. Then one can use these lifts to compute their spinor norm.
See the work of Shimada [72] for further details. An algorithm for p-adic lifting and generators for
𝑂 (𝐷𝐿) are given in [23].

6. Hermitian Miranda–Morrison theory

Let L be a lattice with isometry with irreducible minimal polynomial. In this section, we use the transfer
construction to compute the image of 𝑈 (𝐿) → 𝐷 (𝐷𝐿), thus settling case (4) of Section 4.4. To this end,
we develop the analogue of Miranda–Morrison theory for Hermitian lattices over the ring of integers of
a number field.
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6.1. Preliminaries on Hermitian lattices

In this section, we recall some basics on Hermitian lattices over the ring of integers of a number field or
a local field. See [42] for an overview of the theory.

Let K be a finite extension of 𝐹 = Q (global case) or 𝐹 = Q𝑝 (local case) and E an étale K-algebra
of dimension 2. Let O be the maximal order of E and O be the maximal order of K.

Definition 6.1. For E an étale K-algebra, we denote by Tr𝐸𝐾 : 𝐸 → 𝐾 the trace and by 𝔇−1
𝐸/𝐾 = {𝑥 ∈ 𝐸 |

Tr𝐸𝐾 (𝑥O) ⊆ O} the inverse of the different.

In the local case, we let 𝔓 ⊆ O be the largest ideal invariant under the involution of 𝐸/𝐾 and 𝔭 the
maximal ideal of O. Define e by 𝔓𝑒 = 𝔇𝐸/𝐾 and a by 𝔓𝑎 = 𝔇𝐸/𝐹 .

Definition 6.2. Let (𝐿, ℎ) be a Hermitian O-lattice. Its scale is the ideal 𝔰(𝐿) = ℎ(𝐿, 𝐿) ⊆ O, and its
norm is the ideal 𝔫(𝐿) =

∑
{ℎ(𝑥, 𝑥)O | 𝑥 ∈ 𝐿} ⊆ O.

It is known that

𝔇𝐸/𝐾 𝔰(𝐿) ⊆ 𝔫(𝐿) ⊆ 𝔰(𝐿). (6.1)

6.2. The trace lattice

In this subsection, (𝐿, ℎ) is a Hermitian O-lattice. By transfer, we obtain its trace Z𝐹 -lattice (𝐿, 𝑏)
with 𝑏 = Tr𝐸𝐹 ◦ℎ. Our primary interest is in even Z-lattices. So our next goal is to give necessary and
sufficient conditions for the trace lattice to be integral and even.

The Hermitian dual lattice is

𝐿♯ = {𝑥 ∈ 𝐿 ⊗ 𝐸 | ℎ(𝑥, 𝐿) ⊆ O}

and 𝐿∨ = (𝐿, 𝑏)∨ is the dual lattice with respect to the trace form.

Proposition 6.3. We have

𝐿∨ = 𝔇−1
𝐸/𝐹 𝐿♯ .

The trace form on L is integral if and only if 𝔰(𝐿)𝔇𝐸/𝐹 ⊆ O.

The proof is left to the reader. We continue by determining the parity of the trace lattice. To this end,
we first establish that the transfer construction behaves well with respect to completions, as expected.

For a place 𝜈 of K, we use the following notation: For an O-module M denote by 𝑀𝜈 = 𝑀 ⊗ O𝜈 the
completion of M at 𝜈 and similar for K-vector spaces.

Proposition 6.4. Let 𝐹 = Q, 𝐸/𝐾 a degree two extension of number fields and p a prime number. Then

(𝐿, Tr𝐸
Q ◦ℎ) ⊗ Z𝑝 =⊥

𝜈 |𝑝
(𝐿𝜈 , Tr𝐸𝜈

Q𝑝
◦ℎ𝜈), (6.2)

where 𝜈 runs over all places extending the p-adic place of Q.

Proof. To this end, consider the canonical isomorphism 𝐾 ⊗ Q𝑝 �
∏

𝜈 |𝑝 𝐾𝜈 , where the product runs
over the prolongations of the p-adic valuation to K. By [71, Chap. II, §3, Prop. 4], this induces a canonical
isomorphism

O ⊗ Z𝑝 �
∏
𝜈 |𝑝

O𝜈 ,
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where O𝜈 is the maximal order of 𝐾𝜈 . We obtain a corresponding canonical decomposition (using a
system of primitive idempotents)

(𝐿, ℎ) ⊗ Z𝑝 =⊥
𝜈 |𝑝
(𝐿𝜈 , ℎ𝜈), (6.3)

where each summand is a Hermitian O𝜈-lattice. Note that O𝜈 is indeed the maximal order of 𝐸𝜈 . The
decomposition 𝐸 ⊗Q𝑝 �

∏
𝜈 |𝑝 𝐸𝜈 and viewing Tr as the trace of the left multiplication endomorphism

shows that

Tr𝐸⊗Q𝑝

Q𝑝
=
∑
𝜈 |𝑝

Tr𝐸𝜈

Q𝑝
.

Therefore, the trace commutes with the decomposition in eq. (6.3). �

Lemma 6.5. Let K be a non-Archimedian dyadic local field of characteristic 0. Assume that 𝐵 ⊆ O is a
Z-module such that Tr𝐸𝐾 (O) ⊆ 𝐵, 1 ∈ 𝐵 and N𝐸

𝐾 (O)𝐵 ⊆ 𝐵. Then O ⊆ 𝐵.

Proof. If 𝐸/𝐾 is split or unramified, then Tr𝐸𝐾 (O) = O. So let 𝐸/𝐾 be ramified. By [38, §6], there exists
𝑢0 ∈ 𝐾 such that O× = N𝐸

𝐾 (O×) ∪ (1 + 𝑢0)𝑁𝐸
𝐾 (O×) and 𝑢0O = 𝔭𝑒−1. Since 𝔭𝑒−1 ⊆ 𝔭 �

𝑒
2 � = Tr𝐸𝐾 (O) by

[71, Ch. V,§3, Lemma 3], we have (1 + 𝑢0)N𝐸
𝐾 (O×) ⊆ 𝐵. Thus, O× ⊆ 𝐵 and therefore N𝐸

𝐾 (O)O× ⊆ 𝐵.
As 𝐸/𝐾 is ramified it follows that O = N𝐸

𝐾 (O)O×. �

The following proof is inspired by [39, 3.1.9].

Proposition 6.6. Let K be a non-Archimedian local field of characteristic 0 and (𝐿, ℎ) a Hermitian
O-lattice. The trace form Tr𝐸𝐹 ◦ℎ is even if and only if 𝔫(𝐿) ⊆ 𝔇−1

𝐾/𝐹 .

Proof. Suppose that 𝔫(𝐿) ⊆ 𝔇−1
𝐾/𝐹 . We have

Tr𝐸𝐹 (ℎ(𝑥, 𝑥)) = 2 Tr𝐾𝐹 (ℎ(𝑥, 𝑥)) ∈ 2 Tr𝐾𝐹 (𝔫(𝐿)) ⊆ 2 Tr𝐾𝐹 (𝔇
−1
𝐾/𝐹 ) = 2Z𝐹 .

Now, suppose that the trace form is even. In particular, it is integral. We may assume that 𝐹 = Q2 is
dyadic. Let B be the set of all 𝜔 ∈ 𝐾 such that Tr𝐸𝐹 (𝜔ℎ(𝑥, 𝑥)) ⊆ 2Z2 for all 𝑥 ∈ 𝐿. Then 𝜆�̄�𝜔ℎ(𝑥, 𝑥) =
𝜔ℎ(𝜆𝑥, 𝜆𝑥) for 𝜆 ∈ O gives N(O)𝐵 ⊆ 𝐵 and 1 ∈ 𝐵. We calculate

Tr𝐸𝐹 ((𝜆 + �̄�)ℎ(𝑥, 𝑥)) = Tr𝐸𝐹 (𝜆ℎ(𝑥, 𝑥)) + Tr𝐸𝐹 (𝜆ℎ(𝑥, 𝑥)) = 2 Tr𝐸𝐹 (ℎ(𝜆𝑥, 𝑥)) ∈ 2Z2

for all 𝜆 ∈ O. This gives Tr𝐸𝐾 (O) ⊆ 𝐵. By Lemma 6.5 O ⊆ 𝐵. Therefore, Tr𝐾𝐹 (Oℎ(𝑥, 𝑥)) ⊆ Z2 which
means ℎ(𝑥, 𝑥) ∈ 𝔇−1

𝐾/𝐹 . �

We show that the same result holds in the global setting.

Corollary 6.7. Let 𝐹 = Q and 𝐸/𝐾 a degree two extension of number fields. Let (𝐿, ℎ) be a Hermitian
O-lattice. The trace form Tr𝐸𝐹 ◦ℎ is even if and only if 𝔫(𝐿) ⊆ 𝔇−1

𝐾/𝐹 .

Proof. We use Proposition 6.4 and note that the orthogonal sum is even if and only if each summand
is even. We apply Proposition 6.6 to each summand and obtain the condition that 𝔫(𝐿𝜈) ⊆ 𝔇𝐾𝜈

Q2
for all

𝜈 | 2. We conclude with 𝜈(𝔫(𝐿)) = 𝜈(𝔫(𝐿𝜈)). �

Note that even implies integral and similarly 𝔇𝐸/𝐾 𝔰(𝐿) ⊆ 𝔫(𝐿)O ⊆ 𝔇−1
𝐾/𝐹O implies that 𝔰(𝐿) ⊆

𝔇−1
𝐸/𝐹 which matches up perfectly with Proposition 6.3 and Corollary 6.7.
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6.3. Discriminant form and transfer

Suppose that 𝐿 ⊆ 𝐿∨ := 𝔇−1
𝐸/𝐹 𝐿♯. Define a torsion Hermitian form on 𝐷𝐿 = 𝐿∨/𝐿 as follows

ℎ̄ : 𝐷𝐿 × 𝐷𝐿 → 𝐸/𝔇−1
𝐸/𝐹 , ([𝑥], [𝑦]) ↦→ [ℎ(𝑥, 𝑦)] .

Suppose further that 𝔫(𝐿) ⊆ 𝔇−1
𝐾/𝐹 , that is, the trace form on L is even. Then we define the torsion

quadratic form

𝑞 : 𝐷𝐿 → 𝐾/𝔇−1
𝐾/𝐹 , [𝑥] ↦→ [ℎ(𝑥, 𝑥)] .

Note that Tr𝐸𝐾 (𝔇−1
𝐸/𝐹 ) = 𝔇−1

𝐾/𝐹 . For a lattice L with even trace form, we set 𝑈 (𝐷𝐿) to be the group of
O-linear automorphisms of 𝐷𝐿 preserving 𝑞.

Proposition 6.8. Let (𝐿, ℎ) be a Hermitian O-lattice with even trace form and 𝑔 ∈ 𝑈 (𝐷𝐿). Then g
preserves ℎ̄.

Proof. For 𝑥 ∈ 𝐿∨, let 𝑔𝑥 denote a representative of 𝑔(𝑥 + 𝐿). Let 𝑥, 𝑦 ∈ 𝐿∨. Then

Tr𝐸𝐾 ℎ(𝑥, 𝑦) = ℎ(𝑥 + 𝑦, 𝑥 + 𝑦) − ℎ(𝑥, 𝑥) − ℎ(𝑦, 𝑦).

Set 𝛿(𝑥, 𝑦) = ℎ(𝑥, 𝑦) − ℎ(𝑔𝑥, 𝑔𝑦). We have to prove that 𝛿(𝑥, 𝑦) ∈ 𝔇−1
𝐸/𝐹 . Since g preserves 𝑞,

Tr𝐸𝐾 (𝛿(𝑥, 𝑦)) ∈ 𝔇
−1
𝐾/𝐹 = Tr𝐸𝐾 (𝔇

−1
𝐸/𝐹 ).

By the O-linearity of g, we have 𝛼𝑔𝑥 − 𝑔𝛼𝑥 ∈ 𝐿 for all 𝛼 ∈ O. Therefore, using 𝐿∨ = 𝔇−1
𝐸/𝐹 𝐿♯, we have

for any 𝛼 ∈ O that 𝛼𝛿(𝑥, 𝑦) ≡ 𝛿(𝛼𝑥, 𝑦) mod 𝔇−1
𝐸/𝐹 . Hence,

Tr𝐸𝐾 (O𝛿(𝑥, 𝑦)) ⊆ 𝔇−1
𝐾/𝐹 .

This means that 𝛿(𝑥, 𝑦) ∈ 𝔇−1
𝐾/𝐹𝔇

−1
𝐸/𝐾 = 𝔇−1

𝐸/𝐹 . �

Recall that for an even lattice with isometry (𝐿, 𝑏, 𝑓 ) we have defined 𝑈 (𝐷𝐿) as the centralizer of
𝐷 𝑓 in 𝑂 (𝐷𝐿). By the transfer construction in Section 4.1, we may view L as a Hermitian lattice as well.
The following proposition reconciles the two definitions of 𝑈 (𝐷𝐿).

Proposition 6.9. Let (𝐿, 𝑏, 𝑓 ) be an even lattice with isometry with irreducible minimal polynomial
and (𝐿, ℎ) the corresponding Hermitian Z[ 𝑓 ]-lattice. Let 𝐸 � Q[ 𝑓 ], 𝐾 � Q[ 𝑓 + 𝑓 −1] and O be the
maximal order of E. Suppose that (𝐿, ℎ) is invariant under O, that is, (𝐿, ℎ) is a Hermitian O-lattice
(this is true if Z[ 𝑓 ] = O). Then 𝑈 (𝐷𝐿) is the centralizer of 𝐷 𝑓 in 𝑂 (𝐷𝐿).

Proof. It is clear that 𝑈 (𝐷𝐿) centralizes 𝐷 𝑓 . So let 𝑔 ∈ 𝑂 (𝐷𝐿) centralize 𝐷 𝑓 . This implies that g is
O-linear. It remains to show that g preserves 𝑞. Since 𝐷𝐿 = ⊥𝜈 𝐷𝐿𝜈 and 𝑈 (𝐷𝐿) =

∏
𝜈 𝑈 (𝐷𝐿𝜈 ), we

may assume that K is complete.
For 𝑥 + 𝐿 ∈ 𝐷𝐿 , write 𝑔𝑥 for a representative of 𝑔(𝑥 + 𝐿). Set 𝛿 = ℎ(𝑥, 𝑥) − ℎ(𝑔𝑥, 𝑔𝑥). We have

to show that 𝛿 ∈ Tr𝐸𝐾 (𝔇−1
𝐸/𝐹 ) = 𝔇−1

𝐾/𝐹 . Since g preserves the discriminant form 𝑞 (𝐿,𝑏) , we have
2 Tr𝐾𝐹 (𝛿) = Tr𝐸𝐹 (𝛿) ∈ 2Z𝐹 . Let B be the set of all 𝜔 ∈ O such that Tr𝐾𝐹 (𝜔𝛿) ∈ Z𝐹 . As in the proof of
Proposition 6.6 one sees that N(O)𝐵 ⊆ 𝐵, 1 ∈ 𝐵 and Tr𝐸𝐾 (O) ⊆ 𝐵. Then Lemma 6.5 provides 𝐵 = O.
Thus, Tr𝐾𝐹 (O𝛿) ⊆ Z𝐹 , that is, 𝛿 ∈ 𝔇𝐾/𝐹 . �

Remark 6.10. Proposition 6.9 provides a practical way to compute𝑈 (𝐷𝐿). We can write down a system
of generators for 𝑂 (𝐷𝐿). Then the computation of a centralizer is a standard task in computational group
theory.
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6.4. Local surjectivity of U(L) → U(DL)

In this subsection, we assume that K is a non-Archimedian local field of characteristic 0, 𝜋 a prime
element of O, 𝑝 = 𝜋�̄�, and L a Hermitian O-lattice with 𝔫(𝐿) ⊆ 𝔇−1

𝐾/𝐹 , that is, its trace lattice is even.
Recall that 𝔓 ⊆ O is the largest ideal invariant under the involution of 𝐸/𝐾 , 𝔭 the maximal ideal of O
and the integers 𝑎, 𝑒 satisfy 𝔓𝑒 = 𝔇𝐸/𝐾 and 𝔓𝑎 = 𝔇𝐸/𝐹 .

If 𝐸/𝐾 is a ramified field extension, then by [71, Ch. V,§3, Lemma 3] we have for all 𝑖 ∈ Z that
Tr(𝔓𝑖) = 𝔭 �

𝑖+𝑒
2 � . Therefore, Tr(𝔓1−𝑒) = O and Tr(𝔓2−𝑒) = 𝔭. So there exists 𝜌 ∈ 𝐸 with 𝜌O = 𝔓1−𝑒

and Tr(𝜌) = 1. If 𝐸/𝐾 is an unramified field extension, then we find 𝜌 ∈ O× with Tr(𝜌) = 1. If
𝐸 = 𝐾 × 𝐾 , then we can take 𝜌 = (1, 0) ∈ O × O = O which satisfies Tr(𝜌) = 1 as well.

For a Hermitian matrix 𝐺 ∈ 𝐸𝑛×𝑛, set 𝔰(𝐺) = 𝔰(𝐿) and 𝔫(𝐺) = 𝔫(𝐿), where L is the free O-lattice
with gram matrix G.

Algorithm 8 Hermitian lift
Input: 0 ≤ 𝑙 ∈ Z, 𝜌 ∈ 𝐸 , 𝐺 = �̄�𝑡 ∈ 𝐸𝑛×𝑛, 𝐹 ∈ GL𝑛 (O) such that

◦ Tr𝐸𝐾 (𝜌) = 1,
◦ 𝔰(𝐺−1) ⊆ 𝔓1+𝑎, 𝜌 𝔫(𝐺−1) ⊆ 𝔓1+𝑎,
◦ 𝑅 := 𝐺 − 𝐹𝐺�̄�𝑇 with 𝔰(𝑅) ⊆ 𝔓𝑙−𝑎, 𝜌 𝔫(𝑅) ⊆ 𝔓𝑙−𝑎.

Output: 𝐹 ′ ∈ GL𝑛 (O) such that for 𝑙 ′ = 2𝑙 + 1 and 𝑅′ = 𝐺 − 𝐹 ′𝐺�̄� ′𝑡 the following hold

◦ 𝐹 ′ ≡ 𝐹 mod 𝔓𝑙O𝑛×𝑛𝜋−𝑎𝐺−1 ⊆ 𝔓𝑙+1O𝑛×𝑛,
◦ 𝔰(𝑅′) ⊆ 𝔓𝑙′−𝑎, 𝜌 𝔫(𝑅′) ⊆ 𝔓𝑙′−𝑎.

1: 𝑅 ← 𝐺 − 𝐹𝐺�̄�𝑡

2: Write 𝑅 = 𝑈 + 𝐷 + �̄�𝑡 with 𝑈 upper triangular and 𝐷 diagonal.
3: return 𝐹 + (𝑈 + 𝜌𝐷)�̄�−𝑡𝐺−1

Theorem 6.11. Algorithm 8 is correct.

Proof. With 𝑋 = (𝑈 + 𝜌𝐷)�̄�−𝑡 and 𝐹 ′ = 𝐹 + 𝑋𝐺−1, we calculate

𝐹 ′𝐺�̄� ′𝑡 = 𝐹𝐺�̄�𝑡 +𝑈 + �̄�𝑡 + Tr𝐸𝐾 (𝜌)𝐷 + 𝑋𝐺−1 �̄� 𝑡

= 𝐺 + 𝑋𝐺−1 �̄� 𝑡 .

Hence, 𝑅′ = −𝑋𝐺−1𝑋 𝑡 . Since 𝑅 ≡ 0 mod 𝔰(𝑅), 𝐷 ≡ 0 mod 𝔫(𝑅), we have 𝑈 + 𝜌𝐷 ≡ 0
mod 𝔰(𝑅) + 𝜌 𝔫(𝑅) ⊆ 𝔓𝑙−𝑎, hence 𝑈 + 𝜌𝐷 ≡ 0 mod 𝔓𝑙−𝑎. Together with 𝐹 ∈ GL𝑛 (O) this implies

𝑋 ≡ 0 mod 𝔓𝑙−𝑎 .

Hence,

𝔰(𝑅′) = 𝔰(𝑋𝐺−1𝑋
𝑡 ) ⊆ 𝔓2𝑙−2𝑎 𝔰(𝐺−1) ⊆ 𝔓2𝑙+1−𝑎

and

𝜌 𝔫(𝑅′) = 𝔓2𝑙−2𝑎𝜌 𝔫(𝐺−1) ⊆ 𝔓2𝑙+1−𝑎 = 𝔓2𝑙+1−𝑎 .

It remains to show that 𝐹 ′ ∈ GL𝑛 (O). Since 𝔰(𝐺−1) ⊆ 𝔓1+𝑎, we have 𝔓𝑙O𝑛×𝑛𝜋−𝑎𝐺−1 ⊆ 𝔓𝑙+1O𝑛×𝑛.
Therefore, 𝐹 ≡ 𝐹 ′ mod 𝔓𝑙+1. �

Theorem 6.12. Let K be a non-Archimedian local field of characteristic 0 and L a Hermitian O-lattice
with even trace lattice. Then 𝑈 (𝐿) → 𝑈 (𝐷𝐿) is surjective.
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Proof. We take an orthogonal splitting 𝐿 = 𝑀 ⊥ 𝑁 with M being 𝔇−1
𝐸/𝐹 -modular and 𝔰(𝑁) � 𝔇−1

𝐸/𝐹 .
Then 𝔇−1

𝐸/𝐹 𝐿♯/𝐿 � 𝔇−1
𝐸/𝐹𝑁♯/𝑁 . After replacing L with by N, we may and will assume that 𝔰(𝐿) �

𝔇−1
𝐸/𝐹 .
Recall that 𝔓𝑎 = 𝔇𝐸/𝐹 . Identify 𝐿∨ = 𝔇−1

𝐸/𝐹 𝐿♯ with O𝑛 = O1×𝑛 by choosing a basis. Let G be the
respective gram matrix of 𝔇−1

𝐸/𝐹 𝐿♯. We have 𝐿 = O𝑛𝜋−𝑎𝐺−1 and 𝑝−𝑎𝐺−1 is the corresponding Gram
matrix of L. Therefore

𝔰(𝐺−1) ⊆ 𝔓1+𝑎 and 𝔫(𝐺−1) ⊆ 𝔓𝑒+𝑎 .

If 𝐸/𝐾 is unramified or split, then 𝑒 = 0, 𝔰(𝐺−1) = 𝔫(𝐺−1) by eq. (6.1) and we find 𝜌 ∈ O with
Tr(𝜌) = 1. Therefore 𝜌 𝔫(𝐺−1) = 𝜌 𝔰(𝐺−1) ⊆ 𝔰(𝐺−1) ⊆ 𝔓1+𝑎 holds. If 𝐸/𝐾 is ramified, we find 𝜌 ∈ 𝐸
with 𝜌O = 𝔓1−𝑒. Then 𝜌 𝔫(𝐺−1) ⊆ 𝔓1−𝑒+𝑒+𝑎 = 𝔓1+𝑎 as well.

Let 𝑓 ∈ 𝑈 (𝐷𝐿) be represented by 𝐹 ∈ GL𝑛 (O), that is,

𝑓 (𝑥 + 𝐿) = 𝑥𝐹 + 𝐿 = 𝑥𝐹 +O𝑛𝜋−𝑎𝐺−1.

Set 𝑅 = 𝐺 − 𝐹𝐺�̄�𝑡 . Since f preserves ℎ̄ and 𝑞, we have

𝔰(𝑅) ⊆ 𝔓−𝑎 and 𝜌 𝔫(𝑅) ⊆ 𝜌D−1
𝐾/𝐹 ⊆ 𝜌𝔓𝑒−𝑎 ⊆ 𝔓−𝑎,

where in the last equality we used that 𝜌𝔓𝑒 ⊆ O irrespective of 𝐸/𝐾 being inert, split or ramified. Set
𝐹0 = 𝐹. We inductively define a sequence by setting 𝐹𝑖+1 to be the output of Algorithm 8 with 𝑙 = 2𝑖 −1,
𝐹 ← 𝐹𝑖 , 𝐺 ← 𝐺 as given and 𝑅 ← 𝑅𝑖 := 𝐺 − 𝐹𝑖𝐺�̄�𝑡

𝑖 . Then 𝔰(𝑅𝑖) ⊆ 𝔓2𝑖−1−𝑎 and 𝜌 𝔫(𝑅𝑖) ⊆ 𝔓2𝑖−1−𝑎.
Since 𝐹𝑖 ≡ 𝐹𝑖+1 mod 𝔓2𝑖 , the sequence (𝐹𝑖)𝑖∈N converges. Its limit is the desired lift. �

For a Hermitian lattice L with even trace lattice, we denote by 𝑈♯ (𝐿) the kernel of 𝑈 (𝐿) → 𝑈 (𝐷𝐿).

6.5. Local to global

Let 𝐸/𝐾 be a quadratic extension of number fields with nontrivial automorphism ¯ : 𝐸 → 𝐸 . Let O be
the maximal order of K and O the maximal order of E. In this section, L is a Hermitian O-lattice with
even trace lattice. The goal of this subsection is to compute the image of the natural map

𝐷 : 𝑈 (𝐿) → 𝑈 (𝐷𝐿).

Denote by A𝐾 the ring of finite adeles of K. Denote by OA the ring of integral finite adeles of K. We
have natural isomorphisms 𝐷𝐿 � 𝐷𝐿 ⊗ OA � 𝐷𝐿⊗OA . Via the diagonal embedding we view K as a
subring of A𝐾 . This induces the inclusion 𝑈 (𝑉) ⊆ 𝑈 (𝐿 ⊗ A𝐾 ). Let det : 𝑈 (𝐿 ⊗ A𝐾 ) →

∏
𝔭 𝐸𝔭 denote

the componentwise determinant. Set

F (𝐸) = {(𝑥)𝔭 ∈
∏
𝔭

𝐸𝔭 | 𝑥 ∈ 𝐸, 𝑥𝑥 = 1},

F (𝐿𝔭) = det(𝑈 (𝐿𝔭)), F ♯ (𝐿𝔭) = det(𝑈♯ (𝐿𝔭)),
F (𝐿) = det(𝑈 (𝐿 ⊗ OA)), F ♯ (𝐿) = det(𝑈♯ (𝐿 ⊗ OA)).
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Note that 𝑈 (𝐿 ⊗ OA) → 𝑈 (𝐷𝐿) is surjective by Theorem 6.12. The following commutative diagram

1 𝑈♯ (𝐿 ⊗ OA) 𝑈 (𝐿 ⊗ OA) 𝑈 (𝐷𝐿) 1

1 F ♯ (𝐿) F (𝐿) F (𝐿)/F ♯ (𝐿) 1

1 1 1.

det det

with exact rows and columns summarizes the situation.

Proposition 6.13. Let V be a nondegenerate Hermitian space over 𝐸/𝐾 . Then det(𝑈 (𝑉)) = F (𝐸).

Proof. We know det(𝑈 (𝑉)) ⊆ F (𝐸). The other inclusion is clear when dim𝐸 𝑉 is one. Since we can
always split a subspace of dimension one, the statement follows. �

Set OA := O⊗OA. For an isometry 𝑓 : 𝐿 → 𝑀 of Hermitian OA-lattices, we denote by 𝐷 𝑓 = (𝐷 𝑓𝔭 )𝔭
the induced map on the discriminant forms. Let 𝐿 ⊆ 𝐿∨ be a HermitianOA-lattice. Then 𝜎 ∈ 𝑂 (𝐿⊗A𝐾 )
induces an isometry 𝜎 : 𝐿 → 𝜎(𝐿) of OA-lattices and an isometry 𝐷𝜎 : 𝐷𝐿 → 𝐷𝜎 (𝐿) of the respective
discriminant groups.

Proposition 6.14. Let L be an indefinite Hermitian O-lattice with rk(𝐿) ≥ 2. For 𝜎 ∈ 𝑈 (𝐿 ⊗ A𝐾 ), the
following are equivalent:

1. There is a map 𝜑 ∈ 𝑈 (𝐿 ⊗ 𝐾) such that 𝐷𝜑 = 𝐷𝜎 and 𝜑(𝐿 ⊗ OA) = 𝜎(𝐿 ⊗ OA).
2. det(𝜎) ∈ F (𝐸) · F ♯ (𝐿).

Proof. First, suppose that a map 𝜑 as in (1) exists. Since 𝜑(𝐿 ⊗ OA) = 𝜎(𝐿 ⊗ OA) and 𝐷𝜑 = 𝐷𝜎 , we
have 𝜑−1 ◦ 𝜎 ∈ 𝑈♯ (𝐿 ⊗ OA). Thus,

det(𝜎) ∈ F (𝐸) · F ♯ (𝐿).

Now, suppose that det(𝜎) ∈ F (𝐸) · F ♯ (𝐿). Then there exists 𝑢 ∈ F (𝐸) and 𝜌 ∈ 𝑈♯ (𝐿 ⊗ OA)
such that det(𝜎) = 𝑢 det(𝜌). By Proposition 6.13, there exists 𝜓 ∈ 𝑈 (𝐿 ⊗ 𝐾) with det(𝜓) = 𝑢. Let
𝜙 := 𝜓−1◦𝜎◦𝜌−1. Then det(𝜙) = 1. By the strong approximation theorem [45], there exists 𝜂 ∈ 𝑈 (𝐿⊗𝐾)
with 𝜂(𝐿 ⊗ OA) = 𝜙(𝐿 ⊗ OA) and 𝐷𝜂 = 𝐷𝜙 (approximate 𝜙 at the finitely many primes dividing the
discriminant and those with 𝜙𝔭 (𝐿𝔭) ≠ 𝐿𝔭). Set 𝜑 := 𝜓 ◦ 𝜂 ∈ 𝑈 (𝐿 ⊗ 𝐾). Then

𝜑(𝐿 ⊗ OA) = (𝜓 ◦ 𝜂) (𝐿 ⊗ OA) = (𝜓 ◦ 𝜙) (𝐿 ⊗ OA) = (𝜎 ◦ 𝜌−1) (𝐿 ⊗ OA) = 𝜎(𝐿 ⊗ OA).

Further,

𝐷𝜑 = 𝐷𝜓 ◦ 𝐷𝜂 = 𝐷𝜎 ◦ 𝐷−1
𝜌 = 𝐷𝜎

since 𝐷𝜌 is the identity because 𝜌 ∈ 𝑈♯ (𝐿 ⊗ OA). �

Theorem 6.15. Let L be an indefinite Hermitian O-lattice with rk(𝐿) ≥ 2. Then there is an exact
sequence

𝑈 (𝐿) → 𝑈 (𝐷𝐿)
𝛿−→ F (𝐿)/(F (𝐸) ∩ F (𝐿)) · F ♯ (𝐿) → 1,

where 𝛿 is induced by the determinant.
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Proof. Let �̂� ∈ 𝑈 (𝐷𝐿), and lift it to some 𝛾 ∈ 𝑈 (𝐿 ⊗ OA) with 𝐷𝛾 = �̄�. By Proposition 6.14, 𝛾 lies in
𝑈 (𝐿 ⊗ 𝐾) if and only if det(𝛾) ∈ F (𝐸) · F ♯ (𝐿) which is equivalent to

det(𝛾) ∈ (F (𝐸) · F ♯ (𝐿)) ∩ F (𝐿) = (F (𝐸) ∩ F (𝐿)) · F ♯ (𝐿)

and this does not depend on the choice of lift 𝛾 of �̄�. We conclude with the general fact that 𝑈 (𝐿) =
𝑈 (𝐿 ⊗ 𝐾) ∩𝑈 (𝐿 ⊗ OA). �

In order to make Theorem 6.15 effective, we will compute the groups F ♯ (𝐿𝔭) and F (𝐿𝔭) in Section
6.6. See Theorem 6.25 for the exact values.

Remark 6.16. Let S be the set of primes of K dividing the order of 𝐷𝐿 . For practical purposes, we
note that F (𝐿𝔭) = F ♯ (𝐿𝔭) for the primes not in S. Hence, F (𝐿)/F ♯ (𝐿) �

∏
𝔭∈𝑆 F (𝐿𝔭)/F ♯ (𝐿𝔭) and

it is enough to compute 𝛿𝔭 for the primes in S. This can be achieved by lifting �̄� ∈ 𝑈 (𝐷𝐿𝔭 ) to some
𝛾 ∈ 𝑈 (𝐿𝔭) with sufficient precision using Algorithm 8.

6.6. Generation of U♯ (L) by symmetries

Let K be a finite extension of 𝐹 = Q𝑝 and 𝐸/𝐾 a ramified quadratic extension. Let Tr = Tr𝐸𝐾 be the
trace. Recall that 𝔓 ⊆ O is the largest ideal invariant under the involution of 𝐸/𝐾 , 𝔭 the maximal ideal
of O and the integers 𝑎, 𝑒 satisfy 𝔓𝑒 = 𝔇𝐸/𝐾 and 𝔓𝑎 = 𝔇𝐸/𝐹 . Note that as 𝐸/𝐾 is ramified we have
𝑎 ≡ 𝑒 mod 2. Let 𝜋 ∈ O be a prime element and 𝑝 = 𝜋�̄�. For any 𝑣 ≡ 𝑒 mod 2, there exists a skew
element 𝜔 ∈ 𝐸× with 𝜈𝔓(𝜔) = 𝑣.

Let V be a nondegenerate Hermitian space over E. In what follows, L is a full O-lattice in V with
even trace form. Therefore, its scale and norm satisfy

𝔰(𝐿) =: 𝔓𝑖 ⊆ 𝔓−𝑎 and 𝔫(𝐿) =: 𝔭𝑘 ⊆ 𝔇−1
𝐾/𝐹 = 𝔓𝑒−𝑎 .

This gives the inequalities 0 ≤ 𝑖 + 𝑎 and 0 ≤ 2𝑘 + 𝑎 − 𝑒 and by eq. (6.1) 𝑖 ≤ 2𝑘 ≤ 𝑖 + 𝑒. We say that L is
subnormal if 𝔫(𝐿)O � 𝔰(𝐿), that is, 𝑖 < 2𝑘 . A sublattice of rank two is called a plane and a sublattice
of rank one a line. By [37, Propositions 4.3, 4.4], the lattice L decomposes into an orthogonal direct
sum of lines and subnormal planes.

The group 𝑈♯ (𝐿) is the kernel of the natural map

𝑈 (𝐿) → 𝑈 (𝐷𝐿).

For 𝜑 ∈ 𝑈 (𝐿), we have 𝜑 ∈ 𝑈♯ (𝐿) if and only if (𝜑 − id𝐿) (𝐿∨) ⊆ 𝐿. For 𝑥, 𝑦 ∈ 𝐿, we write 𝑥 ≡ 𝑦
mod 𝔓𝑖 if 𝑥 − 𝑦 ∈ 𝔓𝑖𝐿.

We single out the elements of 𝑈 (𝑉) fixing a hyperplane—the symmetries.

Definition 6.17. Let V be a Hermitian space, 𝑠 ∈ 𝑉 and 𝜎 ∈ 𝐸× with ℎ(𝑠, 𝑠) = Tr(𝜎). We call the linear
map

𝑆𝑠,𝜎 : 𝑉 → 𝑉, 𝑥 ↦→ 𝑥 − ℎ(𝑥, )𝑠𝜎−1𝑠

a symmetry of V. It preserves the Hermitian form ℎ(· , ·). If s is isotropic, then we have det(𝑆𝑠,𝜎) = 1 and
otherwise det(𝑆𝑠,𝜎) = −𝜎/𝜎. The inverse is given by 𝑆−1

𝑠,𝜎 = 𝑆𝑠, �̄� . Note that the symmetry 𝑆𝑠,𝜎 of V
preserves L if 𝑠 ∈ 𝐿 and ℎ(𝐿, )𝑠 ⊆ O𝜎. We denote the subgroup of 𝑈 (𝐿) generated by the symmetries
preserving L by 𝑆(𝐿) and set 𝑆♯ (𝐿) = 𝑈♯ (𝐿) ∩ 𝑆(𝐿).

By [22], symmetries generate the unitary group 𝑆(𝐿) = 𝑈 (𝐿) if O/𝔓 ≠ F2. Otherwise, one has to
include so called rescaled Eichler isometries, which are isometries fixing subspaces of codimension 2.
Fortunately, as we will see, symmetries suffice to generate 𝑈♯ (𝐿). The condition that the trace form on
L is even eliminates all the technical difficulties of [22].
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Lemma 6.18. Let 𝜑 ∈ 𝑈♯ (𝐿) and 𝑥 ∈ 𝐿. Then 𝜑(𝑥) − 𝑥 ∈ ℎ(𝑥, 𝐿)𝔓𝑎𝐿.
Proof. For any 𝑥 ∈ 𝐿, the inclusion ℎ(𝑥, 𝐿)−1𝑥 ⊆ 𝐿♯ gives

𝔓−𝑎ℎ(𝑥, 𝐿)−1𝑥 ⊆ 𝔓−𝑎𝐿♯ = 𝐿∨.

Hence, (𝜑(𝑥) − 𝑥)ℎ(𝑥, 𝐿)−1𝔓−𝑎 ⊆ (𝜑 − id𝑉 ) (𝐿∨) ⊆ 𝐿. Multiply by the ideal ℎ(𝑥, 𝐿)𝔓𝑎 to reach the
conclusion. �

Lemma 6.19. Let 𝑆𝑠,𝜎 be a symmetry of V with 𝑠 ∈ 𝔓𝑖+𝑎𝐿. Then 𝑆𝑠,𝜎 ∈ 𝑈♯ (𝐿) if 𝔓2𝑖+𝑎 ⊆ 𝜎O.
Proof. We have (id𝑉 −𝑆𝑠,𝜎) (𝔓−𝑎𝐿♯) = ℎ(𝔓−𝑎𝐿♯, 𝑠)𝜎−1𝑠 ⊆ 𝔓𝑖𝜎−1𝑠 ⊆ 𝐿. �

Lemma 6.20. Let 𝑥, 𝑥 ′ ∈ 𝐿 with ℎ(𝑥, 𝑥) = ℎ(𝑥 ′, 𝑥 ′), ℎ(𝑥, 𝐿) = ℎ(𝑥 ′, 𝐿) = 𝔓𝑖 and 𝑥 ≡ 𝑥 ′ mod 𝔓𝑖+𝑎.
Then there is an element 𝜑 ∈ 𝑆♯ (𝐿) with 𝜑(𝑥) = 𝑥 ′.
Proof. Note that ℎ(𝑥, 𝑥−𝑥 ′) ∈ 𝔓2𝑖+𝑎. If ℎ(𝑥, 𝑥−𝑥 ′)O = 𝔓2𝑖+𝑎, then with 𝜎 = ℎ(𝑥, 𝑥−𝑥 ′) and 𝑠 = 𝑥−𝑥 ′
we have 𝑆𝑠,𝜎 (𝑥) = 𝑥 ′, and Lemma 6.19 implies that 𝑆𝑠,𝜎 ∈ 𝑈♯ (𝐿).

If ℎ(𝑥, 𝑥 − 𝑥 ′)O ⊆ 𝔓2𝑖+𝑎+1, choose 𝑠 ∈ 𝔓𝑖+𝑎𝐿 with

ℎ(𝑠, 𝑥)O = ℎ(𝑠, 𝑥 ′)O = 𝔓2𝑖+𝑎

which is possible since ℎ(𝑥, 𝐿) = ℎ(𝑥 ′, 𝐿) = 𝔓𝑖 . We have 𝜈𝔓(ℎ(𝑠, 𝑠)𝑠𝜌) ≥ 2𝑖 + 2𝑎 + 2𝑘 + 1− 𝑒 > 2𝑖 + 𝑎
and 2𝑖 + 𝑎 ≡ 𝑒 mod 2. With 𝜔 ∈ 𝐸 a skew element of valuation 2𝑖 + 𝑎, 𝜎 := ℎ(𝑠, 𝑠)𝜌 + 𝜔 satisfies
𝜈𝔓(𝜎) = 2𝑖 + 𝑎. By Lemma 6.19, we have 𝑆𝑠,𝜎 ∈ 𝑆♯ (𝐿). Then

ℎ(𝑥, 𝑥 − 𝑆𝑠,𝜎 (𝑥 ′)) = ℎ(𝑥, 𝑥 − 𝑥 ′) + ℎ(𝑥, 𝑠)ℎ(𝑠, 𝑥 ′)�̄�−1

gives ℎ(𝑥, 𝑥 − 𝑆𝑠,𝜎 (𝑥 ′))O = 𝔓2𝑖+𝑎. Further, 𝑥 ≡ 𝑆𝑠,𝜎 (𝑥 ′) mod 𝔓𝑖+𝑎. Thus, by the first case we can
map x to 𝑆𝑠,𝜎 (𝑥 ′). �

Lemma 6.21. Let 𝐿 = 𝑃 ⊥ 𝑀 , with P a subnormal plane. Then 𝑈♯ (𝐿) = 𝑆♯ (𝐿)𝑈♯ (𝑀).
Proof. By [37], there exists a basis 𝑢, 𝑣 ∈ 𝑃 with ℎ(𝑢, 𝑢) = 𝑝𝑘 , ℎ(𝑣, 𝑣) ∈ 𝔭𝑘 and ℎ(𝑢, 𝑣) = 𝜋𝑖 . Note that
L subnormal implies 𝑖 < 2𝑘 . Let 𝜑 ∈ 𝑈♯ (𝐿). By Lemma 6.20, there exists a symmetry 𝑆 ∈ 𝑆♯ (𝐿) with
𝑆(𝑢) = 𝜑(𝑢). Therefore, we may and will assume that 𝜑(𝑢) = 𝑢.

Write 𝜑(𝑣) = 𝛾𝑢 + 𝛿𝑣 + 𝑚 for some 𝑚 ∈ 𝔓𝑖+𝑎𝐿 and 𝛾, 1 − 𝛿 ∈ 𝔓𝑖+𝑎. Then we have

ℎ(𝑣, 𝑣 − 𝜑(𝑣))O = (−�̄��̄�𝑖 + (1 − 𝛿)ℎ(𝑣, 𝑣))O

ℎ(𝑢, 𝑣 − 𝜑(𝑣)) = ℎ(𝑢, 𝑣) − ℎ(𝜑(𝑢), 𝜑(𝑣)) = 0. (6.4)

The symmetry 𝑆𝑠,𝜎 ∈ 𝑈 (𝐿 ⊗ 𝐸) with 𝑠 = 𝑣 − 𝜑(𝑣) and 𝜎 = ℎ(𝑣, 𝑣 − 𝜑(𝑣)) preserves u and maps v to
𝜑(𝑣). If 𝜈𝔓(𝛾) = 𝑖 + 𝑎, then

𝜈𝔓((1 − 𝛿)ℎ(𝑣, 𝑣)𝑣) ≥ 𝑖 + 𝑎 + 2𝑘 > 2𝑖 + 𝑎 = 𝜈𝔓(−�̄��̄�𝑖).

Thus, ℎ(𝑣, 𝑣 − 𝜑(𝑣))O = 𝔓2𝑖+𝑎. It follows that 𝑆𝑠,𝜎 ∈ 𝑆♯ (𝐿) by Lemma 6.19 and we are done.
Let now 𝜈𝔓(𝛾) > 𝑖 + 𝑎. We consider 𝑣′ = 𝑢 − 𝜋𝑖 𝑝𝑘−𝑖𝑣 ∈ 𝐿. It satisfies

ℎ(𝑢, )𝑣′ = 0, ℎ(𝑣′, 𝑣) ≡ 𝜋𝑖 mod 𝔓𝑖+1 and 𝑣′ ≡ 𝑢 mod 𝔓.

In particular, 𝑣𝔓(ℎ(𝑣′, 𝑣)) = 𝑖. Set 𝑠 = 𝜋𝑖+𝑎𝑣′, and let 𝜔 ∈ 𝐸 be a skew element such that 𝜈𝔓(𝜔) = 2𝑖+𝑎.
Since 𝜈𝔓(ℎ(𝑠, 𝑠)𝜌) > 2𝑖 + 𝑎, the element 𝜎 = 𝜌ℎ(𝑠, 𝑠) +𝜔 satisfies Tr(𝜎) = ℎ(𝑠, 𝑠) and 𝜈𝔓(𝜎) = 2𝑖 + 𝑎.

We have 𝑆𝑠,𝜎 ∈ 𝑆♯ (𝐿), 𝑆𝑠,𝜎 (𝑢) = 𝑢 and 𝑆𝑠,𝜎 (𝜑(𝑣)) = 𝛾′𝑢 + 𝛿′𝑣 + 𝑤 with 𝛾′, 𝛿′ ∈ O and

𝛾′ = 𝛾 − ℎ(𝛾𝑢 + 𝛿𝑣, 𝜋𝑖+𝑎𝑣′)𝜎−1𝜋𝑖+𝑎 = 𝛾 − 𝛿ℎ(𝑣, 𝑣′)𝑝𝑖+𝑎𝜎−1.
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Since 𝛿 ∈ O× by eq. (6.4) and 𝜈𝔓(𝛾) > 𝑖+𝑎, we have 𝜈𝔓(𝛾′) = 𝑖+𝑎. We conclude as in the first case. �

Theorem 6.22. Let 𝐸/𝐾 be ramified. Then we have 𝑈♯ (𝐿) = 𝑆♯ (𝐿).

Proof. We proceed by induction on the rank of L. We know that 𝐿 = 𝑀 ⊥ 𝑁 with M a line or a subnormal
plane. By Lemmas 6.20 and 6.21, we have 𝑈♯ (𝐿) = 𝑆♯ (𝐿)𝑈♯ (𝑁). By induction, 𝑈♯ (𝑁) = 𝑆♯ (𝑁). �

Remark 6.23. For 𝐸/𝐾 unramified or 𝐸 = 𝐾 ×𝐾 , one can prove that 𝑈♯ (𝐿) = 𝑆♯ (𝐿) as well. Since we
do not need this result for the computation of det(𝑈♯ (𝐿)), the proof is omitted.

6.7. Determinants of the kernel

We use the same assumptions and notation as in Section 6.4. In particular, we are in the local setting.
Let 𝛿 ∈ 𝐸 be of norm 𝛿𝛿 = 1 and 𝑥 ∈ 𝑉 be anisotropic. A quasi-reflection is a map of the form

𝜏𝑥, 𝛿 : 𝑉 → 𝑉, 𝑦 ↦→ 𝑦 + (𝛿 − 1) ℎ(𝑦, 𝑥)
ℎ(𝑥, 𝑥) 𝑥.

We have 𝜏𝑥, 𝛿 ∈ 𝑈 (𝑉) and det(𝜏𝑥, 𝛿) = 𝛿. Let 𝑠 = 𝑥 and 𝜎 = ℎ(𝑥, 𝑥) (1 − 𝛿)−1. Then 𝜏𝑥, 𝛿 = 𝑆𝑠,𝜎 .
Conversely, if s is anisotropic and 𝜎 ∈ 𝐸 with Tr(𝜎) = ℎ(𝑠, 𝑠), set 𝛿 = −�̄�/𝜎, then 𝑆𝑠,𝜎 = 𝜏𝑥, 𝛿 . Thus,
the quasi-reflections are exactly the symmetries at anisotropic vectors. The symmetries at isotropic
vectors are called transvections.

Lemma 6.24. Let 𝑥 ∈ 𝐿 be primitive, anisotropic and 𝛿 ∈ 𝐸 of norm 𝛿𝛿 = 1. Then 𝜏𝑥, 𝛿 ∈ 𝑈♯ (𝐿) if and
only if (𝛿 − 1) ∈ 𝔓𝑎ℎ(𝑥, 𝑥).

Proof. We have 𝜏𝑥, 𝛿 ∈ 𝑈♯ (𝐿) if and only if (𝜏𝑥, 𝛿 − id𝑉 ) (𝐿∨) ⊆ 𝐿. This amounts to (𝛿 −
1)𝔓−𝑎ℎ(𝑥, 𝑥)−1𝑥 ∈ 𝐿. The lemma follows since x is primitive. �

For 𝑖 ≥ 0, set

E0 = {𝑢 ∈ O× | 𝑢�̄� = 1}
E 𝑖 = {𝑢 ∈ E0 | 𝑢 ≡ 1 mod 𝔓𝑖}.

Note that E0 = E0 = E𝑒−1, E1 := {𝑢�̄�−1 | 𝑢 ∈ O×} = E𝑒 and [E0 : E1] = 2 by [43, 3.4, 3.5].

Theorem 6.25. Let 𝐹 = Q𝑝 , 𝐾/𝐹 a finite field extension, 𝐸/𝐾 an étale K-algebra of dimension 2 with
absolute different 𝔓𝑎 := 𝔇𝐸/𝐹 . Suppose that L is a Hermitian O-lattice with 𝔭𝑘 := 𝔫(𝐿) ⊆ 𝔇−1

𝐾/𝐹 .
Then det(𝑈♯ (𝐿)) =: F ♯ (𝐿) = E2𝑘+𝑎.

Proof. Let 𝑥 ∈ 𝐿 be a norm generator, that is, ℎ(𝑥, 𝑥)O = 𝔫(𝐿) = 𝔭𝑘 . Let 𝛿 ∈ E2𝑘+𝑎. Then

(𝛿 − 1) ∈ 𝔓𝑎ℎ(𝑥, 𝑥) ⊆ 𝔓𝑎 𝔫(𝐿).

By Lemma 6.24, we have 𝜏𝑥, 𝛿 ∈ 𝑈♯ (𝐿) and so 𝛿 ∈ det(𝑈♯ (𝐿)). Hence,

E2𝑘+𝑎 ⊆ det(𝑈♯ (𝐿)).

Let 𝔓𝑖 := 𝔰(𝐿) and 𝜑 ∈ 𝑈♯ (𝐿). By Lemma 6.18, 𝜑 ≡ id mod 𝔓𝑖+𝑎. Thus, det(𝜑) ≡ 1 mod 𝔓𝑖+𝑎,
that is, det(𝜑) ∈ E 𝑖+𝑎.

If 𝐸/𝐾 is unramified, then 𝔰(𝐿) = 𝔫(𝐿)O, so that 𝑖 = 2𝑘 and

det(𝑈♯ (𝐿)) ⊆ E 𝑖+𝑎 = E2𝑘+𝑎 .

Now, suppose that 𝐸/𝐾 is ramified. By Theorem 6.22, the group 𝑈♯ (𝐿) = 𝑆♯ (𝐿) is generated by
symmetries. Since transvections have determinant one, it is enough to consider the determinants of
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the quasi-reflections in 𝑈♯ (𝐿). Let 𝜏𝑥, 𝛿 ∈ 𝑈♯ (𝐿) be a quasi-reflection. Recall that det(𝜏𝑥, 𝛿) = 𝛿. By
Lemma 6.24, we have (𝛿 − 1) ∈ 𝔓𝑎ℎ(𝑥, 𝑥) ⊆ 𝔓𝑎 𝔫(𝐿). This proves det(𝑈♯ (𝐿)) ⊆ E2𝑘+𝑎. �

6.8. Computing in F (𝐿𝔭)/F ♯ (𝐿𝔭)

Let 𝐸/𝐾 be a quadratic extension number fields with rings of integers O and O, respectively. Let L a
Hermitian O-lattice. Determining the image of 𝛿 in Theorem 6.15 requires the computation in the finite
quotient F (𝐿𝔭)/F ♯ (𝐿𝔭), where 𝔭 is a prime ideal of O (see also Remark 6.16). To simplify notation,
we now assume that K is a local field of characteristic 0, 𝐸/𝐾 an étale K-algebra of dimension 2 and
the notation as in Section 6.6. Hence, our aim is to be able to do computations in F (𝐿)/F ♯ (𝐿). As
we are only interested in computing in the abelian group as opposed to determining it completely, it is
sufficient to describe the computation of the supergroup E0/F ♯ (𝐿). By Theorem 6.25, we know that
F ♯ (𝐿) = E 𝑖 for some 𝑖 ∈ Z≥0. It is thus sufficient to describe the computation of E0/E 𝑖 . By definition,
this group is isomorphic to ker(N𝑖), where

N𝑖 : O×/(1 +𝔓𝑖) −→ O×/N(1 +𝔓𝑖), �̄� ↦−→ N(𝑢).

Depending on the structure of the extension 𝐸/𝐾 , this kernel can be described as follows:

◦ If 𝐸 � 𝐾 × 𝐾 , then E0/E 𝑖 is isomorphic to (O/𝔭𝑖)×.
◦ If 𝐸/𝐾 is an unramified extension of local fields, then E0/E 𝑖 is isomorphic to the kernel of the map
(O/𝔓𝑖)× → (O/𝔭𝑖)×, �̄� ↦→ N(𝑢).

◦ If 𝐸/𝐾 is a ramified extension of local fields, then the situation is more complicated due to the norm
not being surjective. Using the fact that by definition we have

E 𝑖/E 𝑖+1 � ker
(
(1 +𝔓𝑖)/(1 +𝔓𝑖+1) −→ N(1 +𝔓𝑖)/N(1 +𝔓𝑖+1), 𝑢 ↦−→ N(𝑢)

)
,

this quotient can be determined using explicit results on the image of the multiplicative groups 1+𝔓𝑖

under the norm map, found, for example, in [71, Chap. V]. Applying this iteratively, we obtain E0/E 𝑖 .

In all three cases, the computations of the quotient groups E0/E 𝑖 reduce to determining unit groups
of residue class rings or kernels of morphisms between such groups. These unit groups are finitely
generated abelian groups, whose structure can be determined using classical algorithms from algebraic
number theory; see, for example, [25, Sec. 4.2].

7. Fixed points

We classify the fixed point sets of purely nonsymplectic automorphisms of finite order n on complex
K3 surfaces. We only use the description of the fixed locus for 𝑛 = 𝑝 a prime (see, e.g., [8]); hence
providing an independent proof in the known cases and completing the classification in all other cases.

Given the action of 𝜎 on some lattice 𝐿 � 𝐻2 (𝑋,Z), we want to derive the invariants
((𝑎1, . . . 𝑎𝑠), 𝑘, 𝑙, 𝑔) of the fixed locus 𝑋𝜎 as defined in the introduction. The topological and holomor-
phic Lefschetz’ fixed point formula [9, Thm. 4.6] yield the following relations

𝑠∑
𝑖=1

𝑎𝑖 − 2𝑘 + 𝑙 (2 − 2𝑔) = 2 + Tr 𝜎∗ |𝐻2 (𝑋,C)

and

1 + 𝜁−1
𝑛 =

𝑠∑
𝑖=1

𝑎𝑖

(1 − 𝜁 𝑖+1𝑛 ) (1 − 𝜁−𝑖𝑛 )
+ 𝑙 (1 − 𝑔) 1 + 𝜁𝑛

(1 − 𝜁𝑛)2
.
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We adopt the following strategy: By induction, we know the invariants of the fixed loci of 𝜎𝑝 for 𝑝 | 𝑛.
Note that 𝜎 acts with order dividing p on 𝑋𝜎𝑝 and 𝑋𝜎 ⊆ 𝑋𝜎𝑝 . From the fixed loci of 𝜎𝑝 , we derive
the obvious upper bounds on k, l and g. Then for each possible tuple (𝑘, 𝑙, 𝑔), we find all (𝑎1, . . . 𝑎𝑠)
satisfying the Lefschetz formulas, which amounts to enumerating integer points in a bounded polygon.
The result is a finite list of possibilities for the invariants of 𝑋𝜎 .

In what follows, we derive compatibility conditions coming from the description of 𝑋𝜎 as the fixed
point set of the action of 𝜎 on 𝑋𝜎𝑝 .

Lemma 7.1. Let P be an isolated fixed point of type i of 𝜎. Let 𝑝𝑚 = 𝑛 with p prime. Then P is a fixed
point of 𝜎𝑝 of type

𝑡 (𝑖) = min{𝑖 + 1 mod 𝑚, 𝑛 − 𝑖 mod 𝑚} − 1.

Moreover, we have

𝑎𝑖 (𝜎) ≤ 𝑎𝑡 (𝑖) (𝜎𝑝) and
∑

{𝑖 |𝑡 (𝑖)= 𝑗 }
𝑎𝑖 (𝜎) ≡ 𝑎 𝑗 (𝜎𝑝) mod 𝑝,

where 1 ≤ 𝑗 ≤ (𝑚 − 1)/2.

Proof. In local coordinates 𝜎𝑝 (𝑥, 𝑦) = (𝜁 𝑖+1𝑚 , 𝜁−𝑖𝑚 ). Note that 𝜎 acts on the set of fixed points of type
j of 𝜎𝑝 . Hence, the number of fixed points

∑
{𝑖 |𝑡 (𝑖)= 𝑗 } 𝑎𝑖 (𝜎) of 𝜎 is congruent to the order 𝑎 𝑗 (𝜎𝑝) of

this set modulo p. �

In particular, from the invariants of 𝜎, we can infer how many isolated fixed points of 𝜎 lie on a fixed
curve of 𝑋𝜎𝑝 . More precisely, by Lemma 7.1

∑
{𝑖 |𝑡 (𝑖)=0} 𝑎𝑖 (𝜎) is the number of isolated fixed points

of 𝜎 which lie on a fixed curve of 𝜎𝑝 . The number of such points is bounded above and below by the
following lemma.

Lemma 7.2. Let p be a prime number, C a smooth curve of genus g and 𝜎 ∈ Aut(𝐶) an automorphism
of order p with 𝐶/𝜎 of genus 𝑔′. Then 𝜎 fixes

𝑟 =
2𝑔 − 2 − 𝑝(2𝑔′ − 2)

𝑝 − 1

points. In particular, given p and g there is a finite number of possibilities for r. Note that for 𝑔 = 0 we
have 𝑟 = 2.

Proof. The canonical map 𝜋 : 𝐶 → 𝐶/𝜎 is ramified precisely in the fixed points and with multiplicity
p. By the Hurwitz formula, 2𝑔 − 2 = 𝑝(2𝑔′ − 2) + (𝑝 − 1)𝑟 . �

Inductively carrying out this strategy, we obtain a unique possibility in most cases and in the remaining
33 cases two possibilities. We call the corresponding automorphisms ambiguous. In what follows, we
disambiguate by using elliptic fibrations. We say that a curve C is fixed by 𝜎 if 𝜎 |𝐶 = id𝐶 . If merely
𝜎(𝐶) = 𝐶, we say that it is invariant.

Lemma 7.3. Let p be a prime divisor of n. Suppose that 𝜎𝑛/𝑝 fixes an elliptic curve E. Denote by
𝜋 : 𝑋 → P1 the elliptic fibration induced by the linear system |𝐸 |. Suppose 𝜎 has no isolated fixed
points on E and 𝜎𝑚 leaves invariant a section of 𝜋 for some 𝑚 | 𝑛, 𝑚 ≠ 𝑛. Then 𝜎 fixes E if and only if
𝜋 admits a 𝜎-invariant section.

Proof. Since we assume that 𝜎 has no isolated fixed points on E, either 𝜎 fixes E entirely or no point
on E at all.

Suppose that S is a 𝜎-invariant section. Then 𝐸 ∩ 𝑆 is a fixed point. Therefore, 𝜎 fixes E.
Conversely, suppose that there is no 𝜎-invariant section. By assumption, we find a 𝜎𝑚-invariant

section S which must satisfy 𝜎(𝑆) ≠ 𝑆. If 𝜎 acts trivially on E, then {𝑃} = 𝐸 ∩ 𝑆∩𝜎(𝑆) is a fixed point.
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The three 𝜎𝑚-invariant curves E, S and 𝜎(𝑆) pass through P. This contradicts the local description of
the action around P. Therefore, 𝜎 must act as a translation on E. �

Lemma 7.4. Let 𝜏 be an automorphism of prime order p of a K3 surface X acting trivially on NS(𝑋)
and fixing an elliptic curve E. If 𝑓 ∈ NS(𝑋) is isotropic, primitive and nef such that 𝑓 ⊥/Z 𝑓 is not an
overlattice of a root lattice, then 𝑓 = [𝐸].

Proof. Since 𝜏 acts trivially on NS(𝑋), it lies in the center of the automorphism group Aut(𝑋) and
fixes E. Hence, every automorphism leaves E invariant, that is, E is a curve canonically defined on
X. Let 𝜋 : 𝑋 → P1 be the genus one fibration defined by |𝐸 |. The fibration 𝜋 is canonically defined,
therefore Aut(𝑋) is virtually abelian of rank t given by the rank of the Mordell–Weil group of (the
Jacobian of) 𝜋. Let R be the root sublattice of [𝐸]⊥/Z[𝐸]. Then by the Shioda–Tate formula [73, 5.2]
𝑡 = rk NS(𝑋) − rk 𝑅 − 2. Since Aut(𝑋) is virtually abelian, there is at most one elliptic fibration of
positive rank. By [69, §3], f is the class of a fiber of an elliptic fibration. Since 𝑓 ⊥/Z 𝑓 is not an overlattice
of a root lattice, the Shioda–Tate formula implies that it has positive Mordell–Weil rank. Hence, it must
coincide with 𝜋 and so [𝐸] = 𝑓 . �

Lemma 7.5. Let p be a prime divisor of n. Suppose that 𝜎𝑝 fixes an elliptic curve E inducing the elliptic
fibration 𝜋. Set 𝜏 = 𝜎𝑛/𝑝 and 𝑁 = NS(𝑋)𝜏 . Let 𝑓 ∈ NS(𝑋)𝜎 be isotropic and primitive such that
𝑓 ⊥𝑁 /Z 𝑓 is not an overlattice of a root lattice. Then 𝜋 has a 𝜏-invariant section if and only if 〈 𝑓 , 𝑁〉 = Z.
Similarly, 𝜋 has a 𝜎-invariant section if and only if 〈 𝑓 , NS(𝑋)𝜎〉 = Z.

Proof. By [64, Lemma 1.7 and Theorem 1.8], there exists an element 𝛿 of the Weyl group 𝑊 (NS(𝑋))
commuting with 𝜎 such that 𝛿( 𝑓 ) is nef. Hence, we may assume that f is nef. In order to apply Lemma
7.4, set 𝜏 = 𝜎𝑛/𝑝 and consider 𝐺 = 〈𝜏〉. Choose a marking 𝜂 : 𝐻2 (𝑋,Z) → 𝐿, and set 𝐻 = 𝜂𝜌𝑋 (𝐺)𝜂−1.
Then we can deform the H-marked K3 surface (𝑋, 𝐺, 𝜂) to (𝑋 ′, 𝐺 ′, 𝜂′) such that NS(𝑋 ′)𝐺′ = NS(𝑋 ′).
Let 𝐸 ′ be the elliptic curve fixed by 𝐺 ′. It satisfies 𝜂′( [𝐸 ′]) = 𝜂([𝐸]). Note that 𝑓 ′ = 𝜂′−1 ◦ 𝜂( 𝑓 ) is still
nef since 𝜂′(NS(𝑋 ′)) ⊆ 𝜂(NS(𝑋)). Hence, by Lemma 7.4 we get 𝑓 ′ = [𝐸 ′] which gives 𝑓 = [𝐸].

Finally, if 〈[𝐸], NS(𝑋)〉 = Z, we can find 𝑠 ∈ NS(𝑋) with 〈[𝐸], 𝑠〉 = 1 and 𝑠2 = −2. After possibly
replacing s by −𝑠, we may assume that s is effective. We can write 𝑠 = 𝛿1 + · · · + 𝛿𝑛 for (−2)-curves
𝛿𝑖 ∈ NS(𝑋). Now, 1 = 〈 𝑓 , 𝑠〉 and 〈 𝑓 , 𝛿𝑖〉 ≥ 0 (f is nef) imply that 〈 𝑓 , 𝛿𝑖〉 = 1 for a single 1 ≤ 𝑖 ≤ 𝑛; 𝛿𝑖
is the desired section. Note that 𝜏 (respectively 𝜎) preserves 𝛿𝑖 if and only if it preserves s. �

Among the 22 ambiguous automorphisms 𝜎 of order 𝑛 = 4, there are 16 cases where 𝜎2 fixes a
single elliptic curve, 4 cases where 𝜎2 fixes a curve of genus 2 and 3, 5, 7 or 9 rational curves, and in the
remaining 2 cases 𝜎2 fixes two curves of genus one. The ambiguity is whether 𝜎 fixes some curve or not.

First, let 𝜎2 fix a unique elliptic curve E of genus 1. This means that 𝜎 is compatible with an elliptic
fibration 𝜋 : 𝑋 → P1. Moreover, 𝜎2 leaves invariant a section S of 𝜋 because 𝐿𝜎2 contains a copy of
the hyperbolic plane U. Note that 𝜎2 must act nontrivially on the base P1 of the fibration, as otherwise
its action at the tangent space to the point in 𝐸 ∩ 𝑆 would be trivial. Hence, 𝜎2 has exactly two fixed
points in P1 giving two invariant fibers; one is E and the other one we call C. The rational curves fixed
by 𝜎2 must be components of the fiber C because all fixed points lie in 𝐸 ∪ 𝐶. We fix the fiber type
of C and consider each fiber type separately. We know that C is a singular fiber of Kodaira type 𝐼4𝑚,
𝑚 = 1, 2, 3, 4 or 𝐼𝑉∗. They correspond to 3, 3, 3, 4 and 3 ambiguous cases.

The following figure shows the dual graph of the irreducible components of C. Each node corresponds
to a smooth rational curve and two nodes are joined by an edge if and only if the corresponding curves
intersect. The square nodes are curves fixed pointwise by 𝜎2 and the round nodes are curves which are
invariant but not fixed by 𝜎2. The automorphism 𝜎 acts on the graph with order dividing 2 and maps
squares to squares.

𝐼𝑉∗ 𝐼4 𝐼8 𝐼4𝑚
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We start by determining the fixed locus in the case that C is of type 𝐼4𝑚. Lefschetz calculations show
that for the given 𝜎2 we have the following possibilities for the fixed locus 𝑋𝜎 of 𝜎: four isolated points
((4), 0, 0, 1) or four isolated points and a curve of genus one ((4), 0, 1, 1).

The automorphism 𝜎2 fixes every second node of the circular 𝐼4𝑚 configuration and the zero section
intersects a 𝜎2-fixed curve in 𝐼4𝑚.

The action of 𝜎 on the intersection graph is visible on the lattice side since we can identify the
class F of E by Lemma 7.4 and choose simple roots in 𝐹⊥ giving its components. Carrying out this
computation gives the following three cases.

1. The curves in 𝐼4𝑚 are rotated by 𝜎. Then C does not have any 𝜎 fixed points and E contains four
isolated fixed points for 0.4.4.9, 0.4.3.6, 0.4.2.5, 0.4.1.3.

2. The automorphism 𝜎 acts as a reflection on the graph 𝐼4𝑚 leaving invariant two of the 𝜎2-fixed
curves and the section S passes through one of them. Then 𝐼4𝑚 contains 4 isolated fixed points and
E does not contain any isolated fixed points. However, the intersection 𝑆 ∩ 𝐸 is fixed but cannot be
isolated. Hence, 𝜎 fixes E for 0.4.4.7, 0.4.3.8, 0.4.2.3, 0.4.1.6.

3. The automorphism 𝜎 acts as a reflection leaving invariant two of the 𝜎2-fixed curves, and the section
S does not pass through them. Then 𝜎 fixes four isolated points on 𝐼4𝑚 and no isolated points on E.
By Lemma 7.3 𝜎 does not fix E for 0.4.4.8, 0.4.3.7, 0.4.2.4, 0.4.1.4, 0.4.1.5.

Let 𝐶 = 𝐼𝑉∗ and 𝜎 ambiguous. We know that 𝜎 fixes 6 isolated points, one rational curve and
possibly E of genus 1. The central curve as well as the three leaves must be fixed by 𝜎2. There are 3
possible actions. It can leave invariant each component of the 𝐼𝑉∗ fiber. Then the central component is
fixed and the leaves carry two fixed points each. Hence, the action on E does not have an isolated fixed
point. Therefore, 𝜎 fixes E if and only if some section is preserved. This is the case for 0.4.3.11 but not
for 0.4.3.10. In the third case, 𝜎 swaps two of the branches. Therefore, the central component cannot be
fixed by 𝜎, so it contains 2 isolated fixed points. The invariant leaf must be the fixed rational curve. Then
there are four fixed points left, they must lie on E giving 0.4.3.9. This settles the first 16 ambiguous cases.

In the next four ambiguous cases, 𝜎2 fixes a curve of genus 2 and 3, 5, 7 or 9 rational curves. In each
case, we know that 𝜎 fixes exactly four isolated fixed points. The ambiguity is whether 𝜎 fixes 1 rational
curve and the genus 2 curve, or no curve at all. For each case, we exhibit a 𝜎-invariant hyperbolic
plane U. Since 𝜎 fixes a curve of genus 2, Aut(𝑋) is finite, and so 𝐾 = 𝑈⊥ is a root lattice. Then
NS(𝑋) = 𝑈 ⊥ 𝐾 and K determines the ADE-types of the singular fibers of the 𝜎-equivariant fibration
induced by U. The square nodes are fixed by 𝜎2 while the round nodes are not.

𝑈 ⊥ 2𝐸8

𝑈 ⊥ 2𝐸7

𝑈 ⊥ 2𝐷6

𝑈 ⊥ 2𝐷4 ⊥ 2𝐴1

Note that 𝜎 must act nontrivially on the graph because otherwise it has too many fixed points or fixed
curves. Since 𝜎 maps squares to squares, we see that 𝜎 must act as a reflection preserving the central
square. However, the corresponding curve cannot be fixed, because the two adjacent ones and hence the
corresponding intersection points with the central node are swapped. Thus, 𝜎 cannot fix a curve and the
four ambiguous cases are settled.
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Consider the ambiguous cases 0.4.5.12, 0.4.5.14 0.6.2.29, 0.6.3.36, 0.8.1.7, 0.8.1.8, 0.8.2.8, 0.8.2.10,
0.9.1.3, 0.9.1.4 and 0.10.1.11. The question is whether or not 𝜎 fixes an elliptic curve. In each case,
Lefschetz calculations show that there are no isolated fixed points on the elliptic curve in question.
Hence, in view of Lemma 7.3 this can be decided by whether or not there exists a section of the
corresponding fibration. This is settled by Lemma 7.5. Indeed, we can randomly search until we find
𝑓 ∈ 𝐿𝜎 corresponding to [𝐸].

For 0.10.2.1, we have the two possibilities ((0, 0, 1, 6), 0, 0, 1) and ((5, 0, 0, 0), 1, 0, 1) for the fixed
locus of 𝜎. We know that 𝜎2 fixes an elliptic curve E and one rational curve. It is the central component
of the invariant fiber C of type 𝐸7. Since NS(𝑋)𝜎 has rank 6, 𝜎 must act nontrivially on 𝐸7 ⊆ NS(𝑋).
This means that it swaps two of the three arms of the configuration. Hence, it cannot act trivially on the
central component and so 𝜎 cannot fix a rational curve. The fixed locus is ((0, 0, 1, 6), 0, 0, 1).

For the last ambiguous case 0.12.1.12, the automorphism 𝜎 has a unique fixed point and the ambiguity
is whether or not it fixes an elliptic curve. We know that 𝜎𝑖 for 𝑖 = 2, 3, 4, 6 fixes a unique elliptic curve
𝐸𝑖 . Since 𝐸2 ⊆ 𝐸4, 𝐸6, we have 𝐸2 = 𝐸4 = 𝐸6 and similarly 𝐸6 ⊆ 𝐸3 implies 𝐸6 = 𝐸3. Therefore,
𝐸 = 𝐸𝑖 is independent of i. Now, 𝜎3 and 𝜎4 fix E, hence their product 𝜎7 fixes E as well. But 𝜎 ∈ 〈𝜎7〉
and so 𝜎 fixes the elliptic curve E. The fixed locus of 0.12.1.12 is therefore ((1, 0, 0, 0, 0), 0, 1, 1).

A. Finite groups with mixed action on a K3 surface

The following table lists all finite groups G admitting a faithful, saturated, mixed action on some K3
surface, their symplectic subgroups 1 ≠ 𝐺𝑠 < 𝐺 as well as the number 𝑘 (𝐺) of deformation types.
Note that in three cases an entry appears twice because the normal subgroup 𝐺𝑠 < 𝐺 does not lie in
the same Aut(𝐺)-orbit. The notation 𝐺 = 𝐺𝑠 .𝜇𝑛 means that G is an extension of 𝐺𝑠 by 𝜇𝑛. It may or
may not split. Our notation for the groups 𝐺𝑠 follows Hashimoto [34]. Isomorphism classes of groups
will be referred to either using standard notation for classical families or using the id as provided by the
library of small groups [15].

Table 3. Finite groups with faithful, saturated nonsymplectic action on some K3 surface..

G id 𝑘 (𝐺) G id 𝑘 (𝐺) G id 𝑘 (𝐺)

𝐶2.𝜇2 (4, 1) 5 𝐶3.𝜇15 (45, 2) 1 𝐶4.𝜇12 (48, 22) 1
𝐶2.𝜇2 (4, 2) 354 𝐶3.𝜇18 (54, 4) 1 𝐶4.𝜇12 (48, 23) 1
𝐶2.𝜇3 (6, 2) 26 𝐶3.𝜇18 (54, 9) 1 𝐶4.𝜇12 (48, 24) 1
𝐶2.𝜇4 (8, 1) 3 𝐶2

2 .𝜇2 (8, 2) 4 𝐷6.𝜇2 (12, 4) 140
𝐶2.𝜇4 (8, 2) 200 𝐶2

2 .𝜇2 (8, 3) 40 𝐷6.𝜇3 (18, 3) 21
𝐶2.𝜇5 (10, 2) 6 𝐶2

2 .𝜇2 (8, 5) 330 𝐷6.𝜇4 (24, 5) 18
𝐶2.𝜇6 (12, 2) 11 𝐶2

2 .𝜇3 (12, 3) 4 𝐷6.𝜇5 (30, 1) 1
𝐶2.𝜇6 (12, 5) 99 𝐶2

2 .𝜇3 (12, 5) 11 𝐷6.𝜇6 (36, 12) 33
𝐶2.𝜇7 (14, 2) 4 𝐶2

2 .𝜇4 (16, 3) 73 𝐷6.𝜇8 (48, 4) 4
𝐶2.𝜇8 (16, 5) 50 𝐶2

2 .𝜇4 (16, 5) 1 𝐷6.𝜇10 (60, 11) 1
𝐶2.𝜇9 (18, 2) 2 𝐶2

2 .𝜇4 (16, 6) 2 𝐷6.𝜇12 (72, 27) 2
𝐶2.𝜇10 (20, 2) 1 𝐶2

2 .𝜇4 (16, 10) 77 𝐶3
2 .𝜇2 (16, 3) 3

𝐶2.𝜇10 (20, 5) 12 𝐶2
2 .𝜇6 (24, 10) 13 𝐶3

2 .𝜇2 (16, 10) 2
𝐶2.𝜇12 (24, 2) 2 𝐶2

2 .𝜇6 (24, 13) 19 𝐶3
2 .𝜇2 (16, 11) 34

𝐶2.𝜇12 (24, 9) 24 𝐶2
2 .𝜇6 (24, 15) 14 𝐶3

2 .𝜇2 (16, 14) 72
𝐶2.𝜇14 (28, 4) 4 𝐶2

2 .𝜇8 (32, 5) 14 𝐶3
2 .𝜇3 (24, 13) 2

𝐶2.𝜇15 (30, 4) 3 𝐶2
2 .𝜇8 (32, 36) 6 𝐶3

2 .𝜇4 (32, 6) 6
𝐶2.𝜇16 (32, 16) 3 𝐶2

2 .𝜇9 (36, 3) 2 𝐶3
2 .𝜇4 (32, 7) 3

𝐶2.𝜇18 (36, 5) 3 𝐶2
2 .𝜇12 (48, 21) 4 𝐶3

2 .𝜇4 (32, 22) 31

(Continues)
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Table 3. (Continued)

G id 𝑘 (𝐺) G id 𝑘 (𝐺) G id 𝑘 (𝐺)

𝐶2.𝜇20 (40, 9) 3 𝐶2
2 .𝜇12 (48, 31) 3 𝐶3

2 .𝜇4 (32, 45) 7
𝐶2.𝜇24 (48, 23) 3 𝐶2

2 .𝜇12 (48, 44) 1 𝐶3
2 .𝜇6 (48, 31) 1

𝐶2.𝜇28 (56, 8) 1 𝐶2
2 .𝜇18 (72, 16) 2 𝐶3

2 .𝜇6 (48, 49) 5
𝐶2.𝜇30 (60, 13) 2 𝐶4.𝜇2 (8, 1) 3 𝐶3

2 .𝜇7 (56, 11) 1
𝐶3.𝜇2 (6, 1) 46 𝐶4.𝜇2 (8, 2) 98 𝐶3

2 .𝜇7 (56, 11) 1
𝐶3.𝜇2 (6, 2) 51 𝐶4.𝜇2 (8, 3) 102 𝐶3

2 .𝜇8 (64, 4) 3
𝐶3.𝜇3 (9, 2) 26 𝐶4.𝜇2 (8, 4) 3 𝐶3

2 .𝜇8 (64, 87) 1
𝐶3.𝜇4 (12, 1) 15 𝐶4.𝜇3 (12, 2) 7 𝐶3

2 .𝜇12 (96, 196) 2
𝐶3.𝜇4 (12, 2) 15 𝐶4.𝜇4 (16, 2) 21 𝐷8.𝜇2 (16, 7) 6
𝐶3.𝜇5 (15, 1) 4 𝐶4.𝜇4 (16, 4) 23 𝐷8.𝜇2 (16, 8) 2
𝐶3.𝜇6 (18, 3) 38 𝐶4.𝜇4 (16, 5) 10 𝐷8.𝜇2 (16, 11) 202
𝐶3.𝜇6 (18, 5) 36 𝐶4.𝜇4 (16, 6) 9 𝐷8.𝜇2 (16, 13) 11
𝐶3.𝜇7 (21, 2) 1 𝐶4.𝜇5 (20, 2) 1 𝐷8.𝜇3 (24, 10) 3
𝐶3.𝜇8 (24, 1) 3 𝐶4.𝜇6 (24, 2) 1 𝐷8.𝜇4 (32, 9) 10
𝐶3.𝜇8 (24, 2) 3 𝐶4.𝜇6 (24, 9) 5 𝐷8.𝜇4 (32, 11) 4
𝐶3.𝜇9 (27, 2) 3 𝐶4.𝜇6 (24, 10) 8 𝐷8.𝜇4 (32, 25) 19
𝐶3.𝜇10 (30, 1) 4 𝐶4.𝜇6 (24, 11) 1 𝐷8.𝜇4 (32, 38) 1
𝐶3.𝜇10 (30, 4) 2 𝐶4.𝜇8 (32, 3) 4 𝐷8.𝜇6 (48, 26) 1
𝐶3.𝜇12 (36, 6) 5 𝐶4.𝜇8 (32, 12) 4 𝐷8.𝜇6 (48, 45) 4
𝐶3.𝜇12 (36, 8) 4 𝐶4.𝜇10 (40, 9) 2 𝐷8.𝜇8 (64, 6) 5
𝐶3.𝜇14 (42, 6) 2 𝐶4.𝜇12 (48, 20) 1 𝐷8.𝜇12 (96, 52) 1
𝑄8.𝜇2 (16, 8) 7 𝐶4

2 .𝜇4 (64, 32) 2 𝐴3,3.𝜇2 (36, 10) 11
𝑄8.𝜇2 (16, 9) 1 𝐶4

2 .𝜇4 (64, 60) 2 𝐴3,3.𝜇2 (36, 13) 10
𝑄8.𝜇2 (16, 12) 2 𝐶4

2 .𝜇4 (64, 90) 1 𝐴3,3.𝜇3 (54, 5) 2
𝑄8.𝜇2 (16, 13) 11 𝐶4

2 .𝜇4 (64, 193) 1 𝐴3,3.𝜇3 (54, 13) 3
𝑄8.𝜇3 (24, 3) 2 𝐶4

2 .𝜇5 (80, 49) 1 𝐴3,3.𝜇4 (72, 21) 1
𝑄8.𝜇3 (24, 11) 1 𝐶4

2 .𝜇6 (96, 70) 1 𝐴3,3.𝜇4 (72, 39) 1
𝑄8.𝜇4 (32, 11) 5 𝐶4

2 .𝜇6 (96, 197) 1 𝐴3,3.𝜇4 (72, 45) 3
𝑄8.𝜇4 (32, 38) 2 𝐶4

2 .𝜇6 (96, 228) 1 𝐴3,3.𝜇6 (108, 25) 4
𝑄8.𝜇6 (48, 26) 1 𝐶4

2 .𝜇6 (96, 229) 1 𝐴3,3.𝜇6 (108, 36) 1
𝑄8.𝜇6 (48, 32) 2 𝐶4

2 .𝜇7 (112, 41) 1 𝐴3,3.𝜇6 (108, 38) 4
𝑄8.𝜇6 (48, 33) 1 𝐶4

2 .𝜇7 (112, 41) 1 𝐴3,3.𝜇6 (108, 43) 1
𝑄8.𝜇6 (48, 46) 1 𝐶4

2 .𝜇8 (128, 48) 1 𝐴3,3.𝜇8 (144, 185) 1
𝐷10.𝜇2 (20, 3) 3 𝐶4

2 .𝜇10 (160, 235) 1 𝐻𝑜𝑙 (𝐶5) .𝜇2 (40, 12) 9
𝐷10.𝜇2 (20, 4) 19 𝐶4

2 .𝜇12 (192, 994) 1 𝐻𝑜𝑙 (𝐶5) .𝜇3 (60, 6) 1
𝐷10.𝜇3 (30, 2) 3 𝐶2 × 𝐷8.𝜇2 (32, 6) 3 𝐻𝑜𝑙 (𝐶5) .𝜇4 (80, 30) 1
𝐷10.𝜇4 (40, 5) 3 𝐶2 × 𝐷8.𝜇2 (32, 7) 1 𝐶7 : 𝐶3.𝜇2 (42, 1) 4
𝐷10.𝜇4 (40, 12) 4 𝐶2 × 𝐷8.𝜇2 (32, 27) 14 𝐶7 : 𝐶3.𝜇2 (42, 2) 2
𝐷10.𝜇5 (50, 3) 1 𝐶2 × 𝐷8.𝜇2 (32, 28) 2 𝐶7 : 𝐶3.𝜇3 (63, 3) 1
𝐷10.𝜇6 (60, 6) 1 𝐶2 × 𝐷8.𝜇2 (32, 28) 2 𝐶7 : 𝐶3.𝜇4 (84, 2) 1
𝐷10.𝜇6 (60, 10) 2 𝐶2 × 𝐷8.𝜇2 (32, 30) 1 𝐶7 : 𝐶3.𝜇6 (126, 7) 1
𝐷10.𝜇8 (80, 28) 1 𝐶2 × 𝐷8.𝜇2 (32, 34) 4 𝐶7 : 𝐶3.𝜇6 (126, 10) 1
𝐷10.𝜇10 (100, 14) 1 𝐶2 × 𝐷8.𝜇2 (32, 39) 2 𝑆4.𝜇2 (48, 48) 74
𝐷10.𝜇12 (120, 17) 1 𝐶2 × 𝐷8.𝜇2 (32, 43) 2 𝑆4.𝜇3 (72, 42) 2
𝐴4.𝜇2 (24, 12) 40 𝐶2 × 𝐷8.𝜇2 (32, 46) 46 𝑆4.𝜇4 (96, 186) 8
𝐴4.𝜇2 (24, 13) 47 𝐶2 × 𝐷8.𝜇2 (32, 48) 1 𝑆4.𝜇6 (144, 188) 2
𝐴4.𝜇3 (36, 11) 7 𝐶2 × 𝐷8.𝜇2 (32, 49) 13 24𝐶2.𝜇2 (64, 32) 2
𝐴4.𝜇4 (48, 30) 10 𝐶2 × 𝐷8.𝜇4 (64, 12) 1 24𝐶2.𝜇2 (64, 138) 8
𝐴4.𝜇4 (48, 31) 7 𝐶2 × 𝐷8.𝜇4 (64, 34) 2 24𝐶2.𝜇2 (64, 202) 12
𝐴4.𝜇6 (72, 42) 5 𝐶2 × 𝐷8.𝜇4 (64, 67) 5 24𝐶2.𝜇2 (64, 215) 3
𝐴4.𝜇6 (72, 47) 4 𝐶2 × 𝐷8.𝜇4 (64, 71) 2 24𝐶2.𝜇2 (64, 216) 1
𝐴4.𝜇12 (144, 123) 1 𝐶2 × 𝐷8.𝜇4 (64, 90) 7 24𝐶2.𝜇2 (64, 226) 4
𝐷12.𝜇2 (24, 6) 4 𝐶2 × 𝐷8.𝜇4 (64, 92) 4 24𝐶2.𝜇2 (64, 241) 1
𝐷12.𝜇2 (24, 8) 2 𝐶2 × 𝐷8.𝜇4 (64, 99) 2 24𝐶2.𝜇3 (96, 70) 1
𝐷12.𝜇2 (24, 14) 54 𝐶2 × 𝐷8.𝜇4 (64, 101) 1 24𝐶2.𝜇4 (128, 621) 1
𝐷12.𝜇3 (36, 12) 7 𝐶2 × 𝐷8.𝜇4 (64, 102) 1 24𝐶2.𝜇4 (128, 645) 1
𝐷12.𝜇4 (48, 14) 3 𝐶2 × 𝐷8.𝜇4 (64, 196) 2 24𝐶2.𝜇4 (128, 850) 3
𝐷12.𝜇4 (48, 35) 3 𝐶2 × 𝐷8.𝜇4 (64, 199) 1 24𝐶2.𝜇4 (128, 853) 1
𝐷12.𝜇6 (72, 28) 2 𝐶2 × 𝐷8.𝜇8 (128, 2) 1 24𝐶2.𝜇4 (128, 1090) 1
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https://doi.org/10.1017/fms.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.50


44 S. Brandhorst and T. Hofmann

Table 3. (Continued)

G id 𝑘 (𝐺) G id 𝑘 (𝐺) G id 𝑘 (𝐺)

𝐷12.𝜇6 (72, 30) 1 𝐶2 × 𝐷8.𝜇8 (128, 50) 1 24𝐶2.𝜇6 (192, 1000) 1
𝐷12.𝜇6 (72, 48) 5 𝐶2 × 𝐷8.𝜇8 (128, 206) 1 𝑄8 ∗𝑄8.𝜇2 (64, 134) 2
𝐷12.𝜇8 (96, 27) 1 𝑆𝐷16.𝜇2 (32, 40) 2 𝑄8 ∗𝑄8.𝜇2 (64, 138) 4
𝐷12.𝜇8 (96, 106) 1 𝑆𝐷16.𝜇2 (32, 42) 2 𝑄8 ∗𝑄8.𝜇2 (64, 139) 1
𝐷12.𝜇12 (144, 79) 1 𝑆𝐷16.𝜇2 (32, 43) 6 𝑄8 ∗𝑄8.𝜇2 (64, 257) 1
𝐶4

2 .𝜇2 (32, 27) 6 𝑆𝐷16.𝜇3 (48, 26) 1 𝑄8 ∗𝑄8.𝜇2 (64, 264) 4
𝐶4

2 .𝜇2 (32, 46) 5 𝑆𝐷16.𝜇4 (64, 124) 1 𝑄8 ∗𝑄8.𝜇2 (64, 266) 1
𝐶4

2 .𝜇2 (32, 51) 7 𝑆𝐷16.𝜇4 (64, 125) 1 𝑄8 ∗𝑄8.𝜇3 (96, 201) 1
𝐶4

2 .𝜇3 (48, 49) 2 𝑆𝐷16.𝜇6 (96, 180) 1 𝑄8 ∗𝑄8.𝜇3 (96, 204) 1
𝐶4

2 .𝜇3 (48, 50) 1 𝐴3,3.𝜇2 (36, 9) 2 𝑄8 ∗𝑄8.𝜇4 (128, 134) 1
𝑄8 ∗𝑄8.𝜇4 (128, 522) 1 𝐶2 × 𝑆4.𝜇4 (192, 1469) 1 24𝐷6.𝜇6 (576, 8656) 1
𝑄8 ∗𝑄8.𝜇4 (128, 524) 2 𝑇48.𝜇2 (96, 189) 1 𝑆5.𝜇2 (240, 189) 12
𝑄8 ∗𝑄8.𝜇4 (128, 1633) 1 𝑇48.𝜇2 (96, 193) 2 𝐿2 (7) .𝜇2 (336, 208) 8
𝑄8 ∗𝑄8.𝜇6 (192, 201) 1 𝑇48.𝜇3 (144, 122) 1 𝐿2 (7) .𝜇2 (336, 209) 4
𝑄8 ∗𝑄8.𝜇6 (192, 1504) 1 𝑇48.𝜇6 (288, 900) 1 𝐿2 (7) .𝜇4 (672, 1046) 1
𝑄8 ∗𝑄8.𝜇6 (192, 1509) 1 𝐴5.𝜇2 (120, 34) 7 42𝐴4.𝜇2 (384, 591) 1
𝑄8 ∗𝑄8.𝜇8 (256, 332) 1 𝐴5.𝜇2 (120, 35) 12 42𝐴4.𝜇2 (384, 18134) 1
𝑄8 ∗𝑄8.𝜇12 (384, 5816) 1 𝐴5.𝜇3 (180, 19) 2 42𝐴4.𝜇2 (384, 18135) 2

32𝐶4.𝜇2 (72, 39) 2 𝐴5.𝜇4 (240, 91) 1 42𝐴4.𝜇2 (384, 18235) 2
32𝐶4.𝜇2 (72, 40) 6 𝐴5.𝜇6 (360, 119) 1 42𝐴4.𝜇2 (384, 18236) 1
32𝐶4.𝜇2 (72, 41) 1 𝐴5.𝜇6 (360, 122) 1 42𝐴4.𝜇3 (576, 5129) 1
32𝐶4.𝜇2 (72, 45) 5 Γ25𝑎1.𝜇2 (128, 928) 3 42𝐴4.𝜇4 (768, 1083510) 1
32𝐶4.𝜇3 (108, 36) 1 Γ25𝑎1.𝜇2 (128, 932) 1 42𝐴4.𝜇4 (768, 1088651) 1
32𝐶4.𝜇4 (144, 120) 2 Γ25𝑎1.𝜇2 (128, 1755) 4 42𝐴4.𝜇4 (768, 1088659) 1
32𝐶4.𝜇4 (144, 185) 1 Γ25𝑎1.𝜇2 (128, 1758) 1 42𝐴4.𝜇6 (1152, 155469) 1
32𝐶4.𝜇6 (216, 157) 1 Γ25𝑎1.𝜇2 (128, 1759) 1 𝐻195.𝜇2 (384, 17948) 3
𝑆3,3.𝜇2 (72, 40) 3 Γ25𝑎1.𝜇3 (192, 201) 1 𝑇192.𝜇2 (384, 5602) 1
𝑆3,3.𝜇2 (72, 46) 8 Γ25𝑎1.𝜇4 (256, 6029) 1 𝑇192.𝜇2 (384, 5608) 1
𝑆3,3.𝜇3 (108, 38) 2 Γ25𝑎1.𝜇6 (384, 5837) 1 𝑇192.𝜇2 (384, 20097) 1
𝑆3,3.𝜇4 (144, 115) 1 𝐴4,3.𝜇2 (144, 183) 7 𝑇192.𝜇3 (576, 8277) 1
𝑆3,3.𝜇6 (216, 157) 1 𝐴4,3.𝜇2 (144, 189) 3 𝑇192.𝜇6 (1152, 157515) 1
𝑆3,3.𝜇6 (216, 170) 1 𝐴4,3.𝜇3 (216, 92) 1 𝐴4,4.𝜇2 (576, 8653) 1
24𝐶3.𝜇2 (96, 70) 4 𝐴4,3.𝜇3 (216, 164) 1 𝐴4,4.𝜇2 (576, 8654) 1
24𝐶3.𝜇2 (96, 227) 9 𝐴4,3.𝜇6 (432, 535) 1 𝐴4,4.𝜇2 (576, 8657) 1
24𝐶3.𝜇2 (96, 229) 6 𝐴4,3.𝜇6 (432, 745) 1 𝐴4,4.𝜇4 (1152, 157850) 1
24𝐶3.𝜇3 (144, 184) 2 𝑁72.𝜇2 (144, 182) 1 𝐴6.𝜇2 (720, 763) 2
24𝐶3.𝜇4 (192, 184) 1 𝑁72.𝜇2 (144, 186) 2 𝐴6.𝜇2 (720, 764) 6
24𝐶3.𝜇4 (192, 191) 1 𝑁72.𝜇4 (288, 841) 1 𝐴6.𝜇2 (720, 766) 4
24𝐶3.𝜇4 (192, 1495) 1 𝑀9.𝜇2 (144, 182) 2 𝐴6.𝜇4 (1440, 4595) 1
24𝐶3.𝜇5 (240, 191) 1 𝑀9.𝜇2 (144, 187) 1 𝐹384.𝜇2 (768, 1086051) 1
24𝐶3.𝜇6 (288, 1025) 2 𝑀9.𝜇3 (216, 153) 1 𝐹384.𝜇2 (768, 1090134) 1
24𝐶3.𝜇6 (288, 1029) 1 𝑀9.𝜇6 (432, 735) 1 𝐹384.𝜇2 (768, 1090135) 1
𝐶2 × 𝑆4.𝜇2 (96, 187) 2 24𝐷6.𝜇2 (192, 955) 8 𝐹384.𝜇4 (1536, ‘no id’) 1
𝐶2 × 𝑆4.𝜇2 (96, 195) 1 24𝐷6.𝜇2 (192, 1538) 9 𝑀20.𝜇2 (1920, 240993) 1
𝐶2 × 𝑆4.𝜇2 (96, 226) 15 24𝐷6.𝜇3 (288, 1025) 1 𝑀20.𝜇2 (1920, 240995) 2
𝐶2 × 𝑆4.𝜇4 (192, 972) 2 24𝐷6.𝜇4 (384, 5566) 1 𝑀20.𝜇4 (3840, ‘no id’) 1
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B. Fixed loci of purely nonsymplectic automorphisms

Let X be a K3 surface and 𝜎 ∈ Aut(𝑋) a purely nonsymplectic automorphism of order n acting by 𝜁𝑛
on H0(𝑋,Ω2

𝑋 ). Recall that the fixed locus 𝑋𝜎 is the disjoint union of 𝑁 =
∑𝑠
𝑖=1 𝑎𝑖 isolated fixed points,

k smooth rational curves and either a curve of genus > 1 or 0, 1, 2 curves of genus 1. Denote by 𝑙 ≥ 0
the number of genus 𝑔 ≥ 1 curves fixed by 𝜎. If no such curve is fixed, set 𝑔 = 1. Thus

𝑋𝜎 = {𝑝1, . . . , 𝑝𝑁 } 	 𝑅1 · · · 	 𝑅𝑘 	 𝐶1 · · · 	 𝐶𝑙

where the 𝑅𝑖’s are smooth rational curves and the 𝐶 𝑗 ’s smooth curves of genus g. Let 𝑃 ∈ 𝑋𝜎 be an
isolated fixed point. Recall that there are local coordinates (𝑥, 𝑦) in a small neighborhood centered at P
such that

𝜎(𝑥, 𝑦) = (𝜁 𝑖+1𝑛 𝑥, 𝜁−𝑖𝑛 𝑦) with 1 ≤ 𝑖 ≤ 𝑠 =

⌊
𝑛 − 1

2

⌋
.

We call P a fixed point of type i and denote the number of fixed points of type i by 𝑎𝑖 .
In the following we list for each deformation class of (𝑋, 𝜎) the invariants ((𝑎1, . . . , 𝑎𝑠), 𝑘, 𝑙, 𝑔) of

the fixed locus of 𝜎 and its powers. The column labeled ‘K3 id’ contains the label of the K3 surface in
the database [21]. The following columns contain the invariants of the fixed locus of 𝜎𝑛/ 𝑗 where n is
the order of 𝜎 and j the label of the column.

Table 4. Fixed loci of purely nonsymplectic automorphisms of order 2..

𝑗 = 2 𝑗 = 2 𝑗 = 2 𝑗 = 2

K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g

0.2.1.1 () 10 0 1 0.2.7.3 () 5 1 2 0.2.11.1 () 5 1 6 0.2.13.4 () 0 1 3
0.2.2.1 () 9 0 1 0.2.7.4 () 4 1 1 0.2.11.2 () 4 1 5 0.2.14.1 () 0 1 4
0.2.2.2 () 9 1 1 0.2.7.5 () 4 1 1 0.2.11.3 () 4 1 5 0.2.14.2 () 1 1 5
0.2.3.1 () 9 1 2 0.2.7.6 () 4 0 1 0.2.11.4 () 3 1 4 0.2.14.3 () 2 1 6
0.2.3.2 () 8 1 1 0.2.8.1 () 3 0 1 0.2.11.5 () 3 1 4 0.2.15.1 () 2 1 7
0.2.3.3 () 8 1 1 0.2.8.2 () 3 1 1 0.2.11.6 () 2 1 3 0.2.15.2 () 1 1 6
0.2.3.4 () 8 0 1 0.2.8.3 () 4 1 2 0.2.11.7 () 2 1 3 0.2.15.3 () 1 1 6
0.2.3.5 () 8 0 1 0.2.8.4 () 5 1 3 0.2.11.8 () 0 2 1 0.2.15.4 () 0 1 5
0.2.4.1 () 7 0 1 0.2.9.1 () 5 1 4 0.2.11.9 () 1 1 2 0.2.16.1 () 0 1 6
0.2.4.2 () 7 1 1 0.2.9.2 () 4 1 3 0.2.11.10 () 0 0 1 0.2.16.2 () 1 1 7
0.2.4.3 () 8 1 2 0.2.9.3 () 3 1 2 0.2.11.11 () 0 1 1 0.2.17.1 () 1 1 8
0.2.5.1 () 7 1 2 0.2.9.4 () 2 1 1 0.2.12.1 () 0 1 2 0.2.17.2 () 0 1 7
0.2.5.2 () 6 1 1 0.2.9.5 () 2 0 1 0.2.12.2 () 1 1 3 0.2.18.1 () 0 1 8
0.2.5.3 () 6 0 1 0.2.10.1 () 1 0 1 0.2.12.3 () 2 1 4 0.2.18.2 () 1 1 9
0.2.6.1 () 5 0 1 0.2.10.2 () 1 1 1 0.2.12.4 () 3 1 5 0.2.19.1 () 1 1 10
0.2.6.2 () 5 1 1 0.2.10.3 () 2 1 2 0.2.12.5 () 4 1 6 0.2.19.2 () 0 1 9
0.2.6.3 () 6 1 2 0.2.10.4 () 3 1 3 0.2.13.1 () 3 1 6 0.2.19.3 () 0 1 9
0.2.7.1 () 6 1 3 0.2.10.5 () 4 1 4 0.2.13.2 () 2 1 5 0.2.20.1 () 0 1 10
0.2.7.2 () 5 1 2 0.2.10.6 () 5 1 5 0.2.13.3 () 1 1 4

Table 5. Fixed loci of purely nonsymplectic automorphisms of order 3..

𝑗 = 3 𝑗 = 3 𝑗 = 3 𝑗 = 3

K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g

0.3.0.1 (9) 6 0 1 0.3.3.2 (6) 3 0 1 0.3.5.3 (4) 1 1 1 0.3.7.1 (2) 1 1 3
0.3.1.1 (8) 5 1 1 0.3.4.1 (5) 3 1 2 0.3.5.4 (4) 1 0 1 0.3.7.2 (2) 0 1 2
0.3.1.2 (8) 5 0 1 0.3.4.2 (5) 2 1 1 0.3.6.1 (3) 2 1 3 0.3.8.1 (1) 1 1 4
0.3.2.1 (7) 4 1 1 0.3.4.3 (5) 2 0 1 0.3.6.2 (3) 1 1 2 0.3.8.2 (1) 0 1 3
0.3.2.2 (7) 4 0 1 0.3.5.1 (4) 3 1 3 0.3.6.3 (3) 0 1 1 0.3.9.1 (0) 1 1 5
0.3.3.1 (6) 3 1 1 0.3.5.2 (4) 2 1 2 0.3.6.4 (3) 0 0 1 0.3.9.2 (0) 0 1 4
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Table 6. Fixed loci of purely nonsymplectic automorphisms of order 4..

𝑗 = 4 𝑗 = 2 𝑗 = 4 𝑗 = 2 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g

0.4.0.1 (4) 0 0 1 () 10 0 1 0.4.1.4 (4) 0 0 1 () 8 1 1 0.4.1.10 (6) 1 0 1 () 8 0 1
0.4.0.2 (6) 1 0 1 () 10 0 1 0.4.1.5 (4) 0 0 1 () 8 1 1 0.4.1.11 (8) 2 0 1 () 8 0 1
0.4.0.3 (12) 4 0 1 () 10 0 1 0.4.1.6 (4) 0 1 1 () 8 1 1 0.4.1.12 (10) 3 0 1 () 8 0 1
0.4.1.1 (4) 0 0 1 () 9 1 2 0.4.1.7 (12) 4 0 1 () 8 1 1 0.4.2.1 (4) 0 0 1 () 7 1 2
0.4.1.2 (12) 4 0 1 () 9 1 2 0.4.1.8 (4) 0 0 1 () 8 0 1 0.4.2.2 (10) 3 0 1 () 7 1 2
0.4.1.3 (4) 0 0 1 () 8 1 1 0.4.1.9 (4) 0 0 1 () 8 0 1 0.4.2.3 (4) 0 1 1 () 6 1 1
0.4.2.4 (4) 0 0 1 () 6 1 1 0.4.4.2 (8) 2 0 1 () 4 1 3 0.4.5.12 (4) 0 0 1 () 0 2 1
0.4.2.5 (4) 0 0 1 () 6 1 1 0.4.4.3 (2) 0 1 2 () 3 1 2 0.4.5.13 (4) 0 0 1 () 1 1 2
0.4.2.6 (10) 3 0 1 () 6 1 1 0.4.4.4 (4) 0 0 1 () 3 1 2 0.4.5.14 (4) 0 1 1 () 0 2 1
0.4.2.7 (4) 0 0 1 () 6 0 1 0.4.4.5 (6) 1 0 1 () 3 1 2 0.4.5.15 (6) 1 0 1 () 1 1 2
0.4.2.8 (6) 1 0 1 () 6 0 1 0.4.4.6 (8) 2 0 1 () 3 1 2 0.4.5.16 (4) 0 0 1 () 0 1 1
0.4.2.9 (8) 2 0 1 () 6 0 1 0.4.4.7 (4) 0 1 1 () 2 1 1 0.4.6.1 (6) 1 0 1 () 3 1 6
0.4.3.1 (10) 3 0 1 () 6 1 3 0.4.4.8 (4) 0 0 1 () 2 1 1 0.4.6.2 (6) 1 0 1 () 2 1 5
0.4.3.2 (2) 0 1 2 () 5 1 2 0.4.4.9 (4) 0 0 1 () 2 1 1 0.4.6.3 (4) 0 0 1 () 1 1 4
0.4.3.3 (4) 0 0 1 () 5 1 2 0.4.4.10 (6) 1 0 1 () 2 1 1 0.4.6.4 (6) 1 0 1 () 1 1 4
0.4.3.4 (8) 2 0 1 () 5 1 2 0.4.4.11 (4) 0 0 1 () 2 0 1 0.4.6.5 (0) 0 1 3 () 0 1 3
0.4.3.5 (10) 3 0 1 () 5 1 2 0.4.5.1 (8) 2 0 1 () 5 1 6 0.4.6.6 (4) 0 0 1 () 0 1 3
0.4.3.6 (4) 0 0 1 () 4 1 1 0.4.5.2 (8) 2 0 1 () 4 1 5 0.4.7.1 (6) 1 0 1 () 2 1 7
0.4.3.7 (4) 0 0 1 () 4 1 1 0.4.5.3 (4) 0 0 1 () 3 1 4 0.4.7.2 (4) 0 0 1 () 1 1 6
0.4.3.8 (4) 0 1 1 () 4 1 1 0.4.5.4 (6) 1 0 1 () 3 1 4 0.4.7.3 (6) 1 0 1 () 1 1 6
0.4.3.9 (6) 1 0 1 () 4 1 1 0.4.5.5 (8) 2 0 1 () 3 1 4 0.4.7.4 (4) 0 0 1 () 0 1 5

0.4.3.10 (6) 1 0 1 () 4 1 1 0.4.5.6 (0) 0 1 3 () 2 1 3 0.4.8.1 (4) 0 0 1 () 1 1 8
0.4.3.11 (6) 1 1 1 () 4 1 1 0.4.5.7 (4) 0 0 1 () 2 1 3 0.4.8.2 (4) 0 0 1 () 0 1 7
0.4.3.12 (8) 2 0 1 () 4 1 1 0.4.5.8 (4) 0 0 1 () 2 1 3 0.4.9.1 (4) 0 0 1 () 1 1 10
0.4.3.13 (4) 0 0 1 () 4 0 1 0.4.5.9 (6) 1 0 1 () 2 1 3 0.4.9.2 (4) 0 0 1 () 0 1 9
0.4.3.14 (6) 1 0 1 () 4 0 1 0.4.5.10 (8) 2 0 1 () 2 1 3
0.4.4.1 (8) 2 0 1 () 5 1 4 0.4.5.11 (2) 0 1 2 () 1 1 2

Table 7. Fixed loci of purely nonsymplectic automorphisms of order 5..

𝑗 = 5 𝑗 = 5 𝑗 = 5

K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g

0.5.0.1 (9 4) 3 0 1 0.5.2.2 (5 2) 1 0 1 0.5.4.1 (1 0) 0 1 2
0.5.1.1 (7 3) 2 0 1 0.5.3.1 (3 1) 0 1 1
0.5.2.1 (5 2) 1 1 1 0.5.3.2 (3 1) 0 0 1

Table 8. Fixed loci of purely nonsymplectic automorphisms of order 6..

𝑗 = 6 𝑗 = 3 𝑗 = 2 𝑗 = 6 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.6.0.1 (3 0) 0 0 1 (3) 0 0 1 () 9 1 1 0.6.1.6 (0 6) 0 0 1 (8) 5 0 1 () 0 2 1
0.6.0.2 (3 0) 0 0 1 (9) 6 0 1 () 0 1 1 0.6.1.7 (4 4) 1 0 1 (8) 5 0 1 () 3 1 2
0.6.0.3 (1 4) 0 0 1 (9) 6 0 1 () 1 1 1 0.6.1.8 (6 6) 2 0 1 (8) 5 0 1 () 6 1 2
0.6.0.4 (3 6) 1 0 1 (9) 6 0 1 () 4 1 1 0.6.1.9 (2 2) 0 0 1 (2) 0 1 2 () 8 0 1
0.6.0.5 (9 6) 3 0 1 (9) 6 0 1 () 9 1 1 0.6.1.10 (4 4) 1 0 1 (4) 1 1 1 () 8 0 1
0.6.0.6 (2 2) 0 0 1 (4) 1 0 1 () 8 0 1 0.6.1.11 (6 6) 2 0 1 (6) 3 1 1 () 8 0 1
0.6.0.7 (2 2) 0 0 1 (8) 5 0 1 () 2 0 1 0.6.1.12 (3 0) 0 0 1 (3) 0 0 1 () 6 1 1
0.6.0.8 (6 6) 2 0 1 (8) 5 0 1 () 8 0 1 0.6.1.13 (3 0) 0 0 1 (7) 4 0 1 () 0 1 1
0.6.1.1 (0 6) 0 0 1 (8) 5 1 1 () 0 2 1 0.6.1.14 (1 4) 0 0 1 (7) 4 0 1 () 1 1 1
0.6.1.2 (8 8) 3 0 1 (8) 5 1 1 () 9 1 2 0.6.1.15 (3 6) 1 0 1 (7) 4 0 1 () 4 1 1
0.6.1.3 (2 2) 0 0 1 (8) 5 0 1 () 1 1 3 0.6.1.16 (7 4) 2 0 1 (7) 4 0 1 () 6 1 1
0.6.1.4 (2 2) 0 0 1 (8) 5 0 1 () 0 1 2 0.6.1.17 (2 2) 0 0 1 (4) 1 0 1 () 5 0 1
0.6.1.5 (2 2) 0 0 1 (8) 5 0 1 () 0 1 2 0.6.1.18 (2 2) 0 0 1 (6) 3 0 1 () 2 0 1

0.6.1.19 (4 4) 1 0 1 (6) 3 0 1 () 5 0 1 0.6.3.19 (0 6) 0 0 1 (4) 1 1 1 () 0 2 1

(Continues)
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Table 8. (Continued)

𝑗 = 6 𝑗 = 3 𝑗 = 2 𝑗 = 6 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.6.2.1 (1 4) 0 0 1 (7) 4 1 1 () 0 1 3 0.6.3.20 (4 4) 1 0 1 (4) 1 1 1 () 3 1 2
0.6.2.2 (5 8) 2 0 1 (7) 4 1 1 () 6 1 3 0.6.3.21 (3 0) 0 0 1 (5) 2 0 1 () 0 1 4
0.6.2.3 (0 6) 0 0 1 (6) 3 1 1 () 0 2 1 0.6.3.22 (1 4) 0 0 1 (5) 2 0 1 () 0 1 3
0.6.2.4 (6 6) 2 0 1 (6) 3 1 1 () 6 1 2 0.6.3.23 (1 4) 0 0 1 (5) 2 0 1 () 1 1 4
0.6.2.5 (3 0) 0 0 1 (7) 4 0 1 () 0 1 4 0.6.3.24 (5 2) 1 0 1 (5) 2 0 1 () 2 1 3
0.6.2.6 (1 4) 0 0 1 (7) 4 0 1 () 0 1 3 0.6.3.25 (5 2) 1 0 1 (5) 2 0 1 () 3 1 4
0.6.2.7 (1 4) 0 0 1 (7) 4 0 1 () 0 1 3 0.6.3.26 (1 4) 0 0 1 (3) 1 1 2 () 1 1 1
0.6.2.8 (1 4) 0 0 1 (7) 4 0 1 () 1 1 4 0.6.3.27 (1 4) 0 0 1 (3) 0 1 1 () 1 1 1
0.6.2.9 (5 2) 1 0 1 (7) 4 0 1 () 2 1 3 0.6.3.28 (2 2) 0 0 1 (4) 1 0 1 () 2 1 4

0.6.2.10 (3 6) 1 0 1 (7) 4 0 1 () 3 1 3 0.6.3.29 (2 2) 0 0 1 (4) 1 0 1 () 1 1 3
0.6.2.11 (7 4) 2 0 1 (7) 4 0 1 () 5 1 3 0.6.3.30 (2 2) 0 0 1 (4) 1 0 1 () 0 1 2
0.6.2.12 (1 4) 0 0 1 (3) 0 1 1 () 4 1 1 0.6.3.31 (2 2) 0 0 1 (2) 0 1 2 () 2 0 1
0.6.2.13 (3 6) 1 0 1 (5) 2 1 1 () 4 1 1 0.6.3.32 (2 2) 0 0 1 (2) 1 1 3 () 2 0 1
0.6.2.14 (2 2) 0 0 1 (6) 3 0 1 () 1 1 3 0.6.3.33 (3 0) 0 0 1 (3) 0 0 1 () 0 1 1
0.6.2.15 (2 2) 0 0 1 (6) 3 0 1 () 0 1 2 0.6.3.34 (3 0) 0 0 1 (3) 0 0 1 () 0 2 1
0.6.2.16 (0 6) 0 0 1 (6) 3 0 1 () 0 2 1 0.6.3.35 (3 0) 0 0 1 (3) 0 1 1 () 0 1 1
0.6.2.17 (4 4) 1 0 1 (6) 3 0 1 () 3 1 2 0.6.3.36 (3 0) 0 1 1 (3) 0 1 1 () 0 2 1
0.6.2.18 (4 4) 1 0 1 (6) 3 0 1 () 4 1 3 0.6.3.37 (0 0) 0 1 2 (2) 0 1 2 () 0 1 2
0.6.2.19 (2 2) 0 0 1 (2) 0 1 2 () 5 0 1 0.6.4.1 (5 8) 2 0 1 (5) 3 1 2 () 5 1 5
0.6.2.20 (4 4) 1 0 1 (4) 2 1 2 () 5 0 1 0.6.4.2 (2 8) 1 0 1 (4) 2 1 2 () 3 1 4
0.6.2.21 (4 4) 1 0 1 (4) 1 1 1 () 5 0 1 0.6.4.3 (1 4) 0 0 1 (5) 2 1 1 () 0 1 6
0.6.2.22 (3 0) 0 0 1 (3) 0 0 1 () 3 1 1 0.6.4.4 (3 6) 1 0 1 (5) 2 1 1 () 2 1 5
0.6.2.23 (3 0) 0 0 1 (5) 2 0 1 () 0 1 1 0.6.4.5 (3 6) 1 0 1 (5) 2 1 1 () 3 1 6
0.6.2.24 (1 4) 0 0 1 (5) 2 0 1 () 1 1 1 0.6.4.6 (3 6) 1 0 1 (3) 1 1 2 () 3 1 3
0.6.2.25 (5 2) 1 0 1 (5) 2 0 1 () 3 1 1 0.6.4.7 (0 6) 0 0 1 (4) 1 1 1 () 0 1 4
0.6.2.26 (2 2) 0 0 1 (4) 1 0 1 () 2 0 1 0.6.4.8 (4 4) 1 0 1 (4) 1 1 1 () 2 1 4
0.6.2.27 (2 2) 0 0 1 (4) 1 0 1 () 2 1 1 0.6.4.9 (0 6) 0 0 1 (2) 0 1 2 () 0 2 1
0.6.2.28 (2 2) 0 0 1 (4) 1 1 1 () 2 0 1 0.6.4.10 (0 6) 0 0 1 (2) 1 1 3 () 0 2 1
0.6.2.29 (2 2) 0 1 1 (4) 1 1 1 () 2 1 1 0.6.4.11 (3 0) 0 0 1 (5) 2 0 1 () 0 1 7
0.6.3.1 (5 8) 2 0 1 (5) 3 1 2 () 6 1 3 0.6.4.12 (3 0) 0 0 1 (5) 2 0 1 () 0 1 7
0.6.3.2 (0 6) 0 0 1 (6) 3 1 1 () 0 1 4 0.6.4.13 (1 4) 0 0 1 (5) 2 0 1 () 1 1 7
0.6.3.3 (2 8) 1 0 1 (6) 3 1 1 () 3 1 4 0.6.4.14 (1 4) 0 0 1 (5) 2 0 1 () 0 1 6
0.6.3.4 (6 6) 2 0 1 (6) 3 1 1 () 5 1 4 0.6.4.15 (5 2) 1 0 1 (5) 2 0 1 () 2 1 6
0.6.3.5 (1 4) 0 0 1 (5) 2 1 1 () 0 1 3 0.6.4.16 (5 2) 1 0 1 (5) 2 0 1 () 1 1 5
0.6.3.6 (3 6) 1 0 1 (5) 2 1 1 () 3 1 3 0.6.4.17 (1 4) 0 0 1 (3) 0 1 1 () 0 1 3
0.6.3.7 (1 4) 0 0 1 (1) 0 1 3 () 4 1 1 0.6.4.18 (1 4) 0 0 1 (3) 0 1 1 () 1 1 4
0.6.3.8 (3 6) 1 0 1 (3) 1 1 2 () 4 1 1 0.6.4.19 (1 4) 0 0 1 (1) 1 1 4 () 1 1 1
0.6.3.9 (3 6) 1 0 1 (3) 2 1 3 () 4 1 1 0.6.4.20 (1 4) 0 0 1 (1) 0 1 3 () 1 1 1

0.6.3.10 (2 2) 0 0 1 (6) 3 0 1 () 0 1 5 0.6.4.21 (2 2) 0 0 1 (4) 1 0 1 () 0 1 5
0.6.3.11 (2 2) 0 0 1 (6) 3 0 1 () 0 1 5 0.6.4.22 (2 2) 0 0 1 (4) 1 0 1 () 1 1 6
0.6.3.12 (2 2) 0 0 1 (6) 3 0 1 () 1 1 6 0.6.4.23 (2 2) 0 0 1 (4) 1 0 1 () 1 1 6
0.6.3.13 (2 2) 0 0 1 (6) 3 0 1 () 1 1 6 0.6.4.24 (2 2) 0 0 1 (4) 1 0 1 () 2 1 7
0.6.3.14 (0 6) 0 0 1 (6) 3 0 1 () 0 1 4 0.6.4.25 (2 2) 0 0 1 (2) 0 1 2 () 0 1 2
0.6.3.15 (6 0) 1 0 1 (6) 3 0 1 () 1 1 4 0.6.4.26 (3 0) 0 0 1 (3) 0 0 1 () 0 1 4
0.6.3.16 (4 4) 1 0 1 (6) 3 0 1 () 4 1 6 0.6.5.1 (4 10) 2 0 1 (4) 3 1 3 () 5 1 6
0.6.3.17 (4 4) 1 0 1 (6) 3 0 1 () 3 1 5 0.6.5.2 (2 8) 1 0 1 (4) 2 1 2 () 2 1 6
0.6.3.18 (4 4) 1 0 1 (6) 3 0 1 () 2 1 4 0.6.5.3 (2 8) 1 0 1 (2) 1 1 3 () 3 1 4
0.6.5.4 (3 6) 1 0 1 (3) 1 1 2 () 2 1 5 0.6.6.1 (1 10) 1 0 1 (3) 2 1 3 () 2 1 7
0.6.5.5 (0 6) 0 0 1 (4) 1 1 1 () 0 1 7 0.6.6.2 (2 8) 1 0 1 (2) 1 1 3 () 2 1 6
0.6.5.6 (4 4) 1 0 1 (4) 1 1 1 () 1 1 6 0.6.6.3 (3 6) 1 0 1 (3) 1 1 2 () 1 1 7
0.6.5.7 (4 4) 1 0 1 (4) 1 1 1 () 2 1 7 0.6.6.4 (0 6) 0 0 1 (2) 0 1 2 () 0 1 7
0.6.5.8 (0 6) 0 0 1 (2) 0 1 2 () 0 1 4 0.6.6.5 (0 6) 0 0 1 (0) 0 1 4 () 0 1 4
0.6.5.9 (0 6) 0 0 1 (0) 0 1 4 () 0 2 1 0.6.6.6 (1 4) 0 0 1 (3) 0 1 1 () 0 1 9

0.6.5.10 (0 6) 0 0 1 (0) 1 1 5 () 0 2 1 0.6.6.7 (1 4) 0 0 1 (3) 0 1 1 () 0 1 9
0.6.5.11 (1 4) 0 0 1 (3) 0 1 1 () 1 1 7 0.6.6.8 (1 4) 0 0 1 (3) 0 1 1 () 1 1 10
0.6.5.12 (1 4) 0 0 1 (3) 0 1 1 () 0 1 6 0.6.6.9 (3 0) 0 0 1 (3) 0 0 1 () 0 1 10
0.6.5.13 (1 4) 0 0 1 (1) 0 1 3 () 0 1 3 0.6.7.1 (1 10) 1 0 1 (1) 1 1 4 () 2 1 7
0.6.5.14 (2 2) 0 0 1 (4) 1 0 1 () 1 1 9 0.6.7.2 (2 8) 1 0 1 (2) 1 1 3 () 1 1 8
0.6.5.15 (2 2) 0 0 1 (4) 1 0 1 () 0 1 8 0.6.7.3 (0 6) 0 0 1 (2) 0 1 2 () 0 1 10
0.6.5.16 (2 2) 0 0 1 (4) 1 0 1 () 0 1 8 0.6.8.1 (1 10) 1 0 1 (1) 1 1 4 () 1 1 9
0.6.5.17 (3 0) 0 0 1 (3) 0 0 1 () 0 1 7 0.6.9.1 (0 12) 1 0 1 (0) 1 1 5 () 1 1 10
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Table 9. Fixed loci of purely nonsymplectic automorphisms of order 7..

𝑗 = 7 𝑗 = 7

K3 id (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g

0.7.0.1 (6 5 2) 2 0 1 0.7.2.1 (2 1 0) 0 1 1
0.7.1.1 (4 3 1) 1 1 1 0.7.2.2 (2 1 0) 0 0 1
0.7.1.2 (4 3 1) 1 0 1

Table 10. Fixed loci of purely nonsymplectic automorphisms of order 8..

𝑗 = 8 𝑗 = 4 𝑗 = 2 𝑗 = 8 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.8.0.1 (2 0 0) 0 0 1 (4) 0 0 1 () 8 1 1 0.8.2.1 (4 2 2) 1 0 1 (8) 2 0 1 () 4 1 5
0.8.0.2 (2 0 0) 0 0 1 (12) 4 0 1 () 8 1 1 0.8.2.2 (1 1 2) 0 0 1 (6) 1 0 1 () 3 1 4
0.8.0.3 (0 2 4) 0 0 1 (12) 4 0 1 () 8 1 1 0.8.2.3 (4 2 2) 1 0 1 (8) 2 0 1 () 3 1 4
0.8.0.4 (6 4 4) 2 0 1 (12) 4 0 1 () 8 1 1 0.8.2.4 (1 1 2) 0 0 1 (6) 1 0 1 () 2 1 3
0.8.0.5 (1 1 2) 0 0 1 (6) 1 0 1 () 8 0 1 0.8.2.5 (2 0 0) 0 0 1 (8) 2 0 1 () 2 1 3
0.8.0.6 (1 1 2) 0 0 1 (10) 3 0 1 () 8 0 1 0.8.2.6 (5 1 0) 1 0 1 (6) 1 0 1 () 2 1 3
0.8.0.7 (3 3 4) 1 0 1 (10) 3 0 1 () 8 0 1 0.8.2.7 (0 2 4) 0 0 1 (8) 2 0 1 () 2 1 3
0.8.1.1 (7 3 2) 2 0 1 (10) 3 0 1 () 6 1 3 0.8.2.8 (2 0 0) 0 1 1 (4) 0 1 1 () 0 2 1
0.8.1.2 (1 1 2) 0 0 1 (10) 3 0 1 () 5 1 2 0.8.2.9 (1 1 2) 0 0 1 (2) 0 1 2 () 1 1 2
0.8.1.3 (3 3 4) 1 0 1 (10) 3 0 1 () 5 1 2 0.8.2.10 (2 0 0) 0 0 1 (4) 0 1 1 () 0 2 1
0.8.1.4 (2 0 0) 0 0 1 (4) 0 0 1 () 4 1 1 0.8.2.11 (2 0 0) 0 0 1 (4) 0 0 1 () 0 2 1
0.8.1.5 (2 0 0) 0 0 1 (8) 2 0 1 () 4 1 1 0.8.2.12 (0 2 4) 0 0 1 (4) 0 1 1 () 0 2 1
0.8.1.6 (1 1 2) 0 0 1 (6) 1 0 1 () 4 1 1 0.8.2.13 (1 1 2) 0 0 1 (6) 1 0 1 () 1 1 2
0.8.1.7 (1 1 2) 0 0 1 (6) 1 1 1 () 4 1 1 0.8.2.14 (2 0 0) 0 0 1 (4) 0 0 1 () 0 1 1
0.8.1.8 (1 1 2) 0 1 1 (6) 1 1 1 () 4 1 1 0.8.3.1 (5 1 0) 1 0 1 (6) 1 0 1 () 2 1 7
0.8.1.9 (0 2 4) 0 0 1 (8) 2 0 1 () 4 1 1 0.8.3.2 (1 1 2) 0 0 1 (6) 1 0 1 () 1 1 6

0.8.1.10 (4 2 2) 1 0 1 (8) 2 0 1 () 4 1 1 0.8.3.3 (5 1 0) 1 0 1 (6) 1 0 1 () 1 1 6
0.8.1.11 (3 3 4) 1 0 1 (6) 1 1 1 () 4 1 1 0.8.3.4 (2 0 0) 0 0 1 (4) 0 0 1 () 0 1 5
0.8.1.12 (1 1 2) 0 0 1 (6) 1 0 1 () 4 0 1 0.8.4.1 (2 0 0) 0 0 1 (4) 0 0 1 () 0 1 9

Table 11. Fixed loci of purely nonsymplectic automorphisms of order 9..

𝑗 = 9 𝑗 = 3 𝑗 = 9 𝑗 = 3

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g

0.9.0.1 (6 5 2 1) 2 0 1 (7) 4 1 1 0.9.1.5 (0 1 4 1) 0 0 1 (4) 1 1 1
0.9.0.2 (1 1 1 0) 0 0 1 (7) 4 0 1 0.9.1.6 (4 3 0 0) 1 0 1 (4) 1 1 1
0.9.0.3 (3 3 3 1) 1 0 1 (7) 4 0 1 0.9.1.7 (1 1 1 0) 0 0 1 (4) 1 0 1
0.9.1.1 (3 3 3 1) 1 0 1 (4) 3 1 3 0.9.2.1 (0 1 4 1) 0 0 1 (1) 1 1 4
0.9.1.2 (3 3 3 1) 1 0 1 (4) 2 1 2 0.9.2.2 (1 1 1 0) 0 0 1 (1) 0 1 3
0.9.1.3 (1 1 1 0) 0 0 1 (4) 1 1 1 0.9.2.3 (0 1 4 1) 0 0 1 (1) 0 1 3
0.9.1.4 (1 1 1 0) 0 1 1 (4) 1 1 1

https://doi.org/10.1017/fms.2023.50 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.50


Forum of Mathematics, Sigma 49

Table 12. Fixed loci of purely nonsymplectic automorphisms of order 10..

𝑗 = 10 𝑗 = 5 𝑗 = 2 𝑗 = 10 𝑗 = 5 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.10.0.1 (1 0 0 2) 0 0 1 (9 4) 3 0 1 () 0 1 2 0.10.1.13 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 1 1 1
0.10.0.2 (0 2 1 2) 0 0 1 (9 4) 3 0 1 () 1 1 2 0.10.1.14 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 1 0 1
0.10.0.3 (3 2 2 4) 1 0 1 (9 4) 3 0 1 () 5 1 2 0.10.2.1 (0 0 1 6) 0 0 1 (5 2) 1 1 1 () 1 1 6
0.10.0.4 (6 4 3 2) 2 0 1 (9 4) 3 0 1 () 8 1 2 0.10.2.2 (3 2 2 4) 1 0 1 (5 2) 1 1 1 () 4 1 6
0.10.0.5 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 6 0 1 0.10.2.3 (0 1 1 4) 0 0 1 (3 1) 0 1 1 () 1 1 4
0.10.0.6 (1 1 0 0) 0 0 1 (7 3) 2 0 1 () 1 0 1 0.10.2.4 (1 0 0 2) 0 0 1 (5 2) 1 0 1 () 0 1 7
0.10.0.7 (3 3 2 2) 1 0 1 (7 3) 2 0 1 () 6 0 1 0.10.2.5 (0 2 1 2) 0 0 1 (5 2) 1 0 1 () 1 1 7
0.10.1.1 (3 2 2 4) 1 0 1 (5 2) 1 1 1 () 5 1 2 0.10.2.6 (0 2 1 2) 0 0 1 (5 2) 1 0 1 () 0 1 6
0.10.1.2 (1 1 0 0) 0 0 1 (7 3) 2 0 1 () 0 1 5 0.10.2.7 (5 0 0 0) 1 0 1 (5 2) 1 0 1 () 1 1 6
0.10.1.3 (0 3 1 0) 0 0 1 (7 3) 2 0 1 () 0 1 4 0.10.2.8 (4 2 1 0) 1 0 1 (5 2) 1 0 1 () 2 1 6
0.10.1.4 (0 1 1 4) 0 0 1 (7 3) 2 0 1 () 1 1 4 0.10.2.9 (1 0 0 2) 0 0 1 (1 0) 0 1 2 () 0 1 2
0.10.1.5 (4 1 1 2) 1 0 1 (7 3) 2 0 1 () 3 1 4 0.10.2.10 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 0 1 5
0.10.1.6 (3 3 2 2) 1 0 1 (7 3) 2 0 1 () 5 1 5 0.10.2.11 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 1 1 6
0.10.1.7 (3 3 2 2) 1 0 1 (7 3) 2 0 1 () 4 1 4 0.10.3.1 (0 0 1 6) 0 0 1 (1 0) 0 1 2 () 1 1 6
0.10.1.8 (1 0 0 2) 0 0 1 (5 2) 1 0 1 () 0 1 2 0.10.3.2 (0 1 1 4) 0 0 1 (3 1) 0 1 1 () 1 1 9
0.10.1.9 (0 2 1 2) 0 0 1 (5 2) 1 0 1 () 1 1 2 0.10.3.3 (0 1 1 4) 0 0 1 (3 1) 0 1 1 () 0 1 8

0.10.1.10 (4 2 1 0) 1 0 1 (5 2) 1 0 1 () 3 1 2 0.10.3.4 (1 1 0 0) 0 0 1 (3 1) 0 0 1 () 0 1 10
0.10.1.11 (1 1 0 0) 0 1 1 (3 1) 0 1 1 () 1 1 1 0.10.4.1 (0 0 1 6) 0 0 1 (1 0) 0 1 2 () 0 1 10
0.10.1.12 (1 1 0 0) 0 0 1 (3 1) 0 1 1 () 1 0 1

Table 13. Fixed loci of purely nonsymplectic automor-
phisms of order 11..

𝑗 = 11

K3 id (𝑎𝑖) k l g

0.11.0.1 (3 2 2 3 1) 1 0 1
0.11.1.1 (1 0 0 1 0) 0 1 1
0.11.1.2 (1 0 0 1 0) 0 0 1

Table 14. Fixed loci of purely nonsymplectic automorphisms of order 12..

𝑗 = 12 𝑗 = 6 𝑗 = 4 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.12.0.1 (0 2 0 0 2) 0 0 1 (8 8) 3 0 1 (4) 0 0 1 (8) 5 1 1 () 9 1 2
0.12.0.2 (6 4 2 2 2) 2 0 1 (8 8) 3 0 1 (12) 4 0 1 (8) 5 1 1 () 9 1 2
0.12.0.3 (0 0 2 2 2) 0 0 1 (4 4) 1 0 1 (8) 2 0 1 (4) 1 1 1 () 8 0 1
0.12.0.4 (3 3 1 1 2) 1 0 1 (6 6) 2 0 1 (8) 2 0 1 (6) 3 1 1 () 8 0 1
0.12.0.5 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (3) 0 0 1 () 6 1 1
0.12.0.6 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (7) 4 0 1 () 0 1 1
0.12.0.7 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (10) 3 0 1 (3) 0 0 1 () 6 1 1
0.12.0.8 (1 0 0 0 0) 0 0 1 (7 4) 2 0 1 (4) 0 0 1 (7) 4 0 1 () 6 1 1
0.12.0.9 (0 1 1 1 2) 0 0 1 (3 6) 1 0 1 (6) 1 0 1 (7) 4 0 1 () 4 1 1

0.12.0.10 (0 0 0 3 4) 0 0 1 (7 4) 2 0 1 (4) 0 1 1 (7) 4 0 1 () 6 1 1
0.12.0.11 (3 3 3 0 0) 1 0 1 (3 6) 1 0 1 (6) 1 1 1 (7) 4 0 1 () 4 1 1
0.12.0.12 (3 2 2 2 2) 1 0 1 (7 4) 2 0 1 (10) 3 0 1 (7) 4 0 1 () 6 1 1
0.12.1.1 (3 2 2 2 2) 1 0 1 (5 8) 2 0 1 (10) 3 0 1 (5) 3 1 2 () 6 1 3
0.12.1.2 (0 2 0 0 2) 0 0 1 (2 8) 1 0 1 (4) 0 0 1 (6) 3 1 1 () 3 1 4
0.12.1.3 (3 3 1 1 2) 1 0 1 (6 6) 2 0 1 (8) 2 0 1 (6) 3 1 1 () 5 1 4
0.12.1.4 (0 0 4 1 0) 0 0 1 (1 4) 0 0 1 (6) 1 1 1 (1) 0 1 3 () 4 1 1
0.12.1.5 (0 1 1 1 2) 0 0 1 (3 6) 1 0 1 (6) 1 0 1 (3) 1 1 2 () 4 1 1
0.12.1.6 (0 1 1 1 2) 0 0 1 (3 6) 1 0 1 (6) 1 0 1 (3) 2 1 3 () 4 1 1
0.12.1.7 (3 3 3 0 0) 1 0 1 (3 6) 1 0 1 (6) 1 1 1 (3) 2 1 3 () 4 1 1
0.12.1.8 (0 1 3 0 0) 0 0 1 (0 6) 0 0 1 (4) 0 1 1 (4) 1 1 1 () 0 2 1
0.12.1.9 (0 0 2 2 2) 0 0 1 (4 4) 1 0 1 (2) 0 1 2 (4) 1 1 1 () 3 1 2

0.12.1.10 (0 2 0 0 2) 0 0 1 (4 4) 1 0 1 (4) 0 0 1 (4) 1 1 1 () 3 1 2

(Continues)
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Table 14. (Continued)

𝑗 = 12 𝑗 = 6 𝑗 = 4 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.12.1.11 (4 2 0 0 0) 1 0 1 (4 4) 1 0 1 (6) 1 0 1 (4) 1 1 1 () 3 1 2
0.12.1.12 (0 0 2 2 2) 0 0 1 (4 4) 1 0 1 (8) 2 0 1 (4) 1 1 1 () 3 1 2
0.12.1.13 (1 0 0 0 0) 0 0 1 (1 4) 0 0 1 (4) 0 0 1 (5) 2 0 1 () 0 1 3
0.12.1.14 (0 1 1 1 2) 0 0 1 (5 2) 1 0 1 (6) 1 0 1 (5) 2 0 1 () 2 1 3
0.12.1.15 (4 1 1 1 0) 1 0 1 (5 2) 1 0 1 (8) 2 0 1 (5) 2 0 1 () 3 1 4
0.12.1.16 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (3) 0 0 1 () 0 1 1
0.12.1.17 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (3) 0 0 1 () 0 2 1
0.12.1.18 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (3) 0 1 1 () 0 1 1
0.12.1.19 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 1 1 (3) 0 0 1 () 0 2 1
0.12.1.20 (1 0 0 0 0) 0 0 1 (3 0) 0 1 1 (4) 0 0 1 (3) 0 1 1 () 0 2 1
0.12.1.21 (1 0 0 0 0) 0 1 1 (3 0) 0 1 1 (4) 0 1 1 (3) 0 1 1 () 0 2 1
0.12.1.22 (0 0 0 3 4) 0 0 1 (3 0) 0 1 1 (4) 0 1 1 (3) 0 1 1 () 0 2 1
0.12.2.1 (3 3 1 1 2) 1 0 1 (4 10) 2 0 1 (8) 2 0 1 (4) 3 1 3 () 5 1 6
0.12.2.2 (0 2 0 0 2) 0 0 1 (2 8) 1 0 1 (4) 0 0 1 (2) 1 1 3 () 3 1 4
0.12.2.3 (0 0 2 2 2) 0 0 1 (2 8) 1 0 1 (8) 2 0 1 (2) 1 1 3 () 3 1 4
0.12.2.4 (0 1 1 1 2) 0 0 1 (3 6) 1 0 1 (6) 1 0 1 (3) 1 1 2 () 2 1 5
0.12.2.5 (0 2 0 0 2) 0 0 1 (4 4) 1 0 1 (4) 0 0 1 (4) 1 1 1 () 1 1 6
0.12.2.6 (4 2 0 0 0) 1 0 1 (4 4) 1 0 1 (6) 1 0 1 (4) 1 1 1 () 2 1 7
0.12.2.7 (0 1 3 0 0) 0 0 1 (0 6) 0 0 1 (4) 0 1 1 (0) 0 1 4 () 0 2 1
0.12.2.8 (0 1 3 0 0) 0 0 1 (0 6) 0 0 1 (4) 0 1 1 (0) 1 1 5 () 0 2 1
0.12.2.9 (1 0 0 0 0) 0 0 1 (1 4) 0 0 1 (4) 0 0 1 (1) 0 1 3 () 0 1 3

0.12.2.10 (0 0 4 1 0) 0 0 1 (1 4) 0 0 1 (0) 0 1 3 (1) 0 1 3 () 0 1 3
0.12.2.11 (1 0 0 0 0) 0 0 1 (3 0) 0 0 1 (4) 0 0 1 (3) 0 0 1 () 0 1 7
0.12.3.1 (0 1 1 1 2) 0 0 1 (1 10) 1 0 1 (6) 1 0 1 (1) 1 1 4 () 2 1 7
0.12.3.2 (0 2 0 0 2) 0 0 1 (2 8) 1 0 1 (4) 0 0 1 (2) 1 1 3 () 1 1 8
0.12.4.1 (0 2 0 0 2) 0 0 1 (0 12) 1 0 1 (4) 0 0 1 (0) 1 1 5 () 1 1 10

Table 15. Fixed loci of purely nonsymplectic automorphisms of order 14..

𝑗 = 14 𝑗 = 7 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.14.0.1 (0 1 2 0 0 0) 0 0 1 (6 5 2) 2 0 1 () 0 1 3
0.14.0.2 (0 0 0 1 2 4) 0 0 1 (6 5 2) 2 0 1 () 2 1 3
0.14.0.3 (3 2 2 1 1 2) 1 0 1 (6 5 2) 2 0 1 () 5 1 3
0.14.0.4 (0 0 1 1 2 2) 0 0 1 (4 3 1) 1 0 1 () 3 0 1
0.14.1.1 (3 2 1 1 1 4) 1 0 1 (4 3 1) 1 1 1 () 5 1 6
0.14.1.2 (0 1 1 0 0 2) 0 0 1 (4 3 1) 1 0 1 () 0 1 6
0.14.1.3 (0 0 1 1 2 2) 0 0 1 (4 3 1) 1 0 1 () 1 1 6
0.14.1.4 (0 0 1 1 2 2) 0 0 1 (4 3 1) 1 0 1 () 2 1 7
0.14.1.5 (4 1 1 0 0 0) 1 0 1 (4 3 1) 1 0 1 () 2 1 6
0.14.1.6 (0 0 0 1 2 4) 0 0 1 (2 1 0) 0 1 1 () 2 1 3
0.14.2.1 (0 1 0 0 0 4) 0 0 1 (2 1 0) 0 1 1 () 0 1 9
0.14.2.2 (0 0 0 1 2 4) 0 0 1 (2 1 0) 0 1 1 () 1 1 9

Table 16. Fixed loci of purely nonsymplectic automorphisms of order 15..

𝑗 = 15 𝑗 = 5 𝑗 = 3

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.15.0.1 (0 0 1 2 2 0 0) 0 0 1 (7 3) 2 0 1 (2) 0 1 2
0.15.0.2 (3 3 1 1 1 0 0) 1 0 1 (7 3) 2 0 1 (4) 2 1 2
0.15.0.3 (3 2 1 1 1 3 1) 1 0 1 (7 3) 2 0 1 (5) 3 1 2
0.15.0.4 (0 0 0 0 3 3 1) 0 0 1 (3 1) 0 1 1 (6) 3 0 1
0.15.0.5 (3 2 2 3 0 0 0) 1 0 1 (5 2) 1 1 1 (6) 3 0 1
0.15.1.1 (0 1 0 0 3 0 0) 0 0 1 (3 1) 0 1 1 (0) 0 1 4
0.15.1.2 (0 0 0 0 3 3 1) 0 0 1 (3 1) 0 1 1 (1) 1 1 4
0.15.1.3 (0 0 1 2 2 0 0) 0 0 1 (1 0) 0 1 2 (2) 0 1 2
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Table 17. Fixed loci of purely nonsymplectic automorphisms of order 16..

𝑗 = 16 𝑗 = 8 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.16.0.1 (3 2 1 1 1 2 2) 1 0 1 (7 3 2) 2 0 1 (10) 3 0 1 () 6 1 3
0.16.0.2 (0 1 0 0 0 1 2) 0 0 1 (3 3 4) 1 0 1 (10) 3 0 1 () 5 1 2
0.16.0.3 (3 2 2 2 1 0 0) 1 0 1 (3 3 4) 1 0 1 (10) 3 0 1 () 5 1 2
0.16.0.4 (0 0 0 2 1 1 2) 0 0 1 (3 3 4) 1 0 1 (6) 1 1 1 () 4 1 1
0.16.0.5 (3 3 2 0 0 0 0) 1 0 1 (3 3 4) 1 0 1 (6) 1 1 1 () 4 1 1
0.16.1.1 (4 1 0 0 0 1 0) 1 0 1 (5 1 0) 1 0 1 (6) 1 0 1 () 2 1 7
0.16.1.2 (0 1 0 0 0 1 2) 0 0 1 (5 1 0) 1 0 1 (6) 1 0 1 () 1 1 6

Table 18. Fixed loci of purely nonsymplectic automorphisms of order 18..

𝑗 = 18 𝑗 = 9 𝑗 = 6 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.18.0.1 (0 1 0 1 0 0 0 0) 0 0 1 (6 5 2 1) 2 0 1 (1 4) 0 0 1 (7) 4 1 1 () 0 1 3
0.18.0.2 (3 2 1 1 1 1 1 2) 1 0 1 (6 5 2 1) 2 0 1 (5 8) 2 0 1 (7) 4 1 1 () 6 1 3
0.18.0.3 (0 0 0 1 1 1 1 2) 0 0 1 (3 3 3 1) 1 0 1 (5 2) 1 0 1 (7) 4 0 1 () 2 1 3
0.18.0.4 (3 2 2 1 1 1 0 0) 1 0 1 (3 3 3 1) 1 0 1 (7 4) 2 0 1 (7) 4 0 1 () 5 1 3
0.18.0.5 (0 0 1 1 1 1 0 0) 0 0 1 (0 1 4 1) 0 0 1 (4 4) 1 0 1 (4) 1 1 1 () 5 0 1
0.18.0.6 (3 3 1 1 0 0 0 0) 1 0 1 (3 3 3 1) 1 0 1 (4 4) 1 0 1 (4) 2 1 2 () 5 0 1
0.18.0.7 (0 0 0 0 0 3 2 2) 0 0 1 (4 3 0 0) 1 0 1 (2 2) 0 1 1 (4) 1 1 1 () 2 1 1
0.18.1.1 (3 2 2 1 1 1 0 0) 1 0 1 (3 3 3 1) 1 0 1 (4 10) 2 0 1 (4) 3 1 3 () 5 1 6
0.18.1.2 (0 0 0 1 1 1 1 2) 0 0 1 (3 3 3 1) 1 0 1 (2 8) 1 0 1 (4) 2 1 2 () 2 1 6
0.18.1.3 (0 1 0 0 0 0 0 2) 0 0 1 (4 3 0 0) 1 0 1 (0 6) 0 0 1 (4) 1 1 1 () 0 1 7
0.18.1.4 (0 0 1 1 1 1 0 0) 0 0 1 (0 1 4 1) 0 0 1 (4 4) 1 0 1 (4) 1 1 1 () 1 1 6
0.18.1.5 (0 0 0 0 1 1 1 4) 0 0 1 (1 1 1 0) 0 1 1 (4 4) 1 0 1 (4) 1 1 1 () 2 1 7
0.18.1.6 (0 0 1 1 1 1 0 0) 0 0 1 (0 1 4 1) 0 0 1 (4 4) 1 0 1 (4) 1 1 1 () 2 1 7
0.18.1.7 (4 1 0 0 0 0 0 0) 1 0 1 (4 3 0 0) 1 0 1 (4 4) 1 0 1 (4) 1 1 1 () 2 1 7
0.18.1.8 (0 1 0 1 0 0 0 0) 0 0 1 (0 1 4 1) 0 0 1 (1 4) 0 0 1 (1) 0 1 3 () 0 1 3
0.18.2.1 (0 0 1 1 1 1 0 0) 0 0 1 (0 1 4 1) 0 0 1 (1 10) 1 0 1 (1) 1 1 4 () 1 1 9

Table 19. Fixed loci of purely nonsymplectic automorphisms of order 20..

𝑗 = 20 𝑗 = 10 𝑗 = 5 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.20.0.1 (0 0 0 2 0 0 0 1 2) 0 0 1 (3 2 2 4) 1 0 1 (5 2) 1 1 1 (2) 0 1 2 () 5 1 2
0.20.0.2 (3 2 2 2 0 0 0 0 0) 1 0 1 (3 2 2 4) 1 0 1 (5 2) 1 1 1 (10) 3 0 1 () 5 1 2
0.20.0.3 (0 0 1 1 1 0 0 0 0) 0 0 1 (0 2 1 2) 0 0 1 (5 2) 1 0 1 (6) 1 0 1 () 1 1 2
0.20.0.4 (0 0 0 1 1 1 2 0 0) 0 0 1 (0 2 1 2) 0 0 1 (5 2) 1 0 1 (2) 0 1 2 () 1 1 2
0.20.0.5 (0 0 1 0 0 0 0 2 2) 0 0 1 (4 2 1 0) 1 0 1 (5 2) 1 0 1 (2) 0 1 2 () 3 1 2
0.20.0.6 (0 0 0 0 0 1 2 2 2) 0 0 1 (4 2 1 0) 1 0 1 (5 2) 1 0 1 (8) 2 0 1 () 3 1 2
0.20.1.1 (0 0 1 1 1 0 0 0 0) 0 0 1 (0 0 1 6) 0 0 1 (1 0) 0 1 2 (6) 1 0 1 () 1 1 6

Table 20. Fixed loci of purely nonsymplectic automorphisms of order 21..

𝑗 = 21 𝑗 = 7 𝑗 = 3

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.21.0.1 (3 2 1 1 1 3 0 0 0 0) 1 0 1 (4 3 1) 1 1 1 (4) 3 1 3
0.21.0.2 (0 0 1 0 0 1 1 1 0 0) 0 0 1 (4 3 1) 1 0 1 (1) 0 1 3
0.21.0.3 (0 0 0 0 0 1 1 1 3 1) 0 0 1 (4 3 1) 1 0 1 (2) 1 1 3
0.21.0.4 (3 3 1 0 0 0 0 1 0 0) 1 0 1 (4 3 1) 1 0 1 (3) 2 1 3
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Table 21. Fixed loci of purely nonsymplectic automorphisms of order 22..

𝑗 = 22 𝑗 = 11 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.22.0.1 (0 0 0 1 1 0 0 0 1 2) 0 0 1 (3 2 2 3 1) 1 0 1 () 1 1 5
0.22.0.2 (3 2 2 1 1 0 0 0 0 0) 1 0 1 (3 2 2 3 1) 1 0 1 () 4 1 5
0.22.0.3 (3 2 1 1 1 2 1 0 0 0) 1 0 1 (3 2 2 3 1) 1 0 1 () 5 1 5
0.22.1.1 (0 0 0 1 0 0 0 0 1 4) 0 0 1 (1 0 0 1 0) 0 1 1 () 1 1 10

Table 22. Fixed loci of purely nonsymplectic automorphisms of order 24..

𝑗 = 24 𝑗 = 12 𝑗 = 8

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.24.0.1 (3 2 1 1 1 1 1 1 0 0 0) 1 0 1 (3 2 2 2 2) 1 0 1 (7 3 2) 2 0 1
0.24.0.2 (0 0 1 0 0 0 1 1 0 0 0) 0 0 1 (0 0 4 1 0) 0 0 1 (3 3 4) 1 0 1
0.24.0.3 (0 0 0 0 0 0 0 3 1 1 2) 0 0 1 (3 3 3 0 0) 1 0 1 (1 1 2) 0 1 1
0.24.0.4 (3 3 1 0 0 0 0 0 0 0 0) 1 0 1 (3 3 3 0 0) 1 0 1 (3 3 4) 1 0 1
0.24.0.5 (0 0 0 0 1 1 1 1 1 0 0) 0 0 1 (0 1 1 1 2) 0 0 1 (5 1 0) 1 0 1
0.24.0.6 (0 0 0 0 0 0 1 1 1 2 2) 0 0 1 (4 1 1 1 0) 1 0 1 (4 2 2) 1 0 1
0.24.0.7 (0 0 0 0 0 2 3 0 0 0 0) 0 0 1 (0 0 0 3 4) 0 0 1 (2 0 0) 0 1 1
0.24.0.8 (0 0 0 1 2 0 0 0 0 0 0) 0 0 1 (0 0 0 3 4) 0 0 1 (0 2 4) 0 0 1
0.24.1.1 (0 0 0 0 1 1 1 1 1 0 0) 0 0 1 (0 1 1 1 2) 0 0 1 (5 1 0) 1 0 1

Table 23. Fixed loci of purely nonsymplectic automorphisms of order 24, part 2.

𝑗 = 6 𝑗 = 4 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.24.0.1 (5 8) 2 0 1 (10) 3 0 1 (5) 3 1 2 () 6 1 3
0.24.0.2 (1 4) 0 0 1 (6) 1 1 1 (1) 0 1 3 () 4 1 1
0.24.0.3 (3 6) 1 0 1 (6) 1 1 1 (3) 2 1 3 () 4 1 1
0.24.0.4 (3 6) 1 0 1 (6) 1 1 1 (3) 2 1 3 () 4 1 1
0.24.0.5 (5 2) 1 0 1 (6) 1 0 1 (5) 2 0 1 () 2 1 3
0.24.0.6 (5 2) 1 0 1 (8) 2 0 1 (5) 2 0 1 () 3 1 4
0.24.0.7 (3 0) 0 1 1 (4) 0 1 1 (3) 0 1 1 () 0 2 1
0.24.0.8 (3 0) 0 1 1 (4) 0 1 1 (3) 0 1 1 () 0 2 1
0.24.1.1 (1 10) 1 0 1 (6) 1 0 1 (1) 1 1 4 () 2 1 7

Table 24. Fixed loci of purely nonsymplectic automorphisms of order 26..

𝑗 = 26 𝑗 = 13 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.26.0.1 (0 0 0 1 0 0 0 0 0 1 1 2) 0 0 1 (3 3 2 1 0 0) 1 0 1 () 1 1 6
0.26.0.2 (0 0 0 0 0 0 0 1 2 1 1 2) 0 0 1 (3 3 2 1 0 0) 1 0 1 () 2 1 6
0.26.0.3 (3 2 2 1 0 0 0 0 0 1 0 0) 1 0 1 (3 3 2 1 0 0) 1 0 1 () 4 1 6

Table 25. Fixed loci of purely nonsymplectic automorphisms of order 27..

𝑗 = 27 𝑗 = 9 𝑗 = 3

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.27.0.1 (0 0 0 0 1 0 0 0 0 0 1 3 1) 0 0 1 (0 1 4 1) 0 0 1 (1) 1 1 4
0.27.0.2 (0 0 0 1 1 0 0 0 0 0 1 0 0) 0 0 1 (0 1 4 1) 0 0 1 (1) 0 1 3
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Table 26. Fixed loci of purely nonsymplectic automorphisms of order 28..

𝑗 = 28 𝑗 = 14 𝑗 = 7 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.28.0.1 (3 2 1 1 1 2 0 0 0 0 0 0 0) 1 0 1 (3 2 1 1 1 4) 1 0 1 (4 3 1) 1 1 1 (8) 2 0 1 () 5 1 6
0.28.0.2 (0 0 0 1 0 0 2 0 0 0 0 0 0) 0 0 1 (0 0 0 1 2 4) 0 0 1 (2 1 0) 0 1 1 (0) 0 1 3 () 2 1 3
0.28.0.3 (0 0 0 0 0 0 2 2 1 0 0 0 0) 0 0 1 (0 0 0 1 2 4) 0 0 1 (2 1 0) 0 1 1 (8) 2 0 1 () 2 1 3

Table 27. Fixed loci of purely nonsymplectic automorphisms of order 30..

𝑗 = 30 𝑗 = 15 𝑗 = 10

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.30.0.1 (0 0 1 0 0 0 0 0 0 0 0 0 0 0) 0 0 1 (0 0 1 2 2 0 0) 0 0 1 (0 3 1 0) 0 0 1
0.30.0.2 (0 0 0 0 0 0 0 0 1 1 1 1 1 2) 0 0 1 (3 3 1 1 1 0 0) 1 0 1 (4 1 1 2) 1 0 1
0.30.0.3 (3 2 1 1 1 1 1 0 0 0 0 0 0 0) 1 0 1 (3 2 1 1 1 3 1) 1 0 1 (3 3 2 2) 1 0 1
0.30.0.4 (0 0 0 0 1 1 1 0 0 0 0 0 0 0) 0 0 1 (0 0 0 0 3 3 1) 0 0 1 (0 1 1 4) 0 0 1
0.30.0.5 (0 0 0 1 0 0 0 0 0 0 0 0 1 2) 0 0 1 (3 2 2 3 0 0 0) 1 0 1 (0 0 1 6) 0 0 1
0.30.0.6 (3 2 2 1 0 0 0 0 0 0 0 0 0 0) 1 0 1 (3 2 2 3 0 0 0) 1 0 1 (3 2 2 4) 1 0 1
0.30.0.7 (0 0 0 0 0 0 1 1 3 0 0 0 0 0) 0 0 1 (0 0 0 0 3 3 1) 0 0 1 (1 1 0 0) 0 1 1
0.30.0.8 (0 0 0 0 2 0 0 0 0 0 1 0 0 0) 0 0 1 (0 0 1 2 2 0 0) 0 0 1 (1 0 0 2) 0 0 1
0.30.1.1 (0 0 0 0 1 1 1 0 0 0 0 0 0 0) 0 0 1 (0 0 0 0 3 3 1) 0 0 1 (0 1 1 4) 0 0 1
0.30.1.2 (0 0 1 0 0 0 0 0 0 0 0 0 0 0) 0 0 1 (0 0 1 2 2 0 0) 0 0 1 (0 0 1 6) 0 0 1

Table 28. Fixed loci of purely nonsymplectic automorphisms of order 30, part 2.

𝑗 = 6 𝑗 = 5 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.30.0.1 (0 6) 0 0 1 (7 3) 2 0 1 (2) 0 1 2 () 0 1 4
0.30.0.2 (2 8) 1 0 1 (7 3) 2 0 1 (4) 2 1 2 () 3 1 4
0.30.0.3 (5 8) 2 0 1 (7 3) 2 0 1 (5) 3 1 2 () 5 1 5
0.30.0.4 (6 0) 1 0 1 (3 1) 0 1 1 (6) 3 0 1 () 1 1 4
0.30.0.5 (2 2) 0 0 1 (5 2) 1 1 1 (6) 3 0 1 () 1 1 6
0.30.0.6 (4 4) 1 0 1 (5 2) 1 1 1 (6) 3 0 1 () 4 1 6
0.30.0.7 (1 4) 0 0 1 (3 1) 0 1 1 (1) 1 1 4 () 1 1 1
0.30.0.8 (0 0) 0 1 2 (1 0) 0 1 2 (2) 0 1 2 () 0 1 2
0.30.1.1 (1 10) 1 0 1 (3 1) 0 1 1 (1) 1 1 4 () 1 1 9
0.30.1.2 (0 6) 0 0 1 (1 0) 0 1 2 (2) 0 1 2 () 0 1 10

Table 29. Fixed loci of purely nonsymplectic automorphisms of order 32..

𝑗 = 32 𝑗 = 16

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g

0.32.0.1 (0 0 0 0 0 1 0 0 0 0 0 0 1 2 2) 0 0 1 (4 1 0 0 0 1 0) 1 0 1
0.32.0.2 (0 0 0 0 0 1 1 1 0 0 0 0 1 0 0) 0 0 1 (0 1 0 0 0 1 2) 0 0 1

Table 30. Fixed loci of purely nonsymplectic automorphisms of order 32, part 2.

𝑗 = 8 𝑗 = 4 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.32.0.1 (5 1 0) 1 0 1 (6) 1 0 1 () 2 1 7
0.32.0.2 (5 1 0) 1 0 1 (6) 1 0 1 () 1 1 6
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Table 31. Fixed loci of purely nonsymplectic automorphisms of order 34..

𝑗 = 34 𝑗 = 17 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.34.0.1 (0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0) 0 0 1 (0 0 0 0 1 2 3 1) 0 0 1 () 0 1 8
0.34.0.2 (0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0) 0 0 1 (0 0 0 0 1 2 3 1) 0 0 1 () 1 1 8

Table 32. Fixed loci of purely nonsymplectic automorphisms of order 36..

𝑗 = 36 𝑗 = 18 𝑗 = 12

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.36.0.1 (3 2 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0) 1 0 1 (3 2 2 1 1 1 0 0) 1 0 1 (3 3 1 1 2) 1 0 1
0.36.0.2 (0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0) 0 0 1 (0 0 0 0 1 1 1 4) 0 0 1 (4 2 0 0 0) 1 0 1
0.36.0.3 (0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0) 0 0 1 (0 1 0 1 0 0 0 0) 0 0 1 (0 0 4 1 0) 0 0 1

Table 33. Fixed loci of purely nonsymplectic automorphisms of order 36, part 2.

𝑗 = 9 𝑗 = 6 𝑗 = 4 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.36.0.1 (3 3 3 1) 1 0 1 (4 10) 2 0 1 (8) 2 0 1 (4) 3 1 3 () 5 1 6
0.36.0.2 (1 1 1 0) 0 1 1 (4 4) 1 0 1 (6) 1 0 1 (4) 1 1 1 () 2 1 7
0.36.0.3 (0 1 4 1) 0 0 1 (1 4) 0 0 1 (0) 0 1 3 (1) 0 1 3 () 0 1 3

Table 34. Fixed loci of purely nonsymplectic automorphisms of order 38..

𝑗 = 38 𝑗 = 19 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.38.0.1 (0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0) 0 0 1 (0 0 0 1 2 1 1 0 0) 0 0 1 () 0 1 9
0.38.0.2 (0 0 0 0 0 0 1 0 0 0 0 1 2 1 0 0 0 0) 0 0 1 (0 0 0 1 2 1 1 0 0) 0 0 1 () 1 1 9

Table 35. Fixed loci of purely nonsymplectic automorphisms of order 42..

𝑗 = 42 𝑗 = 21

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g

0.42.0.1 (3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 1 0 1 (3 2 1 1 1 3 0 0 0 0) 1 0 1
0.42.0.2 (0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0) 0 0 1 (0 0 0 0 0 1 1 1 3 1) 0 0 1
0.42.0.3 (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 2) 0 0 1 (3 3 1 0 0 0 0 1 0 0) 1 0 1

Table 36. Fixed loci of purely nonsymplectic automorphisms of order 42, part 2.

𝑗 = 14 𝑗 = 7 𝑗 = 6 𝑗 = 3 𝑗 = 2

K3 id (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g (𝑎𝑖) k l g

0.42.0.1 (3 2 1 1 1 4) 1 0 1 (4 3 1) 1 1 1 (4 10) 2 0 1 (4) 3 1 3 () 5 1 6
0.42.0.2 (4 1 1 0 0 0) 1 0 1 (4 3 1) 1 0 1 (2 8) 1 0 1 (2) 1 1 3 () 2 1 6
0.42.0.3 (0 0 1 1 2 2) 0 0 1 (4 3 1) 1 0 1 (1 10) 1 0 1 (3) 2 1 3 () 2 1 7
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Table 37. Fixed loci of purely nonsymplectic automorphisms of orders 13, 17, 19, 25, 33, 40, 44, 48, 50, 54 and 66..

K3 id j (𝑎𝑖) k l g

0.13.0.1 13 (3 3 2 1 0 0) 1 0 1
0.17.0.1 17 (0 0 0 0 1 2 3 1) 0 0 1
0.19.0.1 19 (0 0 0 1 2 1 1 0 0) 0 0 1

25 (0 0 0 0 2 1 0 0 0 1 0 0) 0 0 1
0.25.0.1 5 (1 0) 0 1 2

33 (0 0 0 0 0 1 0 0 0 0 3 1 0 0 0 0) 0 0 1
11 (1 0 0 1 0) 0 1 1

0.33.0.1 3 (0) 1 1 5
40 (0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0) 0 0 1
20 (0 0 1 1 1 0 0 0 0) 0 0 1
10 (0 0 1 6) 0 0 1
8 (5 1 0) 1 0 1
5 (1 0) 0 1 2
4 (6) 1 0 1

0.40.0.1 2 () 1 1 6
44 (0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0) 0 0 1
22 (0 0 0 1 0 0 0 0 1 4) 0 0 1
11 (1 0 0 1 0) 0 1 1
4 (4) 0 0 1

0.44.0.1 2 () 1 1 10
48 (0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0) 0 0 1
24 (0 0 0 0 1 1 1 1 1 0 0) 0 0 1
16 (4 1 0 0 0 1 0) 1 0 1
12 (0 1 1 1 2) 0 0 1
8 (5 1 0) 1 0 1
6 (1 10) 1 0 1
4 (6) 1 0 1
3 (1) 1 1 4

0.48.0.1 2 () 2 1 7
50 (0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0) 0 0 1
25 (0 0 0 0 2 1 0 0 0 1 0 0) 0 0 1
10 (0 0 1 6) 0 0 1
5 (1 0) 0 1 2

0.50.0.1 2 () 0 1 10
54 (0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0) 0 0 1
27 (0 0 0 0 1 0 0 0 0 0 1 3 1) 0 0 1
18 (0 0 1 1 1 1 0 0) 0 0 1
9 (0 1 4 1) 0 0 1
6 (1 10) 1 0 1

0.54.0.1 3 (1) 1 1 4
2 () 1 1 9

66 (0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0) 0 0 1
33 (0 0 0 0 0 1 0 0 0 0 3 1 0 0 0 0) 0 0 1
22 (0 0 0 1 0 0 0 0 1 4) 0 0 1
11 (1 0 0 1 0) 0 1 1
6 (0 12) 1 0 1
3 (0) 1 1 5

0.66.0.1 2 () 1 1 10
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