RELATIONS BETWEEN (N, p_n) AND (\overline{N}, p_n) SUMMABILITY

by BRIAN KUTTNER AND B. E. RHOADES (Received 5th October 1967)

Let $\{p_n\}$ be a positive sequence. The Nörlund transformation (N, p_n) maps the sequence $\{s_n\}$ into the sequence $\{t_n\}$ by means of the equation

$$t_n = \frac{1}{P_n} \sum_{k=0}^n p_{n-k} s_k,$$
 (1)

where $P_n = \sum_{k=0}^n p_k$.

The transformation (\overline{N}, p_n) maps a sequence $\{s_n\}$ into the sequence $\{u_n\}$ by means of the equation

$$u_n = \frac{1}{P_n} \sum_{k=0}^{n} p_k s_k.$$
 (2)

A matrix method is said to be regular if it is limit preserving for convergent sequences. Necessary and sufficient conditions for the regularity of (1) and (2) are, respectively, $p_n = o(P_n)$ and $P_n \rightarrow +\infty$.

Let A and B denote two regular matrix methods, and $A_n(x) = \sum_k a_{nk} x_k$, the *n*th transform of a sequence x. We say that B is stronger than A if

$$A_n(x) \rightarrow l \text{ implies } B_n(x) \rightarrow l, \ l \text{ finite.}$$
 (3)

If (3) continues to hold for $l = \pm \infty$, we say that B is totally stronger than A (written B t.s. A).

The purposes of this paper are to extend the theorems of [8] to total comparison, and to establish additional properties between the two methods of summability.

For completeness we quote the theorems from [8].

Theorem I1. Suppose that $\{p_n\}$ is positive non-increasing. Then in order that (N, p_n) should include (\overline{N}, p_n) , it is necessary and sufficient that $\inf_n p_n > 0$.

[Note. Necessity is not stated by Ishiguro in his main theorem, but is given by his corollary.]

Theorem 12. If $\{p_n\}$ is non-decreasing, and $p_n = o(P_n)$, then (N, p_n) includes (\overline{N}, p_n) .

Let $\{p_n\}, \{q_n\}$ be positive sequences such that (\overline{N}, p_n) and (N, q_n) are regular. We shall first establish conditions for (N, q_n) to be totally stronger than (\overline{N}, p_n) . Let $A = (a_{nk}), B = (b_{nk})$ be defined by $a_{nk} = p_k/P_n, k \leq n, a_{nk} = 0, k > n$, $b_{nk} = q_{n-k}/Q_n, k \leq n, b_{nk} = 0, k > n, v_n = \sum_k b_{nk} s_k$, and u_n as in (2). Then, from (2), $s_n = p_n^{-1} (P_n u_n - P_{n-1} u_{n-1}), P_{-1} = 0$, and

$$v_{n} = \sum_{k=0}^{n} \frac{q_{n-k}}{Q_{n}} \left(\frac{P_{k}u_{k} - P_{k-1}u_{k-1}}{p_{k}} \right)$$
$$= \frac{1}{Q_{n}} \sum_{k=0}^{n-1} \left(\frac{q_{n-k}}{P_{k}} - \frac{q_{n-k-1}}{p_{k+1}} \right) P_{k}u_{k} + \frac{q_{0}P_{n}u_{n}}{p_{n}Q_{n}}.$$
 (4)

Therefore B = DA, where

$$d_{nk} = \left(\frac{q_{n-k}}{p_k} - \frac{q_{n-k-1}}{p_{k+1}}\right) \frac{P_k}{Q_n}, \quad k < n;$$

$$d_{nn} = \frac{q_0 P_n}{p_n Q_n}; \quad d_{nk} = 0, \ k > n.$$

From Hurwitz [7], D will be totally regular if and only if there exists an integer k_0 such that $d_{nk} \ge 0$ for all $k > k_0$; i.e.,

$$\frac{q_{n-k}}{p_k} - \frac{q_{n-k-1}}{p_{k+1}} \ge 0 \text{ for all } n > k > k_0.$$

(Note that the regularity of (N, q_n) guarantees that $\lim_n d_{nk} = 0$ for each k.) Observing that n-k may be any positive integer we can formalize these remarks as

Lemma 1. Let $\{p_n\}$, $\{q_n\}$ be positive sequences satisfying (i) $P_n \rightarrow +\infty$, (ii) $q_n = o(Q_n)$. Then (N, q_n) t.s. (\overline{N}, p_n) if and only if

$$\frac{p_{k+1}}{p_k} \ge a = \max_{m \ge 1} \left(\frac{q_{m-1}}{q_m} \right), \quad k \ge k_0.$$
⁽⁵⁾

Theorem 1. Let $\{p_n\}$ be a real positive sequence satisfying $P_n \to +\infty$ and $p_n = o(P_n)$. Then (N, p_n) t.s. (\overline{N}, p_n) if and only if $p_{n+1} \ge p_n$ for all n.

Proof. Consider Lemma 1 for $q_n = p_n$. If $p_{n+1} \ge p_n$ for all *n*, then $a \le 1$, and (5) is satisfied.

To show the converse, suppose there exists an integer *n* for which $p_{n+1} < p_n$. Then a > 1, and the condition $p_{k+1}/p_k \ge a$ violates $p_n = o(P_n)$.

Theorem 1 includes Theorem I2 mentioned above, and corrects and strengthens the statement of Theorem 1 of [14].

An alternate proof of the sufficiency of Theorem 1 is the following.

Let $r_n = 1$ for all *n*. Then $(N, r_n) = (\overline{N}, r_n) = (C, 1)$. Using the proof of [6, Theorem 20, p. 67] or [4, Theorem 2, p. 136], (N, p_n) t.s. (C, 1). Using a result of [12], (C, 1) t.s. (\overline{N}, p_n) . Since t.s. is transitive, (N, p_n) t.s. (\overline{N}, p_n) .

Theorem 2. Let $\{p_n\}$ be a non-increasing positive sequence. Then (\overline{N}, p_n) t.s. (N, p_n) if and only if $P_n \to \infty$ as $n \to \infty$.

RELATIONS BETWEEN (N, p_n) AND (\overline{N}, p_n) SUMMABILITY 111

Proof. Suppose (\overline{N}, p_n) t.s. (N, p_n) . Since $\{p_n\}$ is non-increasing, $p_n = o(P_n)$ and (N, p_n) is regular. Also the sequence $\{p_n\}$ is positive. Therefore (N, p_n) is totally regular. It then follows (see, e.g. [15, Theorem 2.2, p. 398]) that (\overline{N}, p_n) must be totally regular, hence regular. Thus, we must have $P_n \to \infty$ as $n \to \infty$.

To show that the condition is sufficient, we shall make use of the following lemma.

Lemma 2. Let $\{p_n\}$ be a non-increasing positive sequence such that $P_n \rightarrow \infty$ as $n \rightarrow \infty$. Write

$$p(z) = \sum_{n=0}^{\infty} p_n z^n, \quad q(z) = \frac{1}{p(z)} = \sum_{n=0}^{\infty} q_n z^n$$

(1/p(z) is clearly regular in some neighbourhood of the origin and thus can be expanded in a power series),

$$Q(z) = \frac{q(z)}{1-z} = \sum_{n=0}^{\infty} Q_n z^n$$
, where $Q_n = \sum_{k=0}^n q_k$.

Then $Q_n = o(n)$.

The method of proof is suggested by examining a paper of Krishnaiah [9], particularly equation (4) on page 316. For |z| < 1,

$$(1-z)p(z) = \sum_{n=1}^{\infty} (p_{n-1}-p_n)(1-z^n) + p_{\infty},$$

where $p_{\infty} = \lim_{n \to \infty} p_n$. If we write $z = re^{i\theta}$,

$$\mathscr{R}\left\{(1-z)p(z)\right\} = \sum_{n=1}^{\infty} (p_{n-1}-p_n)(1-r^n\cos n\theta) + p_{\alpha}$$
$$\geq \sum_{n=1}^{\infty} (p_{n-1}-p_n)(1-r^n) + p_{\infty}$$
$$= (1-r)p(r).$$

Thus $|(1-z)p(z)| \ge (1-r)p(r)$. Since $P_n \to \infty$, $p(r) \to \infty$ as $r \to 1-$. Hence

$$\left| Q(z) \right| = o\left(\frac{1}{1-r}\right)$$

uniformly in arg z as $r = |z| \rightarrow 1 -$. Since

$$Q_n = \frac{1}{2\pi i} \int_{\Gamma_n} \frac{Q(z)}{z^{n+1}} \, dz,$$

where Γ_n denotes a circle of radius $1-n^{-1}$, centre the origin, the conclusion follows.

Using the notation of Lemma 2, and (1), we may write $s_n = \sum_{k=0}^{n} q_{n-k} P_k t_k$.

Substituting in (2), we have

$$u_n = \frac{1}{P_n} \sum_{r=0}^n p_r \sum_{k=0}^r q_{r-k} P_k t_k$$
$$= \sum_{k=0}^n \beta_{nk} t_k,$$

where

$$\beta_{nk} = \frac{P_k}{P_n} \sum_{r=k}^n p_r q_{r-k}.$$
(6)

The theorem will be proved provided we can show that the matrix (β_{nk}) is totally regular. We first appeal to the following

Lemma K [10, p. 488]. Let $t_n = \sum_{k=0}^{n} \alpha_{nk}u_k$ (the matrix $C = (\alpha_{nk})$ not necessarily regular), with $\alpha_{nn} \neq 0$ for all n. Denote the inverse transformation, which exists, by $u_n = \sum_{k=0}^{n} \beta_{nk}t_k$. If, for all $n, \alpha_{nn} > 0, \alpha_{nk} \leq 0$ ($0 \leq k < n$), then $\beta_{nk} \geq 0$ for all n, k.

The matrix corresponding to (N, p_n) $(\overline{N}, p_n)^{-1}$, which is given by (4) with $q_n = p_n$, satisfies the conditions of Lemma K.

Moreover, $\sum_{k=0}^{n} |\beta_{nk}| = \sum_{k=0}^{n} \beta_{nk} = 1$. Therefore $B^{-1} = (\beta_{nk})$ has finite norm, and it only remains to show that

 $\lim_{n} \beta_{nk} = 0 \text{ for each } k; \text{ i.e., } \sum_{r=k}^{n} p_{r}q_{r-k} = o(P_{n}).$

We may write

$$\sum_{r=k}^{n} p_{r} q_{r-k} = \sum_{r=k}^{n-1} Q_{r-k} (p_{r} - p_{r+1}) + Q_{n-k} p_{n}.$$
(7)

From Lemma 2 (k being fixed), for each $\varepsilon > 0$ there exists a natural number r_0 such that $|Q_{r-k}| \leq \varepsilon(r-k)$ for $r > r_0$. The sum of those terms on the right of (7) for which $r \leq r_0$ is fixed; since $P_n \rightarrow \infty$, this sum is $o(P_n)$. Thus, for all n sufficiently large,

$$\left|\sum_{r=k}^{n} p_{r} q_{r-k}\right| \leq \varepsilon \left\{\sum_{r=r_{0}+1}^{n-1} (r-k)(p_{r}-p_{r+1}) + (n-k)p_{n}\right\} + o(P_{n})$$
$$= \varepsilon \{P_{n}-P_{r_{0}+1} + (r_{0}+1-k)p_{r_{0}+1}\} + o(P_{n})$$
$$= \varepsilon P_{n} + o(P_{n}).$$

Therefore

$$\lim_{n\to\infty}\sup\frac{1}{P_n}\left|\sum_{r=k}^n p_r q_{r-k}\right| <\varepsilon,$$

and since ε is arbitrary, the conclusion follows.

Two regular matrix methods A and B are said to be equivalent if A is stronger than B and B is stronger than A. Combining Theorems 2 and 11 we have the following

Corollary 1. If $\{p_n\}$ is non-increasing and $p_n \ge \sigma > 0$, n = 0, 1, 2, ..., then (N, p_n) and (\overline{N}, p_n) are equivalent.

A method *B* is said to be strictly stronger than *A* if *B* is stronger than *A*, but there is a sequence x for which $\lim_{n} B_n(x)$ exists and $\lim_{n} A_n(x)$ does not. For triangles (that is, infinite matrices with all elements zero above the main diagonal, and all main diagonal elements non-zero) it is well known that the condition *B* is strictly stronger than *A* is equivalent to (i) BA^{-1} is regular, and (ii) AB^{-1} has infinite norm.

Corollary 2. Let $\{p_n\}$ be a positive non-decreasing sequence with $p_n = o(P_n)$. Then, if $\sup_n p_n = +\infty$, (N, p_n) is strictly stronger than (\overline{N}, p_n) .

Proof. Note that, from the hypotheses on $\{p_n\}$, $P_n \ge (n+1)p_0$ and hence $P_n \rightarrow +\infty$.

With $A = (p_{n-k}/P_n)$, $B = (p_k/P_n)$, and $C = AB^{-1}$, then $c_{nn} = p_0/p_n$. $\|C^{-1}\| \ge \sup_n |1/c_{nn}| = \sup_n |p_n/p_0| = +\infty$,

and (N, p_n) is strictly stronger than (\overline{N}, p_n) .

Corollary 3. Let $\{p_n\}$ be a positive non-decreasing sequence with $p_n \rightarrow c$, where $c < 2p_0$. Then (N, p_n) and (\overline{N}, p_n) are equivalent.

Proof. Note that the hypotheses on $\{p_n\}$ not only ensure that $P_n \to +\infty$, as in the proof of Corollary 2, but also that $p_n = o(P_n)$.

We shall need the following result from [2], which also appears in [13].

Theorem A. Let C denote a regular triangle. If

$$\lim \inf_{n} \left\{ \left| c_{nn} \right| - \sum_{k < n} \left| c_{nk} \right| \right\} > \lambda > 0,$$

then C is equivalent to convergence.

If we let C be as defined in Corollary 2, then C is regular, because (N, p_n) is stronger than (\overline{N}, p_n) . From [8, p. 122],

$$|c_{nn}| - \sum_{k < n} |c_{nk}| = \frac{p_0}{p_n} - \left(1 - \frac{p_0}{p_n}\right) = \frac{2p_0}{p_n} - 1,$$

and the result follows since $c < 2p_0$.

The condition on c in Corollary 3 is the best possible. For, let $p_0 = 1$, $p_n = c > 1$ for n > 0. Then, with the notation used in the proof of Lemma 2, p(z) = (1 + (c-1)z)/(1-z), giving us $Q(z) = [(1-z)p(z)]^{-1} = 1/(1 + (c-1)z)$, so that $Q_n = (-1)^n (c-1)^n$. For $k \ge 1$, (6) becomes

$$\beta_{nk} = \frac{cP_k}{P_n} \sum_{r=k}^n q_{r-k} = \frac{cP_k}{P_n} Q_{n-k}$$
$$= \frac{(-1)^{n-k} c(ck+1)(c-1)^{n-k}}{(cn+1)}.$$
(8)

Using (8) one can demonstrate that the transformation is not regular when $c \ge 2$.

Two matrices A and B are said to be totally equivalent if and only if A t.s. B and B t.s. A. Lorch [12] has shown that (\overline{N}, q_n) t.s. (\overline{N}, p_n) if and only if $q_{n+1}/q_n \leq p_{n+1}/p_n$ for almost all n. Therefore, if (\overline{N}, p_n) , (\overline{N}, q_n) are totally equivalent, there exists an integer m such that

$$\frac{p_m}{q_m} = \frac{p_{m+1}}{q_{m+1}} = \frac{p_{m+2}}{q_{m+2}} = \dots;$$

i.e., $p_k = cq_k$ for all n > m, and $c = p_m/q_m$.

Formalizing these remarks we have

Theorem 3. Let $\{p_n\}, \{q_n\}$ be positive sequences, with $P_n \to +\infty$, $Q_n \to +\infty$. Then (\overline{N}, p_n) and (\overline{N}, q_n) are totally equivalent if and only if $p_n = cq_n$ for almost all n, and some constant c.

Theorem 4. The methods (N, p_n) and (\overline{N}, p_n) are identical if and only if $p_n = const.$ for all n.

Proof. By hypothesis $p_{n-k}/P_n = p_k/P_n$, which implies $p_{n-k} = p_k$ for $0 \le k \le n$; i.e., $p_k = p_0$ for all k > 0. The converse is trivial.

Ullrich [16] showed that the only Nörlund matrices which are also Hausdorff matrices are the Cesàro matrices. Agnew re-proved this result in [1]. It is of interest to note which matrices of the form (\overline{N}, p_n) are also Hausdorff matrices.

Theorem 5. The only (\overline{N}, p_n) matrices that are also Hausdorff matrices are those of the form $p_n = 0$ for n > 0 or $p_n = \Gamma(n+a)/\Gamma(n+1)\Gamma(a)$, a > 0.

Proof I. Let A denote the matrix corresponding to a (\overline{N}, p_n) method. Assume also that A is a Hausdorff matrix generated by a sequence μ . Then

$$a_{nn} = \frac{p_n}{P_n} = \mu_n, \ a_{n,n-1} = \frac{p_{n-1}}{P_n} = n\Delta\mu_{n-1} = n(\mu_{n-1} - \mu_n).$$

We may write p_{n-1}/P_n in the form $(p_{n-1}/P_{n-1})(P_{n-1}/P_n) = \mu_{n-1}(1-\mu_n)$. We then have $\mu_{n-1}(1-\mu_n) = n(\mu_{n-1}-\mu_n)$, or

$$(n-1)\mu_{n-1} = (n-\mu_{n-1})\mu_n.$$
(9)

Let $\mu_0 = c$. Then, from (9), $(1-\mu_0)\mu_1 = 0$, and either $\mu_1 = 0$ or $\mu_0 = 1$. If $\mu_1 = 0$, then $\mu_n = 0$ for all n > 1, and the sequence is $p_0 = \mu_0 = c$, $p_n = \mu_n = 0$, n > 0. If $\mu_1 \neq 0$, then we must have $\mu_0 = 1$. μ_1 can then be arbitrary. Let $\mu_1 = \alpha \neq 0$. For all n > 1, from (9)

$$\mu_n = \frac{(n-1)\mu_{n-1}}{n-\mu_{n-1}},$$

or

$$\mu_n = \frac{\alpha}{n - (n - 1)\alpha} = \frac{\alpha}{(1 - \alpha)n + \alpha} = \frac{a}{n + a},$$
 (10)

where $a = \alpha/(1-\alpha)$. We cannot have $\alpha = 1$, for then, from (10), we would have $\mu_n = 1$ for all *n*, giving rise to the identity matrix. But it is impossible to generate the identity matrix with a (\overline{N}, p_n) method.

A straightforward calculation will verify that the sequence $\{p_n\}$ corresponding to (10) is $p_n = \Gamma(n+a)/\Gamma(n+1)\Gamma(a)$, hence the restriction that a > 0.

Proof II. Associated with any triangular transformation

$$t_n = \sum_{k=0}^n \alpha_{nk} s_k \tag{11}$$

is the "reverse" transformation $u_n = \sum_{k=0}^{n} \alpha_{n, n-k} s_k$, formed by reversing the order of the elements on each row of the matrix corresponding to (11). Using the elementary properties of the forward difference operator Δ , defined by $\Delta u_n = u_n - u_{n+1}$, it is easy to show that the reverse of any Hausdorff method (H, μ) is a Hausdorff method (H, λ) , where $\lambda_n = \Delta^n \mu_0$. Since the reverse of a (\overline{N}, p_n) method is (N, p_n) , it follows that a matrix is both (\overline{N}, p_n) and Hausdorff if and only if the matrix of the reverse transformation is both Nörlund and Hausdorff. The result of Theorem 5 can then be deduced directly from the results of [1] and [16].

An analogous result relating Hausdorff matrices and generalized Norlund methods (N, p, q) (see [3] for the definition of (N, p, q)) appears in [11].

The following theorem appears in [14], where Γ_c denotes the Hausdorff matrix generated by $\mu_n = c/(n+c)$.

Theorem R. Let $\{p_n\}$ be a sequence of positive numbers such that

 $(k+c)p_k > (k+1)p_{k+1}, c > 0,$

for almost all k. Then (\overline{N}, p_n) t.s. Γ'_c , but not conversely.

In light of Theorem 5 we observe that Γ'_c is a (\overline{N}, p_n) method with p_n as described in the discussion following equation (10). The theorem then follows immediately from the result of [12] quoted earlier.

For completeness we point out that Dikshit [5] has established a number of theorems comparing the relative strengths of the (N, p_n) and (\overline{N}, q_n) methods for both ordinary and absolute summability. His principal result is the following. Let $q_n > 0$, $p_n \ge 0$, $p_0 > 0$, $Q_n \rightarrow +\infty$, $p_n = o(P_n)$. Then (N, p_n) includes (\overline{N}, q_n) if and only if

$$\sum_{k=0}^{n} \left| \Delta_{k}(p_{n-k}Q_{k}/q_{k}) \right| = O(P_{n}), \ p_{-1} = 0.$$

However, he does not consider questions of total inclusion, and so there is no overlap in content with this paper.

REFERENCES

(1) R. P. AGNEW, A genesis for Cesàro methods, Bull. Amer. Math. Soc. 51, (1945), 90-94.

(2) R. P. AGNEW, Equivalence of methods for evaluation of sequences, *Proc. Amer. Math. Soc.* 3 (1952), 550-556.

(3) D. BORWEIN, On products of sequences, Journal London Math. Soc. 33 (1958), 352-357.

(4) SOBHA DEBI, Some results on total inclusion for Nörlund summability, Bull. Calcutta Math. Soc. 47 (1955), 135-141.

(5) G. D. DIKSHIT, On inclusion relations between Riesz and Nörlund means, Indian Journal of Math. 7 (1965), 73-81.

(6) G. H. HARDY, Divergent Series (Oxford, 1949).

(7) W. A. HURWITZ, Some properties of methods of evaluation of divergent sequences, *Proc. London Math. Soc.* (2), 26 (1927), 231-248.

(8) KAZUO ISHIGURO, The relation between (N,p_n) and (\tilde{N},p_n) summability, *Proc. Japan. Acad.* 41 (1965), 120-122.

(9) P. V. KRISHNAIAH, On Kakeya's theorem, Journal London Math. Soc. 30 (1955), 314-319.

(10) B. KUTTNER, The problem of "total translativity" for Hölder summability, Journal London Math. Soc. 29 (1954), 486-491.

(11) B. KUTTNER, Note on the generalised Nörlund transformation, Journal London Math. Soc. 42 (1967), 235-238.

(12) LEE LORCH, Supplement to a theorem of Cesàro, Scripta Mathematica 23 (1957), 163-165.

(13) R. RADO, Some elementary Tauberian theorems (I), Quart. J. Math. 9, (1938), 274-282.

(14) B. E. RHOADES, On the total inclusion for Nörlund methods of summability, Bull. Calcutta Math. Soc. 52 (1960), 123-125.

(15) B. E. RHOADES, Hausdorff summability methods, Trans. Amer. Math. Soc. 101 (1961), 396-425.

(16) E. ULLRICH, Zur Korrespondenz zwier Klassen von Limitierungsverfahren, Math. Zeit. 25 (1926), 382-387.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF BIRMINGHAM ENGLAND

DEPARTMENT OF MATHEMATICS INDIANA UNIVERSITY BLOOMINGTON, INDIANA, U.S.A.