RELATIONS BETWEEN (N, p_{n}) AND (\bar{N}, p_{n}) SUMMABILITY

by BRIAN KUTTNER and B. E. RHOADES

(Received 5th October 1967)
Let $\left\{p_{n}\right\}$ be a positive sequence. The Nörlund transformation (N, p_{n}) maps the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{t_{n}\right\}$ by means of the equation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}, \tag{1}
\end{equation*}
$$

where $P_{n}=\sum_{k=0}^{n} p_{k}$.
The transformation $\left(\bar{N}, p_{n}\right)$ maps a sequence $\left\{s_{n}\right\}$ into the sequence $\left\{u_{n}\right\}$ by means of the equation

$$
\begin{equation*}
u_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k} . \tag{2}
\end{equation*}
$$

A matrix method is said to be regular if it is limit preserving for convergent sequences. Necessary and sufficient conditions for the regularity of (1) and (2) are, respectively, $p_{n}=o\left(P_{n}\right)$ and $P_{n} \rightarrow+\infty$.

Let A and B denote two regular matrix methods, and $A_{n}(x)=\Sigma_{k} a_{n k} x_{k}$, the nth transform of a sequence x, We say that B is stronger than A if

$$
\begin{equation*}
A_{n}(x) \rightarrow l \text { implies } B_{n}(x) \rightarrow l, l \text { finite. } \tag{3}
\end{equation*}
$$

If (3) continues to hold for $l= \pm \infty$, we say that B is totally stronger than A (written B t.s. A).

The purposes of this paper are to extend the theorems of [8] to total comparison, and to establish additional properties between the two methods of summability.

For completeness we quote the theorems from [8].
Theorem I1. Suppose that $\left\{p_{n}\right\}$ is positive non-increasing. Then in order that $\left(N, p_{n}\right)$ should include $\left(\bar{N}, p_{n}\right)$, it is necessary and sufficient that $\inf _{n} p_{n}>0$.
[Note. Necessity is not stated by Ishiguro in his main theorem, but is given by his corollary.]

Theorem I2. If $\left\{p_{n}\right\}$ is non-decreasing, and $p_{n}=o\left(P_{n}\right)$, then $\left(N, p_{n}\right)$ includes $\left(\bar{N}, p_{n}\right)$.

Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be positive sequences such that $\left(\bar{N}, p_{n}\right)$ and $\left(N, q_{n}\right)$ are regular. We shall first establish conditions for (N, q_{n}) to be totally stronger than $\left(\bar{N}, p_{n}\right)$. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right)$ be defined by $a_{n k}=p_{k} / P_{n}, k \leqq n, a_{n k}=0, k>n$,
$b_{n k}=q_{n-k} / Q_{n}, k \leqq n, b_{n k}=0, k>n, v_{n}=\Sigma_{k} b_{n k} s_{k}$, and u_{n} as in (2). Then, from (2), $s_{n}=p_{n}^{-1}\left(P_{n} u_{n}-P_{n-1} u_{n-1}\right), P_{-1}=0$, and

$$
\begin{align*}
v_{n} & =\sum_{k=0}^{n} \frac{q_{n-k}}{Q_{n}}\left(\frac{P_{k} u_{k}-P_{k-1} u_{k-1}}{p_{k}}\right) \\
& =\frac{1}{Q_{n}} \sum_{k=0}^{n-1}\left(\frac{q_{n-k}}{p_{k}}-\frac{q_{n-k-1}}{p_{k+1}}\right) P_{k} u_{k}+\frac{q_{0} P_{n} u_{n}}{p_{n} Q_{n}} . \tag{4}
\end{align*}
$$

Therefore $B=D A$, where

$$
\begin{aligned}
& d_{n k}=\left(\frac{q_{n-k}}{p_{k}}-\frac{q_{n-k-1}}{p_{k+1}}\right) \frac{P_{k}}{Q_{n}}, \quad k<n ; \\
& d_{n n}=\frac{q_{0} P_{n}}{p_{n} Q_{n}} ; \quad d_{n k}=0, k>n .
\end{aligned}
$$

From Hurwitz [7], D will be totally regular if and only if there exists an integer k_{0} such that $d_{n k} \geqq 0$ for all $k>k_{0}$; i.e.,

$$
\frac{q_{n-k}}{p_{k}}-\frac{q_{n-k-1}}{p_{k+1}} \geqq 0 \text { for all } n>k>k_{0}
$$

(Note that the regularity of (N, q_{n}) guarantees that $\lim _{n} d_{n k}=0$ for each k.) Observing that $n-k$ may be any positive integer we can formalize these remarks as

Lemma 1. Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be positive sequences satisfying (i) $P_{n} \rightarrow+\infty$, (ii) $q_{n}=o\left(Q_{n}\right)$. Then $\left(N, q_{n}\right)$ t.s. $\left(\bar{N}, p_{n}\right)$ if and only if

$$
\begin{equation*}
\frac{p_{k+1}}{p_{k}} \geqq a=\max _{m \geqq 1}\left(\frac{q_{m-1}}{q_{m}}\right), \quad k \geqq k_{0} . \tag{5}
\end{equation*}
$$

Theorem 1. Let $\left\{p_{n}\right\}$ be a real positive sequence satisfying $P_{n} \rightarrow+\infty$ and $p_{n}=o\left(P_{n}\right)$. Then $\left(N, p_{n}\right)$ t.s. $\left(\bar{N}, p_{n}\right)$ if and only if $p_{n+1} \geqq p_{n}$ for all n.

Proof. Consider Lemma 1 for $q_{n}=p_{n}$. If $p_{n+1} \geqq p_{n}$ for all n, then $a \leqq 1$, and (5) is satisfied.

To show the converse, suppose there exists an integer n for which $p_{n+1}<p_{n}$. Then $a>1$, and the condition $p_{k+1} / p_{k} \geqq a$ violates $p_{n}=o\left(P_{n}\right)$.

Theorem 1 includes Theorem 12 mentioned above, and corrects and strengthens the statement of Theorem 1 of [14].

An alternate proof of the sufficiency of Theorem 1 is the following.
Let $r_{n}=1$ for all n. Then $\left(N, r_{n}\right)=\left(\bar{N}, r_{n}\right)=(C, 1)$. Using the proof of [6, Theorem 20, p. 67] or [4, Theorem 2, p. 136], $\left(N, p_{n}\right)$ t.s. (C, 1). Using a result of $[12],(C, 1)$ t.s. $\left(\bar{N}, p_{n}\right)$. Since t.s. is transitive, $\left(N, p_{n}\right)$ t.s. $\left(\bar{N}, p_{n}\right)$.

Theorem 2. Let $\left\{p_{n}\right\}$ be a non-increasing positive sequence. Then $\left(\bar{N}, p_{n}\right)$ t.s. (N, p_{n}) if and only if $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Suppose (\bar{N}, p_{n}) t.s. $\left(N, p_{n}\right)$. Since $\left\{p_{n}\right\}$ is non-increasing, $p_{n}=o\left(P_{n}\right)$ and (N, p_{n}) is regular. Also the sequence $\left\{p_{n}\right\}$ is positive. Therefore $\left(N, p_{n}\right)$ is totally regular. It then follows (see, e.g. [15, Theorem 2.2, p. 398]) that (\bar{N}, p_{n}) must be totally regular, hence regular. Thus, we must have $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

To show that the condition is sufficient, we shall make use of the following lemma.

Lemma 2. Let $\left\{p_{n}\right\}$ be a non-increasing positive sequence such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Write

$$
p(z)=\sum_{n=0}^{\infty} p_{n} z^{n}, \quad q(z)=\frac{1}{p(z)}=\sum_{n=0}^{\infty} q_{n} z^{n}
$$

($1 / p(z)$ is clearly regular in some neighbourhood of the origin and thus can be expanded in a power series),

$$
Q(z)=\frac{q(z)}{1-z}=\sum_{n=0}^{\infty} Q_{n} z^{n}, \text { where } Q_{n}=\sum_{k=0}^{n} q_{k}
$$

Then $Q_{n}=o(n)$.
The method of proof is suggested by examining a paper of Krishnaiah [9], particularly equation (4) on page 316. For $|z|<1$,

$$
(1-z) p(z)=\sum_{n=1}^{\infty}\left(p_{n-1}-p_{n}\right)\left(1-z^{n}\right)+p_{\infty}
$$

where $p_{\infty}=\lim _{n} p_{n}$. If we write $z=r e^{i \theta}$,

$$
\begin{aligned}
\mathscr{R}\{(1-z) p(z)\} & =\sum_{n=1}^{\infty}\left(p_{n-1}-p_{n}\right)\left(1-r^{n} \cos n \theta\right)+p_{\infty} \\
& \geqq \sum_{n=1}^{\infty}\left(p_{n-1}-p_{n}\right)\left(1-r^{n}\right)+p_{\infty} \\
& =(1-r) p(r)
\end{aligned}
$$

Thus $|(1-z) p(z)| \geqq(1-r) p(r)$. Since $P_{n} \rightarrow \infty, p(r) \rightarrow \infty$ as $r \rightarrow 1-$. Hence

$$
|Q(z)|=o\left(\frac{1}{1-r}\right)
$$

uniformly in $\arg z$ as $r=|z| \rightarrow 1-$. Since

$$
Q_{n}=\frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{Q(z)}{z^{n+1}} d z
$$

where Γ_{n} denotes a circle of radius $1-n^{-1}$, centre the origin, the conclusion follows.

Using the notation of Lemma 2, and (1), we may write $s_{n}=\sum_{k=0}^{n} q_{n-k} P_{k} t_{k}$.

Substituting in (2), we have

$$
\begin{aligned}
u_{n} & =\frac{1}{P_{n}} \sum_{r=0}^{n} p_{r} \sum_{k=0}^{r} q_{r-k} P_{k} t_{k} \\
& =\sum_{k=0}^{n} \beta_{n k} t_{k},
\end{aligned}
$$

where

$$
\begin{equation*}
\beta_{n k}=\frac{P_{k}}{P_{n}} \sum_{r=k}^{n} p_{r} q_{r-k} \tag{6}
\end{equation*}
$$

The theorem will be proved provided we can show that the matrix $\left(\beta_{n k}\right)$ is totally regular. We first appeal to the following

Lemma K [10, p. 488]. Let $t_{n}=\sum_{k=0}^{n} \alpha_{n k} u_{k}$ (the matrix $C=\left(\alpha_{n k}\right)$ not necessarily regular), with $\alpha_{n n} \neq 0$ for all n. Denote the inverse transformation, which exists, by $u_{n}=\sum_{k=0}^{n} \beta_{n k} t_{k}$. If, for all $n, \alpha_{n n}>0, \alpha_{n k} \leqq 0(0 \leqq k<n)$, then $\beta_{n k} \geqq 0$ for all n, k.

The matrix corresponding to $\left(N, p_{n}\right)\left(\bar{N}, p_{n}\right)^{-1}$, which is given by (4) with $q_{n}=p_{n}$, satisfies the conditions of Lemma K.

Moreover, $\sum_{k=0}^{n}\left|\beta_{n k}\right|=\sum_{k=0}^{n} \beta_{n k}=1$. Therefore $B^{-1}=\left(\beta_{n k}\right)$ has finite norm, and it only remains to show that

$$
\lim _{n} \beta_{n k}=0 \text { for each } k ; \text { i.e., } \sum_{r=k}^{n} p_{r} q_{r-k}=o\left(P_{n}\right)
$$

We may write

$$
\begin{equation*}
\sum_{r=k}^{n} p_{r} q_{r-k}=\sum_{r=k}^{n-1} Q_{r-k}\left(p_{r}-p_{r+1}\right)+Q_{n-k} p_{n} . \tag{7}
\end{equation*}
$$

From Lemma 2 (k being fixed), for each $\varepsilon>0$ there exists a natural number r_{0} such that $\left|Q_{r-k}\right| \leqq \varepsilon(r-k)$ for $r>r_{0}$. The sum of those terms on the right of (7) for which $r \leqq r_{0}$ is fixed; since $P_{n} \rightarrow \infty$, this sum is $o\left(P_{n}\right)$. Thus, for all n sufficiently large,

$$
\begin{aligned}
\left|\sum_{r=k}^{n} p_{r} q_{r-k}\right| & \leqq \varepsilon\left\{\sum_{r=r_{0}+1}^{n-1}(r-k)\left(p_{r}-p_{r+1}\right)+(n-k) p_{n}\right\}+o\left(P_{n}\right) \\
& =\varepsilon\left\{P_{n}-P_{r_{0}+1}+\left(r_{0}+1-k\right) p_{r_{0}+1}\right\}+o\left(P_{n}\right) \\
& =\varepsilon P_{n}+o\left(P_{n}\right) .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{P_{n}}\left|\sum_{r=k}^{n} p_{r} q_{r-k}\right|<\varepsilon,
$$

and since ε is arbitrary, the conclusion follows.

RELATIONS BETWEEN (N, p_{n}) AND (\bar{N}, p_{n}) SUMMABILITY

Two regular matrix methods A and B are said to be equivalent if A is stronger than B and B is stronger than A. Combining Theorems 2 and I1 we have the following

Corollary 1. If $\left\{p_{n}\right\}$ is non-increasing and $p_{n} \geqq \sigma>0, n=0,1,2, \ldots$, then $\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ are equivalent.

A method B is said to be strictly stronger than A if B is stronger than A, but there is a sequence x for which $\lim _{n} B_{n}(x)$ exists and $\lim _{n} A_{n}(x)$ does not. For triangles (that is, infinite matrices with all elements zero above the main diagonal, and all main diagonal elements non-zero) it is well known that the condition B is strictly stronger than A is equivalent to (i) $B A^{-1}$ is regular, and (ii) $A B^{-1}$ has infinite norm.

Corollary 2. Let $\left\{p_{n}\right\}$ be a positive non-decreasing sequence with $p_{n}=o\left(P_{n}\right)$. Then, if $\sup _{n} p_{n}=+\infty,\left(N, p_{n}\right)$ is strictly stronger than $\left(\bar{N}, p_{n}\right)$.

Proof. Note that, from the hypotheses on $\left\{p_{n}\right\}, P_{n} \geqq(n+1) p_{0}$ and hence $P_{n} \rightarrow+\infty$.

With $A=\left(p_{n-k} / P_{n}\right), B=\left(p_{k} / P_{n}\right)$, and $C=A B^{-1}$, then $c_{n n}=p_{0} / p_{n}$.

$$
\left\|C^{-1}\right\| \geqq \sup _{n}\left|1 / c_{n n}\right|=\sup _{n}\left|p_{n} / p_{0}\right|=+\infty,
$$

and (N, p_{n}) is strictly stronger than $\left(\bar{N}, p_{n}\right)$.
Corollary 3. Let $\left\{p_{n}\right\}$ be a positive non-decreasing sequence with $p_{n} \rightarrow c$, where $c<2 p_{0}$. Then $\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ are equivalent.

Proof. Note that the hypotheses on $\left\{p_{n}\right\}$ not only ensure that $P_{n} \rightarrow+\infty$, as in the proof of Corollary 2, but also that $p_{n}=o\left(P_{n}\right)$.

We shall need the following result from [2], which also appears in [13].
Theorem A. Let C denote a regular triangle. If

$$
\liminf _{n}\left\{\left|c_{n n}\right|-\sum_{k<n}\left|c_{n k}\right|\right\}>\lambda>0
$$

then C is equivalent to convergence.
If we let C be as defined in Corollary 2 , then C is regular, because $\left(N, p_{n}\right)$ is stronger than $\left(\bar{N}, p_{n}\right)$. From [8, p. 122],

$$
\left|c_{n n}\right|-\sum_{k<n}\left|c_{n k}\right|=\frac{p_{0}}{p_{n}}-\left(1-\frac{p_{0}}{p_{n}}\right)=\frac{2 p_{0}}{p_{n}}-1,
$$

and the result follows since $c<2 p_{0}$.
The condition on c in Corollary 3 is the best possible. For, let $p_{0}=1$, $p_{n}=c>1$ for $n>0$. Then, with the notation used in the proof of Lemma 2, $p(z)=(1+(c-1) z) /(1-z)$, giving us $Q(z)=[(1-z) p(z)]^{-1}=1 /(1+(c-1) z)$, so that $Q_{n}=(-1)^{n}(c-1)^{n}$. For $k \geqq 1$, (6) becomes

$$
\begin{align*}
\beta_{n k} & =\frac{c P_{k}}{P_{n}} \sum_{r=k}^{n} q_{r-k}=\frac{c P_{k}}{P_{n}} Q_{n-k} \\
& =\frac{(-1)^{n-k} c(c k+1)(c-1)^{n-k}}{(c n+1)} \tag{8}
\end{align*}
$$

Using (8) one can demonstrate that the transformation is not regular when $c \geqq 2$.

Two matrices A and B are said to be totally equivalent if and only if A t.s. B and B t.s. A. Lorch [12] has shown that $\left(\bar{N}, q_{n}\right)$ t.s. $\left(\bar{N}, p_{n}\right)$ if and only if $q_{n+1} / q_{n} \leqq p_{n+1} / p_{n}$ for almost all n. Therefore, if $\left(\bar{N}, p_{n}\right),\left(\bar{N}, q_{n}\right)$ are totally equivalent, there exists an integer m such that

$$
\frac{p_{m}}{q_{m}}=\frac{p_{m+1}}{q_{m+1}}=\frac{p_{m+2}}{q_{m+2}}=\ldots
$$

i.e., $p_{k}=c q_{k}$ for all $n>m$, and $c=p_{m} / q_{m}$.

Formalizing these remarks we have
Theorem 3. Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be positive sequences, with $P_{n} \rightarrow+\infty, Q_{n} \rightarrow+\infty$. Then $\left(\bar{N}, p_{n}\right)$ and $\left(\bar{N}, q_{n}\right)$ are totally equivalent if and only if $p_{n}=c q_{n}$ for almost all n, and some constant c.

Theorem 4. The methods $\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ are identical if and only if $p_{n}=$ const. for all n.

Proof. By hypothesis $p_{n-k} / P_{n}=p_{k} / P_{n}$, which implies $p_{n-k}=p_{k}$ for $0 \leqq k \leqq n$; i.e., $p_{k}=p_{0}$ for all $k>0$. The converse is trivial.

Ullrich [16] showed that the only Nörlund matrices which are also Hausdorff matrices are the Cesàro matrices. Agnew re-proved this result in [1]. It is of interest to note which matrices of the form $\left(\bar{N}, p_{n}\right)$ are also Hausdorff matrices.

Theorem 5. The only $\left(\bar{N}, p_{n}\right)$ matrices that are also Hausdorff matrices are those of the form $p_{n}=0$ for $n>0$ or $p_{n}=\Gamma(n+a) / \Gamma(n+1) \Gamma(a), a>0$.

Proof I. Let A denote the matrix corresponding to a (\bar{N}, p_{n}) method. Assume also that A is a Hausdorff matrix generated by a sequence μ. Then

$$
a_{n n}=\frac{p_{n}}{P_{n}}=\mu_{n}, a_{n, n-1}=\frac{p_{n-1}}{P_{n}}=n \Delta \mu_{n-1}=n\left(\mu_{n-1}-\mu_{n}\right) .
$$

We may write p_{n-1} / P_{n} in the form $\left(p_{n-1} / P_{n-1}\right)\left(P_{n-1} / P_{n}\right)=\mu_{n-1}\left(1-\mu_{n}\right)$. We then have $\mu_{n-1}\left(1-\mu_{n}\right)=n\left(\mu_{n-1}-\mu_{n}\right)$, or

$$
\begin{equation*}
(n-1) \mu_{n-1}=\left(n-\mu_{n-1}\right) \mu_{n} \tag{9}
\end{equation*}
$$

Let $\mu_{0}=c$. Then, from (9), $\left(1-\mu_{0}\right) \mu_{1}=0$, and either $\mu_{1}=0$ or $\mu_{0}=1$. If $\mu_{1}=0$, then $\mu_{n}=0$ for all $n>1$, and the sequence is $p_{0}=\mu_{0}=c, p_{n}=\mu_{n}=0$, $n>0$. If $\mu_{1} \neq 0$, then we must have $\mu_{0}=1$. μ_{1} can then be arbitrary. Let $\mu_{1}=\alpha \neq 0$. For all $n>1$, from (9)

$$
\mu_{n}=\frac{(n-1) \mu_{n-1}}{n-\mu_{n-1}}
$$

or

$$
\begin{equation*}
\mu_{n}=\frac{\alpha}{n-(n-1) \alpha}=\frac{\alpha}{(1-\alpha) n+\alpha}=\frac{a}{n+a} \tag{10}
\end{equation*}
$$

where $a=\alpha /(1-\alpha)$. We cannot have $\alpha=1$, for then, from (10), we would have $\mu_{n}=1$ for all n, giving rise to the identity matrix. But it is impossible to generate the identity matrix with a (\bar{N}, p_{n}) method.

A straightforward calculation will verify that the sequence $\left\{p_{n}\right\}$ corresponding to (10) is $p_{n}=\Gamma(n+a) / \Gamma(n+1) \Gamma(a)$, hence the restriction that $a>0$.

Proof II. Associated with any triangular transformation

$$
\begin{equation*}
t_{n}=\sum_{k=0}^{n} \alpha_{n k} s_{k} \tag{11}
\end{equation*}
$$

is the " reverse" transformation $u_{n}=\sum_{k=0}^{n} \alpha_{n, n-k} s_{k}$, formed by reversing the order of the elements on each row of the matrix corresponding to (11). Using the elementary properties of the forward difference operator Δ, defined by $\Delta u_{n}=u_{n}-u_{n+1}$, it is easy to show that the reverse of any Hausdorff method (H, μ) is a Hausdorff method (H, λ), where $\lambda_{n}=\Delta^{n} \mu_{0}$. Since the reverse of a (\bar{N}, p_{n}) method is (N, p_{n}), it follows that a matrix is both (\bar{N}, p_{n}) and Hausdorff if and only if the matrix of the reverse transformation is both Nörlund and Hausdorff. The result of Theorem 5 can then be deduced directly from the results of [1] and [16].

An analogous result relating Hausdorff matrices and generalized Norlund methods (N, p, q) (see [3] for the definition of (N, p, q)) appears in [11].

The following theorem appears in [14], where Γ_{c}^{\prime} denotes the Hausdorff matrix generated by $\mu_{n}=c /(n+c)$.

Theorem R. Let $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
(k+c) p_{k}>(k+1) p_{k+1}, \quad c>0
$$

for almost all k. Then $\left(\bar{N}, p_{n}\right)$ t.s. Γ_{c}^{\prime}, but not conversely.
In light of Theorem 5 we observe that Γ_{c}^{\prime} is a $\left(\bar{N}, p_{n}\right)$ method with p_{n} as described in the discussion following equation (10). The theorem then follows immediately from the result of [12] quoted earlier.

For completeness we point out that Dikshit [5] has established a number of theorems comparing the relative strengths of the (N, p_{n}) and (\bar{N}, q_{n}) methods for both ordinary and absolute summability. His principal result is the following. Let $q_{n}>0, p_{n} \geqq 0, p_{0}>0, Q_{n} \rightarrow+\infty, p_{n}=o\left(P_{n}\right)$. Then (N, p_{n}) includes (\bar{N}, q_{n}) if and only if

$$
\sum_{k=0}^{n}\left|\Delta_{k}\left(p_{n-k} Q_{k} / q_{k}\right)\right|=O\left(P_{n}\right), p_{-1}=0
$$

However, he does not consider questions of total inclusion, and so there is no overlap in content with this paper.

REFERENCES

(1) R. P. Agnew, A genesis for Cesàro methods, Bull. Amer. Math. Soc. 51, (1945), 90-94.
(2) R. P. Agnew, Equivalence of methods for evaluation of sequences, Proc. Amer. Math. Soc. 3 (1952), 550-556.
(3) D. Borwein, On products of sequences, Journal London Math. Soc. 33 (1958), 352-357.
(4) Sobha Debi, Some results on total inclusion for Nörlund summability, Bull. Calcutta Math. Soc. 47 (1955), 135-141.
(5) G. D. Drkshrr, On inclusion relations between Riesz and Nörlund means, Indian Journal of Math. 7 (1965), 73-81.
(6) G. H. Hardy, Divergent Series (Oxford, 1949).
(7) W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences, Proc. London Math. Soc. (2), 26 (1927), 231-248.
(8) Kazuo Ishiguro, The relation between ($\mathbf{N}, \mathrm{p}_{n}$) and ($\overline{\mathrm{N}}, \mathrm{p}_{n}$) summability, Proc. Japan. Acad. 41 (1965), 120-122.
(9) P. V. Krishnaiah, On Kakeya's theorem, Journal London Math. Soc. 30 (1955), 314-319.
(10) B. Kuttner, The problem of "total translativity" for Hölder summability, Journal London Math. Soc. 29 (1954), 486-491.
(11) B. Kuttner, Note on the generalised Nörlund transformation, Journal London Math. Soc. 42 (1967), 235-238.
(12) Lee Lorch, Supplement to a theorem of Cesàro, Scripta Mathematica 23 (1957), 163-165.
(13) R. Rado, Some elementary Tauberian theorems (I), Quart.J. Math. 9, (1938), 274-282.
(14) B. E. Rhoades, On the total inclusion for Nörlund methods of summability, Bull. Calcutta Math. Soc. 52 (1960), 123-125.
(15) B. E. Rhoades, Hausdorff summability methods, Trans. Amer. Math. Soc. 101 (1961), 396-425.
(10) E. Ullrich, Zur Korrespondenz zwier Klassen von Limitierungsverfahren, Math. Zeit. 25 (1926), 382-387.

Department of Pure Mathematics, University of Birmingham England

Department of Mathematics
Indiana University
Bloomington, Indiana, u.s.a.

