
INFINITE PACKINGS OF DISKS 

Z. A. MELZAK 

1. Let U be the closed disk in the plane, centred at the origin, and of unit 
radius. By a solid packing, or briefly a packing, C of U we shall understand a 
sequence {Dn}, n — 1, 2, . . . , of open proper disjoint subdisks of U, such that 
the plane Lebesgue measures of U and of U™=i Dn are the same. If rn is the 
radius of Dn and the complex number cn represents its centre, then the con
ditions for C to be a packing are 

oo 

\d\ < 1, \ct - Cj\ > rt + rjy J2 rn = 1 (i,j = 1, 2, . . . ; i ^ j). 
7 1 = 1 

It was proved by Mergelyan (3) that for any packing the sum of the radii 
diverges: 

oo 

(i) 2 > » = » . 
7 1 = 1 

Mergelyan's demonstration of (1) is somewhat involved and leans heavily 
on the machinery of functions of a complex variable. An elegant direct proof 
of (1) is given by Wesler (5), who uses the technique of projecting the boun
daries of the disks of the packing on a diameter 7 of U. It is then shown that 
almost all points of I are projected upon infinitely often, which leads directly 
to (1). Wesler's proof lends itself to extensive generalizations: packings of 
balls in En by open disjoint sub-balls, packings of convex bodies by sequences 
of other convex bodies, and so on. The Mergelyan-Wesler theorem (1) suggests 
the introduction of the sum 

oo 

Ma(C) = D rn" 
7 1 = 1 

for any packing C, and the investigation of its convergence or divergence for 
various values of a. Since rn < 1 for all n, we have Ma(C) > Mb(C) if a < b 
and Affl(C) is finite; also, if Mb(C) = oo and a < 6, then Ma(G) = œ. 
Hence for each packing C, there exists a uniquely defined number e(C), such 
that 1 < e(C) < 2, and Ma(G) converges for a a > e(G) and diverges for 
a < e(C). The number e(G) will be called the exponent of the packing C. 

It is our object to prove two theorems, together with some generalizations, 
relative to the exponents e(G). The first implies that the case e(C) = 2 may 
occur and it proves a little more. The second is concerned with a special class 
of packings in which every disk from the second one onward is the largest 
possible, and it proves that for every such packing 1.035 < e(C) < 1.999971. 
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2. We begin by extending the concept of an exponent e(C) of a packing C 
to that of a local exponent e(C, x). Let C = {Dn} be a packing and let 

00 

xe u- uDn. 
M = l 

Let D (x, r) denote the open disk of radius r about x as centre and put 

Ma(C,x,r)= £ rn
a, 

DncD(x,T) 

rn being the radius of Dn. It is then easily shown that there exists a number 
e = e(G, x, r) such that Ma(C, x, r) converges for a > e and diverges for 
a < e. Since for every r > 0 there are infinitely many values of n for which 
Dn C £>(x, r), it follows that e(C, x, r) > 0. As a matter of fact, the Mergelyan-
Wesler theorem (1) could be used to show that e(C, x, r) > 1, but we shall 
not need this. If r\ < r2, then 

Ma(C, x, ri) < Ma(C, x, r2) 

so that e(C, x, r) is non-decreasing in r and bounded from below. Hence there 
exists the limit 

e(C, x) = lim e(C, x, r), 

which we call the local exponent of C at x. Our first result is 

THEOREM 1. There exists a packing C = {Dn} such that e(C, x) = 2 for every 

oo 

xeu-\jDn. 

Let 

Cni = {A,,} (i = l ,2 ;n = 1,2,...) 

be two packings of U, not necessarily distinct. Let rni be the radius of the disk 
Dni and let the complex number cni represent its centre. By iterating C2 over 
Dwi in Ci we mean the following operation: from the packing Ci we remove 
the disk Bn\ and we replace it by a suitably scaled down replica of C2. The 
result is a new set of disks 

C = ( D n , ^ . . . , ! ) » . ! , ! , ^ ! , . . ! U{£>'i,Z>'2,.. .}, 

where the disk D'm has the radius rm2'rni and is centred at cn\ + rn\ cm2. C is 
again a packing of U and 

(2) Mb(C) = Mb(d) + rnl»[Mb(C2) - 1]. 

Similarly, let C = \Dm) be a packing, and let {C*} (i = 1, 2, . . .) be a 
sequence of packings with C* = {Dni}. Then by iterating {C*} over C we mean 
iterating C* over Dt simultaneously for all i\ this leads to a new packing C . 
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In the special case when Ci = C2 = . . . = C we call the above process the 
squaring of C and we denote the result by C2. By (2) 

CO 

(3) Mb(C
2) = Mb(C) + [Mb(Q - 1 ] Z rn

b = [Mà(C)]\ 

It may be mentioned here that on account of the absolute convergence of a 
convergent series of positive terms the questions of enumerating and re-
enumerating the disks of packings and of iterated packings are unimportant. 

From (3), we obtain 

(4) sup cM&(C) = o o , j < 2 , 

for we can always start with any packing G = Co and define recursively 
Cw+i = Cn

2; since b < 2, we have then Mb(C) = d > 1 and therefore 
M(Cn) = d2n, which proves (4). 

Next we prove 

LEMMA 1. There exists a packing C with e(C) = 2. 

Let bn = 2 — rrl(n = 1, 2, . . .) and let C = {Dn} be an arbitrary packing 
of £/, rn being the radius of Dn. Let {Cm} (m = 1, 2, . . .) be a sequence of 
packings such that 

(5) Mbm(Cm) > rm-6w; 

the existence of such a sequence is guaranteed by (4). Let C be the result of 
iterating {Cm} over C. Choose now any b < 2; then 

GO 

(6) Mt(.C) = E rn"Mb(C„). 

Let p be the smallest integer > (2 — Z>)-1 such that bn > b for n > p, and 
therefore 

Mb(Cn) > Mbn(Cn) îorn>p. 

Now, by (5), (6), and the above, 

OO CO CO CO 

Mb(C) > £ r„6Ms(CM) > £ rn"Mbn(Cn) > £ r^*" > £ 1 = » . 
n=p n—p n=p n=p 

Hence Mb(C) = » for any 6 < 2, while of course M2(C) = 1; therefore 
e{C) — 2, which was to be shown. 

We are now in a position to prove Theorem 1. By Lemma 1, there exists 
a packing Ci = {D'n} with e(Ci) = 2. We suppose that the disks D'n have 
their radii r'i, r'2, . . . in non-increasing order. Let pi, p2, . . . be any strictly 
decreasing sequence of positive numbers such that limw^œ pn = 0. Let n\ be 
the greatest integer such that r'ni > pi; if no such integer exists, take n\ = 0. 
Iterate Ci over all the disks 

D ni+l, D ni + 2, • • • , 
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thus obtaining a new packing C2 = {D"n). Again, we suppose that the radii 
r"i, rf/2, . . . are arranged in non-increasing order, and we let n2 be the greatest 
integer such that r"n2 > p2, or 0 if no such integer exists. Next, we iterate Ci 
over the disks 

This yields a new packing C3. Repeating the operation indefinitely, we obtain 
a sequence of packings Ci, C2, . . . , which converge to a limiting packing G 
since after N stages of the process all the disks of radius >PJV are permanently 
fixed. Let C = {Dn}, let 

xeu-\jDn, 

let r > 0, and consider the disk D(x, r). At some stage of the iteration process 
the initial packing Ci must have been iterated over some small disk lying 
entirely in D(x, r) so that e(C, x, r) = 2. Since r and x are arbitrary, it follows 
tha te(C, x) = 2. 

3. Theorem 1 can be generalized in various ways, and in this section we 
mention briefly a few such generalizations. In the first place, t /can be replaced 
by a more general set V of sufficient regularity, for instance, by another plane 
convex body or by a plane closed piecewise smooth Jordan curve together with 
its interior. A packing of V is then defined, as before, to be a sequence {Dn} of 
open disjoint disks lying in V, such that the sets F and \Jn=i Dn have the same 
plane Lebesgue measure. The definition of exponents and of local exponents 
goes over without change, and there is no difficulty in obtaining the obvious 
generalization of Theorem 1. To prove it, we can take any packing of V, 
replacing each disk by a suitable replica of the packing C of Theorem 1. 

Further, we have an ra-dimensional version of Theorem 1. Here [/is replaced 
by the closed ball B in Em, centred at the origin and of unit radius. Let {Dn} 
be a sequence of open disjoint sub-balls of B ; if cn is the vector representing 
the centre of Dn and rn is its radius, then the necessary and sufficient conditions 
for {Dn} to be a packing are 

00 

1̂ 1 < 1, \ct - c3] > r, + rJt ]C rnm = 1 (i,j = 1, 2 , . . . ; i 9* j). 

Wesler's generalization of (1) is now 
00 

E m— 1 
rn = °°. 

n=l 

Exponents and local exponents are as before, and the proof of Theorem 1 
can be adapted at once to show that there exist packings C = {Dn} such that 
e(C,x) = m for every 

00 

x 6 B - U Dn. 
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We can also consider packings of unbounded regions. For instance, let P be 
the whole plane; a sequence {Dn} of open disjoint disks in P is a packing of P 
if the plane measure of P — U^Li Dn is 0. Here a particularly simple proof of 
the analogue of Theorem 1 is the following. Let C = {Dn} be the packing of U, 
of Theorem 1. Let x be a point on the circumference of U, which is not in the 
boundary of any disk Dn. Let A be a circle about x. Under the inversion with 
respect to A, U goes over into a half-plane H and the disks {Dn} go over into 
the disks {Fn] ; the latter provide a packing of H. Now the family {Fn), together 
with its reflexion in the line bounding H, provides a packing of P for which 
Theorem 1 holds. 

Finally, it is possible to pack a set with sets other than disks. For instance, 
let U be any plane convex body and let C = {Dn} be a sequence of interiors 
of convex bodies, which are disjoint, lie in the interior of U, and provide a 
packing in the sense that U and Uw^i Dn have the same plane measure. It is 
necessary to place some limitation on the sets Dn, to prevent the possibility 
of finite packings. We may require, for instance, that the closure of each Dn 

is a strictly convex set. The sums 

oo 

Ma(C) = Z r„" 

are now replaced by the sums 
oo 

Ma(P) = E [diam {Dn)f, 

and again we have both the Mergelyan-Wesler theorem (1) and an equivalent 
of our Theorem 1. 

4. In this section we consider a special class of packings in which every 
disk, beginning with the second, is largest possible. More specifically, a packing 
C = {Dn} of U is called osculatory if its disks are determined in the following 
manner: D\ is a disk of radius rh 0 < r\ < 1, internally tangent to U; D2 

is the largest disk fitting into U — D\\ Dz and Z>4 are respectively the two 
largest disks fitting into the two curvilinear triangles making up the boundary 

are the six largest disks fitting into the six 
curvilinear triangles forming the boundary of U — \Jl=iDn\ and so on. In 
the following it will often be convenient to deal with the curvature of the various 
disks, rather than with their radii. We remark that at this point it is not quite 
obvious that an osculatory packing is solid, i.e., that the sum of the areas of 
its disks equals the area of U. As a matter of fact, there appears to be no very 
easy direct proof of this. However, we shall prove later on a much stronger 
proposition ; for the time being we consider the osculatory packings by them
selves, without claiming as yet that they are indeed packings. I t may be added 
that all the results obtained for osculatory packings hold for a somewhat more 
general class of packings of U, in which we start with any finite number of 
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disjoint subdisks of U, and from then on continue adding each time the largest 
disk that fits into the area left uncovered. We need first an elementary result 
due to Soddy (4), proved also in (1); it is 

LEMMA 2. Let A, B, and C be three pairwise tangent circles in the plane, with 
curvatures a, b, and c. Let D be either of the two circles tangent to A, B, and C, and 
let d be its curvature. Then 

(7) d = a + b + c + 2(ab + ac + bc)K 

The following conventions are to be observed. If A, B, and C are pairwise 
externally tangent, then a, b, and c are taken as positive; otherwise, with B and 
C tangent internally to A, the sign of a is taken as negative and those of b and c 
as positive. In the latter case the two values of the square root in (7) lead to 
two values of d, say d\ and d2, both necessarily positive, and corresponding to 
the two circles tangent internally to A and externally to B and C. In the case 
of external tangency of A, B, and C, max (d\, d2) is positive and corresponds 
to the circle inscribed into the concave curvilinear triangle contained between 
A, B, and C; min (d\, d2) may be positive (another circle tangent externally 
to A, B, and C), or 0 (a common tangent line to A, B, and C), or negative 
(a circle tangent to A, B, and C, and enclosing them). Using this lemma, we 
have 

LEMMA 3 . 7 / 0 is an osculatory packing, then 

(8) e(C) > log 3/{log [(1 + 5* + (2 + 20*)*)/2]} = 1.035 . . . . 

In the osculatory packing C, single out any three pairwise externally tangent 
disks, call them D\, D2, and J93, and assign to each the order — 1. In filling out 
the area between them we obtain successively one disk of order 0, say D±\ then 
three disks of order 1, namely D5, De, and D7; and, generally, 3W disks of order 
n, for any n > 0. Let the radii of the latter be rjn (J = 1, 2, . . . , 3W) and put 
Mn = (min^ rjn)~~l. Each disk of positive order is tangent to exactly three 
disks of lower order, say p, a, and r, with p < a < r. Further, either p = — 1 
o r 0 < £ < g < r ; this follows easily from the fact that no two disks of the 
same positive order can touch. Since Mn is increasing with n, we have, by 
applying (7), 

(9a) Mn+Z < Mn+2 + Mn+1 + Mn + 2(Mn+2 Mn+1 + Mn+2 Mn 

+ Mn+1Mnf\ n = 0, 1, 

Here and in what follows we take the positive root, by the conventions following 
(7). 

Let pi = Mf (i = 0, 1, 2) and define recursively 

( 9 b ) pn+z = pn+2 + pn+l + Pn + 2(Pn+2pn+l + Pn+îpn + Pn+lPnY't 

n = 0, 1, 
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Then by (9a), pn > Mnlorailln > 0. Our immediate goal is to prove an estimate 
of the form 

(10) pn < Ktn, K > 0;t > 1; n = 0, 1, . . . . 

This will be done by induction on n. Put K = max(^0, pi, P2) and assume that 
there is a fixed t > 1 such that pm < Ktm for m = 0, 1, . . . , n + 2. This is 
certainly true for w = 0. By the induction hypothesis and by (9b), we have 

(11) pn+z < Ktn[t2 + t + 1 + 2(/3 + t2 + *)*]. 

Therefore we shall have the desired induction step, namely pn+z < iDn+3 , 
provided that t is chosen so that 

t2 + t + 1 + 2(*3 + £2 + *)* < t\ 

We therefore examine the real roots of the corresponding equation 

x2 + x + 1 + 2(x3 + x2 + x)2 = x3, 

or after rearranging and squaring 

(12) x6 - 2x5 - x4 - 4x3 - x2 - 2x + 1 = 0. 

Because of its symmetry, the sextic (12) reduces to quadratics. We divide by 
x3 and put x + x_ 1 = u; then (12) becomes 

u(u2 - 2u - 4) = 0. 

Thus (12) can be solved and it turns out that there is exactly one real root 
greater than 1: 

[1 + 5^ + (2 + 2 0 ^ ] / 2 = 2.890 

Therefore, with t equal to the above number, the induction course is completed 
and (10) is proved. Hence, by the definition of Mn and pni 

min rjn > ct~n, c > 0, n = 0, 1, . . . . 

Let the radii of the disks of the osculatory packing C be ri, r2, . . . ; then by 
the above 

00 00 3 n co 

Ma(C) = S r / > E I rjn
a > â E 3B t~na; 

k=l n=l j=l n=l 

but the sum on the right clearly diverges for any a < log 3/log /, which proves 
(8). 

Lemma 3 extends to some of the generalizations of our packings, considered 
in §3. As an example, we have 

THEOREM 2. Let J be any plane closed piecewise smooth Jordan curve, other 
than the circle, and let the interior I of J be packed with an infinite sequence 
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Si, S2, . . . , of open circular disks, selected so that Sn is the largest disk fitting 
into I — U^I i Su n = 1,2, . . . . If rn is the radius of Sn, then the sum 

oo 

EC 
W = l 

diverges for any a such that 
a < log 3/{log[(l + 5* + (2 + 20^) /2 ]} = 1.035 . . . . 

For it is clear that the sequence Si, S2, . . . must contain a subsequence of 
the type used in the proof of Lemma 3. 

5. The upper bound on the exponent of an osculatory packing, to be derived 
in the next section, is harder to obtain than the lower bound (8) of Lemma 3, 
and we need some preliminary results. The first one, which may be of some 
independent interest, is an extension of Soddy's formula (7). 

LEMMA 4. Let A,B, and C = Co be three pairwise tangent circles, with curvatures 
a, b, and c = Co, satisfying a < b < c. Let C\, Ci, . . . be a sequence of circles 
such that Cn is the smaller one of the two circles tangent to A, B, and Cn_i, and let 
cn be its curvature. Then 

(13) cn = (a + b)n2 + 2n[(a + b)c0 + ab]* + c0, n = 0, 1, . . . , 

where the sign of the square root is positive, as are those of b and CQ, and the sign 
of a is taken as negative if B and C are internally tangent to A, and positive 
otherwise. 

By (7) we have 

Cn+i = a + b + cn + 2{ab + acn + bcn)^, n = 0, 1, 

Let 

(14) f(x) = a + b + x + 2(ax + bx + ab)*; 

we then obtain 
Cn+1 = f\cn)y Cn = / w ( ^ o ) , 

where fn(x) is the nth iterate of f(x). To find an explicit expression for/w(x), 
we use the method of conjugate functions, searching for an easily iterable 
function conjugate tof(x). Put 

(15) <t>(x) = ax + 0, a = a + b, 0 = -ab/(a + b), 

g(x) = x2, i/t(x) = x + t, <a(x) = <l>(g(x)). 

Then 

^(ftiix))) = x + 2x- + 1 = g(fi(THx))) 

and therefore 
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Hence 

Mx) = « ( ^ ( « ^ ( « ( ^ ( c o - 1 ^ ) ) ) ) ) ) = « ( ^ ( c o - 1 ^ ) ) ) , 

and generally 

fn(x) = (arnica-1 (x))) = œ(n + co" 1 ^ ) ) . 

Subs t i tu t ing into the above from (15), we obtain 

fn(%) = (a + £)^ 2 + 2n(ax + 6x + aô)* + x, 

which yields (13) a t once. 

In our applications of this lemma, A, B, and C will be the boundaries of three 
pairwise t angen t disks of an osculatory packing. Therefore, in the case of 
external tangency of Ay B, and C, we make no special assumpt ions on a, by and 
c\ b u t in the case of internal tangency, the containing circle A is the boundary 
of the uni t disk U and so a = — 1. 

L E M M A 5. With the terminology of Lemma 4 

(16) cn+1/cn < k = 3 + 2-3*, n = 0, 1, . . . . 

In the case of external tangency we have by (7) 

ci/co = a/Co + b/co + 1 + 2(ab/c0
2 + a/c0 + b/c0)^ 

with a < b < Co. Therefore the maximum of the r ight-hand side occurs for 
a = b — Co, which gives us (16) with n = 0. T o prove this for general n, we 
merely replace Co and c\ by cn and cn+i. In the case of internal tangency, we p u t 
a = — 1 and so by (7) 

c\ = b + Co — 1 + 2 (bco — b — c0)*, 

which is increasing in b. Since b < Co, the maximum of the r ight-hand side 
occurs for b — Co and so 

d<2co - 1 + 2 ( c 0
2 - 2c0)

h; 

and similarly for any n > 0 

cn+1<2cn- 1 +2(cn
2 -2cnf 

or 
C + i / c < 2 - 1/c, + 2(1 - 2/cn)K 

Since cw is positive, i t follows t h a t cn+i/cn < 4, which is less than k, and so the 
proof is complete. 

L E M M A 6. Let A be the area of the curvilinear triangle T contained between the 
circles A, B, and C of Lemma 4 (in the case of internal tangency we take T to be 
the smaller of two such triangles). Then 

oo 

(17) A < 7r(2£ + l ) 2 2 > , r 2 . 
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Let C be the circle concentric with Cn and having the radius (2k + 1) 
times that of Cn. Then it follows from (16) that C'n contains both Cn_i and 
Cn+i for n > 1. As a consequence, no point of T can lie outside all the circles 
Ci , Ci, . . . and hence 

A<f]Area (C»), 

which is (17). 
Let the situation be the same as in Lemmas 4, 5, and 6. By Lemma 5, it is 

possible to inscribe in T at least one circle, G, of curvature Kkc0. The comple
ment of the interior of G with respect to T consists of three smaller curvilinear 
triangles, and we inscribe into these further circles, and continue the process, 
as long as the curvatures of all such inscribed circles are Kkc0. The process 
comes to a stop after a finite number of inscriptions, and our central lemma (10) 
will assert that there exists an absolute constant 8 > 0 such that the area T 
of all the circles thus inscribed exceeds 8A. There are two cases to distinguish, 
depending on whether b is not too much smaller than c0, so that the number of 
inscribed circles is small, or b <K Co, in which case there will be many such circles. 
These two cases necessitate two separate estimates of T/A from below. Both 
estimates will be in terms of the ratio b/co, one will be effective for b/co small 
and the other one for b/co large, and 8 will be obtained by combining the two 
estimates. 

LEMMA 7. 

(18) T/A > <irb/8k2c0. 

Since at least one circle G of curvature <&Co can be inscribed in T, we have 

(19) r > 7rcr\ 

To obtain a bound on A, consider first the case of external tangency, and let 
p, q, and r be the points of tangency of A with B, A with C, and B with C, 
respectively. The area of the triangle pqr is at most \\pr\ \qr\, and 

\pr\ < 2/b, \qr\ < 2/c0. 

Since Tis contained in pqr, we have A < 2/bco. In the case of internal tangency, 
A is less than (\pr\ + \qr\) times the distance from r to A, and the latter is less 
than 2/b; therefore here 

A < (2/b + 2/c0)2/b < 8/bco. 

Hence by (19) 

T / A > (7T/8)(ôAo)(CoAl)2, 

and by (16), co/ci > &~\ which gives us (18). 
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Suppose now that the ratio b/co is small so that the number of circles inscribed 
in T and having curvature <&c0 is large. In particular, the number of those 
circles of the sequence G, C2, . . . of Lemma 4 of curvature <&co will be large. 
More specifically, let 

(20) cm/c0 < k < cm+1/c0 

so that all the circles G, C2, . . . , Cm contribute to T, and 

m 

By Lemma 6, we have therefore 

m I co 

(21) T/A > (2k + I ) " 2 £ Cn~2/ Z c~\ 
n=l ' n=l 

Put for brevity 

(22) S = £c-2/±c-2. 
n=l ' n=l 

LEMMA 8. 

(23) S > k~*(l - Cl/cm). 

By Lemma 5, we have cn+i < kcn for n > 0 and therefore 

so that 
W / CO 

(24) 5>r!EWE^. 
By Lemma 4, cn = ^ (n) , where 

7^(x) = (a + £)x2 + 2x(ac0 + fco + a£)* + c0. 

Since .F(x) is steadily increasing for x > 1, we can approximate the sums in 
(24) by integrals: 

m nm co /»co 

E c „ ~ 2 > F~\x)dx, Z c , r 2 < F-\x)dx; 

hence by (24) 
nm / /too 

5 > r 2 J F~\x)dxf J F~\x)dx. 

Making the substitution u = Ci/F(x), we obtain after some calculations 
5 > r 2 f G(u)du/ (G(u)du, 
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where 

G(u) = tt?[abu + (a + b)ci]~K 

Since G(u) is increasing and positive for 0 < u < 1, we have (23). 

LEMMA 9. 

(25) T/A > (2k2 + k)~2[l - h(b/c0)/k] 

where 

(26) h(x) = [1 + 3(x2 + 2**)* + 2(x2 + 2x)*][l + 2x + 2(x2 + 2*)*]. 

By (20), 

(27) ci/cm = (ci/co)(cm+i/cm)(co/cm+i) < (ci/c0)(cm+1/cm)/k. 

Since, by (7), 

Ci = a + b + Co + 2(ab + aco + bc0)^ 

and, by hypothesis, 

(28) a < b < c0, 

we have the following upper bound on Ci/co in terms of b/co: 

(29) ci/co < 1 + 2b/Co + 2[(b/c )2 + 2b/c0]K 

To obtain a similar upper bound on cm+i/cm> we have first, by (13) and (20), 

(a + b)m2 + 2m(aco + bc0 + ab)^ + c0 < &£o; 

therefore m does not exceed the larger root of the quadratic equation in m, 
obtained by equating the two sides in the above; hence 

(a + b)m < (kaco + kbco + ab)* — (ab + ac0 + bc0)%. 

Therefore by (28), 

(30) (a + b)m/co < [(b/c0)
2 + 2kb/c0]*. 

Next, by (13), 

cm+i/cm = 1 + (cm+i - cm)/cm < 1 + [(a + 8)(2m + 1) 

+ 2(ab + aco + bc0)*]/c0. 

Since m > 1, we have 2m + 1 < 3m so that by (28) and (30) the above yields 

(31) cm+1/cm < 1 + 3[(b/c )2 + 2kb/c0]> + 2[(b/c0)
2 + 2b/c0]K 

Now (25) follows from (21), (22), (23), (27), (29), and (31). 

LEMMA 10. 

(32) T/A > 62 X 10~6. 
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We first simplify the bound (25), making it somewhat worse but better 
adapted for our computation. Since the parameter b/c0 = x satisfies 0 < x < 1 
by (28), we have x2 < x < x*, and therefore from (26) 

(33) h(x) < g(x) = {1 + [3(2* + 1)* + 2.3*]**} [1 + 2(1 + 3*)**]. 

Hence by (25), (26), and (33), 

r / A > {2k2 + k)~2[i - g(x)/k]. 

Since (18) may be written as 

r / A > (TT/8£2)X, 

we have 

r / A > max {(2k2 + k)~2[l - g(x)/k], (TT/8&2)X}, 

where k is given by (16). We now equate the two functions appearing in the 
above estimate and solve the resulting equation 

8(2* + 1)~2[1 - g(x)/k] = TX 

which is quadratic in x*. The only positive root is x = 0.00666 . . . , and it 
follows that r / A > (TT/8*2) (0.00666) > 62 X 10~6, proving (32). 

6. LEMMA 11. An osculatory packing C is solid and its exponent satisfies 

e{C) < 1.999971. 

Putô = 62 X 10~6, a = k~2, and let rn and An denote respectively the radius 
and the area of the disk Dn. Let D0 and D\ satisfy 0 < r0 < 1, r\ = 1 — r0; by 
symmetry we may assume that 1/2 < r0 < 1. C is obtained by starting with 
the disks D0 and Di, and making use of the already employed inscription 
condition: whenever disks are to be inscribed into a curvilinear triangle T' 
bounded by three pairwise tangent disks, we inscribe successively all those 
disks whose area is > a times the area of the smallest of the three disks bounding 
T'. Lemma 5 guarantees that one such disk at least will always exist. 

Let T be one of the two congruent curvilinear triangles making up 
U — Do — Di. Let j(l) = 1, and inscribe in T disks Z)2, D%, . . . , Dj(2)1 

subject to the above inscription condition. Then continue the process on each 
of the 2j(2) — 1 curvilinear triangles composing T — \Jl=\ Du obtaining new 
disks Dj(2)+i, . . . , Dj(z), and so on. We have therefore 

(34) Ak > / - M i for k < j(n). 

By Lemma 10, at each new stage of the process, i.e. adding the disks 
Dj(n)+i, . . . , Dj(n+i), we have ensured that the area left uncovered is < (1 — 8) 
times the area left uncovered at the end of the previous stage: 

/ j(n+l) \ / j(n) 

[7r-Ao-A1-2
y£ At) < (1 -Ô) [ir-Ao - A l - 2 ^ A i 
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therefore by induction 

/ Kn+l) \ 
(35) [T - A0 - A1 - 2 Ç At) < (TT - Ao - Ax)(l - 6)n-\ 

Hence C is indeed a packing because the residual area of U, left uncovered 
after n stages of the inscription process, tends, by (35), to 0 as n tends to 
infinity. 

Choose now r < 1, such that 

(36) ar-l(\ - ô) < 1. 

Then 

(37) M2r(C) = 7T-TU0
T + AS + 2J2 An

T) 
\ n=2 / 

and 
co oo ; ( i + l ) 

2^/ A n = 2-j 2Lt Ajc Ak 

Since the areas Ai, A2, . . . are non-increasing and r < 1, the powers ^4iT_1, 
^42T-1, • • • are non-decreasing and therefore 

00 00 j'( i+l) co co 

Hence by (34) and (35) 

00 00 

Z^;<cZ (Atay-'ii -s)' witho <c < ». 
ra=2 i=l 

Therefore all the sums converge by (36). But then (37) implies that e(C) < 2r. 
Solving from (36) for r, we obtain 

eC < 2{1 + [log (1 - 62 X 10"6)]/(21og^)} < 1.999971, 

which completes the proof of Lemma 11. 

Lemmas 3 and 11 can be combined into 

THEOREM 3. An osculatory packing C is a packing and its exponent satisfies 

1.035 < e(C) < 1.999971. 

Theorems 1 and 3, together with some accessory evidence, suggest strongly 
that the exponent e(C) attains its minimum for an osculatory packing; further, 
that there exists a universal constant S ( = the exponent of any osculatory 
packing), satisfying 1.035 < S < 1.999971, and such that the set 

{e(C) : C is a packing} 

is the closed interval [S, 2]. According to some numerical evidence from (2), 
it is likely that the true value of 5 is somewhere near 1.3. While our bounds 
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on 5 could be somewhat improved, it appears certain that some quite different 
method must be employed to find S. 

7. Besides the hypotheses at the end of §6, our work raises several other 
questions relative to exponents. Is it always true that Me(C)(G) is finite? What 
is the exponent of "most" packings? Is there an m-dimensional generalization 
of our conjecture concerning the universal constant 5? Is there any connection 
between the exponent of a packing C — {Dn} and the Hausdorff dimension of 
the residual set U — \J™= i Dn? 

8. Professor C. A. Rogers of University College, London, suggested the 
proof of Lemma 11. Professor M. G. Arsove of Washington University, Seattle, 
gave a considerable simplification of the proof of Lemma 1. The work reported 
upon was started at the Summer Research Institute of the Canadian Mathema
tical Congress in the summer of 1964. Their help is gratefully acknowledged. 
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