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Summary

Here, we introduce the idea of probabilities of line origins for alleles in general pedigrees as found

in crosses between outbred lines. We also present software for calculating these probabilities. The

proposed algorithm is based on the linear regression method of Haley, Knott and Elsen (1994)

combined with the Markov chain Monte Carlo (MCMC) method for estimating quantitative trait

locus coefficients used as regressors. We compared the relative precision of our method and the

original method as proposed by Haley et al. (1994). The scenarios studied varied in the allelic

distribution of marker alleles in parental lines and in the frequency of missing marker genotypes.

We found that the MCMC method achieves a higher accuracy in all scenarios considered. The

benefits of using MCMC approximation are substantial if the frequency of missing marker data is

high or the number of marker alleles is low and the allelic frequency distribution is similar in both

parental lines.

1. Introduction

The problem of detecting genes responsible for

differences between populations is an important issue

in modern theoretical and applied genetics. The

populations of natural and domesticated species are

frequently divergent in phenotypes and provide a

valuable source of genetic variation. One of the tools

used to reveal the genetic basis of intrapopulation

differences is an intercross experiment, in which the

individuals from the populations under study are

crossed and intercrossed. The animals are genotyped

for marker loci and phenotyped, then the data are

analysed by statistical methods.

Intercross experiments are widely used in model

organisms. However, statistical methods used for

linkage analysis in crosses of inbred model organisms

are inapplicable to the analysis of data arising from a

cross between outbred lines (breeds of livestock,

laboratory and industrial stocks, etc.) because the

parental populations used are not homozygous.

Outbred lines typically exhibit a number of DNA,
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biochemical and quantitative trait locus (QTL) poly-

morphisms (Tagliaro et al., 1993; Aulchenko et al.,

1998; Aggrey et al., 1999; Riquet et al., 1999) and can

even be divergent in karyotype (Yosida, 1982;

Rogatcheva et al., 1998).

For some species, such as mice, the production of

inbred strains prior to the establishment of a gene-

mapping study is possible, although it is a relatively

slow and expensive option. For slow breeding plants

and animals, especially for those suffering from

inbreeding depression, this option is not realistic.

Therefore, suitable methods have been developed for

linkage analysis of crosses between outbred lines

(Haley et al., 1994; Knott et al., 1998; Perez-Enciso &

Varona, 2000).

The power of gene detection is crucially dependent

on two factors : the sample size and the efficiency of

the method applied. The methods and software

currently developed for multipoint linkage analysis in

large pedigrees often use approximate methods to

extract information on the inheritance of chromo-

somal segments in the pedigrees and perform linkage

analysis in the framework of an assumed genetic

model. The power of the methods depends crucially

on the efficiency of approximation accepted and the

validity of assumptions made.
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One of the most popular approaches (Andersson et

al., 1994; Knott et al., 1998; Brockmann et al., 1998;

de Koning et al., 1999; Jeon et al., 1999; de Koning et

al., 2000) for mapping QTLs in crosses between

outbred lines is the least squares approach proposed

by Haley et al. (1994). The attractive features of this

approach are its relative simplicity, high speed and

flexibility. Furthermore, suitable software is available.

Currently, this software is restricted to the analysis of

three-generation intercross pedigrees, which are com-

mon in livestock. In this type of pedigree, all animals

are assumed to be genotyped, whereas only the

animals from the F
#

generation are phenotyped.

The least squares approach is based on the line-

cross concept, which assumes that original populations

are homozygous for different QTL alleles (or, at least,

that the QTL allele frequency distributions are notably

different), but can have marker alleles in common.

The key idea underlying the method is to calculate

QTL coefficients Prψ(Qk
Q

m
rM

Pi,i
) for each individual

i at each putative QTL position ψ. Here, M
Pi,i

denotes

the vector of marker phenotypes of the individual i

and its direct ancestors (that is two F
"

parents and

four P
!
grandparents) ; Q

k
Q

m
with km ` ²11,12,21,22´

denotes the genotype of the QTL, where allele Q
k

came from population k via maternal meiosis and

allele Q
m

came from population m via paternal meiosis

(Haley et al., 1994). The regressive model describing

expectation of the value of the trait of individual i

is,

y
i
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where µ
F#

is the general mean of the F
#

and a and

d are additive and dominance effects of the QTL,

respectively. For each putative QTL position, ψ, the

test of linkage is the F-ratio test between a model in

which a and d are not constrained and a model in

which they are constrained to be zero.

As can readily be seen, this model assumes that

alleles from different breeds affect the value of

quantitative trait differently. Although this assump-

tion might be violated (which we will not discuss

here), our objective is to evaluate the efficiency of

Haley’s original method to achieve information on

line origin of genomic segments.

We should emphasize that the original method of

Haley et al. calculates the line origin probabilities of

QTL alleles of an animal using the information from

its direct ancestors only. In many cases, the total

pedigree information on the line origin of alleles is

concentrated in this ancestor information only (e.g. if

the original lines are very polymorphic or even fixed

for alternative alleles at marker loci and the frequency

of missing marker genotypes is low). However, if

parental populations share marker alleles in common

and}or there are missing marker genotypes, then not

only direct ancestors but also other types of relative

might provide important information on the line

origin of alleles of the individual. In many situations,

the benefits from the rapidity and simplicity of Haley’s

method should outweigh the benefits of slower, more

complex methods that make use of complete pedigree

information (Haley et al., 1994). However, there are

conditions under which the amount of information

ignored by the method becomes large.

Ideally, one would try to develop a fast method that

uses all available information to detect a QTL. This

development might be based on, for example, like-

lihood techniques developed in human statistical

genetics. Two major groups of exact methods are used

for the analysis of pedigrees with data on multiple

markers. The first uses different modifications of the

Elston–Stewart algorithm (Elston & Stewart, 1971 ;

Cannings et al., 1978) and the second uses the

Lander–Green algorithm (Lander & Green, 1987;

Kruglyak et al., 1996). However, the use of these

algorithms for multipoint analysis is restricted by the

limitations of the computing time required. The former

method does not allow analyses of more than about

eight marker loci simultaneously and, in the case of a

pedigree with loops (as is common in livestock

breeding), the number of markers allowed is even

smaller. The latter method restricts the size of the

pedigree under analysis (typically ! 20 meioses of

interest), whereas much larger pedigrees are common

in livestock breeding. From this, it is clear that

implementations of these exact multipoint methods

are not feasible in the context of QTL mapping in

livestock and hence approximate methods might be of

interest.

Markov chain Monte Carlo (MCMC) methods

within different paradigms are increasingly used for

the analysis of large pedigrees. The implementations

include Bayesian (Heath, 1997; Daw et al., 1999) and

frequentist (Guo & Thompson, 1992; Guo &

Thompson, 1994) segregation and linkage analysis,

and non-parametric linkage analysis (Sobel & Lange,

1996; Thompson & Heath, 1999; Thompson, 2000).

The stochastic techniques are increasingly used for the

calculation of multipoint probabilities of shared alleles

that are identity-by-descent (IBD) between pairs of

relatives. Several software packages are available that

implement these methods (e.g. LOKI, SIMWALK,

SOLAR). The main advantage of MCMC methods is

their potential to use all information that is available

to calculate IBD-sharing probabilities. Theoretically,

the results from MCMC should converge to exact

ones if the number of iterations approaches infinity.

However, the computational demand for the al-

gorithm to converge can be substantial.

The definitions of IBD-sharing probabilities and

QTL coefficients are somewhat similar. For two

populations, the QTL coefficients can be redefined as
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the probabilities of an individual sharing alleles (IBD)

with its ancestors from one population, the other

population or both populations. Therefore, similar

computational techniques can be used to calculate

both IBD-sharing probabilities and QTL coefficients.

Although there is currently no program package that

calculates QTL coefficients using an MCMC al-

gorithm, such a package could be developed on the

basis of existing software for calculation of IBD-

sharing probabilities.

In this article, we propose the idea of and present

the software for calculating the probabilities of line

origins for alleles in general pedigrees, as found in

crosses between individuals from two populations.

The algorithm proposed is based on the MCMC

method as implemented in the LOKI software (Heath,

2000) and uses all information available. We compare

the precision of our method with the precision

achieved by the approach of Haley et al. (1994) for a

range of scenarios that are tractable with the latter

method (i.e. three-generation pedigrees with marker

genotypes measured in all generations) and the

software available for this method. The precision was

estimated by two criteria : the efficiency with which it

predicts true QTL genotypes ; and the curves of the

mean F-ratio linkage statistic, which reflects the power

to detect QTLs.

2. Material and methods

(i) Simulations

For a comparison of the accuracy of QTL coefficients

calculated by the original method of Haley et al.

(1994), henceforth denoted as OH, and MCMC, we

simulated several data sets using the following pedigree

structure: in the parental generation, it was assumed

that all sires come from one population and dams

from another. The pedigree structure consisted of

three subfamilies. Each subfamily was obtained by

crossing one sire with five dams. Each mating was

assumed to result in two F
"

dams and one F
"

sire.

Within the F
"

generation, each of three sires were

mated to all dams of a different subfamily, each

mating producing eight F
#

offspring. Thus, the F
#

generation consisted of 240 outbred animals.

One chromosome of length 60 cM was studied.

Four marker loci were assumed to be located at

positions 0 cM, 20 cM, 40 cM and 60 cM of the

chromosome. It was assumed that, in the parental

populations, the alternative alleles of the QTL were

fixed. The additive effect of the QTL was set to a¯1

and the dominance effect set to 0. The environmental

variance was set to 4±5. Under these conditions, the

QTL explained 10% of the total variance in F
#
. The

QTL was assumed to be located at the 50 cM position

of the chromosome.

The simulated sets varied in the distribution of

marker alleles in the parental populations and the

frequency of missing marker genotypes. For each of

the marker loci, we assumed two, five or ten marker

alleles segregating at equal frequency in both parental

populations (i.e. frequencies of 0±5, 0±2 and 0±1,

respectively). Missing marker genotypes were distri-

buted uniformly in the pedigree, with the frequency

set to 0, 0±05 or 0±2. For each of the scenarios, 100 data

sets were simulated that differed in allelic distribution

and frequency of missed genotypes. The computer

package MGA-SIMULATE v.0.06 (Aulchenko, 2000)

was used for simulations. For each data set, QTL

coefficients were calculated using OH and MCMC

approximation.

(ii) Methods

The QTL coefficients were calculated in two ways: by

the COEFF program (Haley et al., 1994), which uses

the OH approximation, and by the use of LOKI 2.3

software package (Heath, 2000), which applies the

MCMC algorithm. The LOKI program, originally

created for reversible jump MCMC oligogenic linkage

and segregation analysis, also allows estimation of the

proportion of alleles sharing IBD. We modified the

part of the source code of LOKI 2.3 that is responsible

for calculating this proportion to allow MCMC

approximation of the QTL coefficients.

LOKI 2.3 uses the following algorithm. Two unique

alleles are assigned to each founder at the genome

points of interest. Thus, the total number of founder

alleles in a pedigree is twice the number of founders.

The genotypes of non-founder animals in a pedigree

are simulated based on this assignment and con-

ditional on marker data. LOKI, in our modified

version, outputs the frequencies of possible genotypes,

composed from founder alleles rather than IBD-

sharing probabilities. Using this, it is possible to

reconstruct the sharing frequency of alleles between

F
#

individuals and founder individuals. Additional

programs were written to calculate QTL coefficients

based on this output and information on population

origin of animals (and, consequently, founder alleles)

in the parental generation.

For each of scenarios studied, the precisions of the

OH and MCMC approaches to approximate QTL

coefficients were estimated in two ways. First, a

measure similar to the Euclidian measure of genetic

distance used in population genetics (Weir, 1990) : the

normalized distance between the predicted and true

probability distributions of the QTL genotype was

calculated for each F
#
animal using the formula D¯

²[(pT

qq
®p

qq
)#­(pT

Qq
®p

Qq
)#­(pT

QQ
®p

QQ
)#]}2´!±

&, where

(pT

qq
, pT

Qq
and pT

QQ
) is the true probability distribution of

the QTL genotypes and (p
qq
, p

Qq
, p

QQ
) is the estimated
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probability of different genotypes calculated at the

QTL position by OH or MCMC approximation. The

true distribution is either (1, 0, 0), (0, 1, 0) or (0, 0, 1)

and thus the zero distance corresponds to the

prediction of the true genotype with probability 1.

The maximal distance 1 corresponds to a situation in

which a false genotype is predicted with probability 1.

For each simulated data set, the average distance over

all animals in F
#

was calculated. The mean of this

value, calculated over all simulated data sets, was used

as a characteristic of the accuracy of a method to

predict the QTL genotypes.

The second method was to use the curves of the

average F ratio to reflect the power. F-ratio statistics

were calculated using the ANAL program (S. Knott &

C. Haley).

If marker information is not available (or, equi-

valently, the QTL is unlinked) then the estimated

probability distribution of the QTL genotypes would

be (0±25, 0±5, 0±25), whereas the true distribution

would be (1, 0, 0), (0, 1, 0) or (0, 0, 1) with

probabilities 0±25, 0±5 and 0±25, respectively. In this

situation, the expected value of measure (I ) would be

0±547. By contrast, I would be 0±183 if the locus of

interest is located halfway between two fully in-

formative markers spaced 20 cM apart. In our

simulations, we therefore expect I to be between 0±183

and 0±547. If I is close to the latter value, this indicates

a very poor reconstruction of the true QTL genotypes.

Prior to the simulations outlined above, we

addressed the issue of convergence. For this purpose,

five data sets were generated under each of the nine

scenarios. For each of these data sets the ‘reference’ F

ratio was calculated at the true QTL location after

generating QTL coefficients using 10,000 deme-

morization and 40,000 effective MCMC iterations.

For scenarios considering ten or five alleles, the F

ratio converged to the reference F³5% when 100

dememorization and 1000 effective MCMC iterations

were used. However, for scenarios involving two

alleles, the same result was obtained only after using

1000 dememorization and 4000 effective iterations. As

a conclusion from these results, we decided to use

1100 MCMC iterations when studying scenarios with

ten or five alleles and 5000 iterations for scenarios

with two alleles.

3. Results

We studied the dependence of the accuracy of the

approximations on the distribution of allelic fre-

quencies in parental lines and on the frequency of

missing marker genotypes. Table 1 shows the mean

distance between estimated and true probability

distributions of QTL genotypes for different scenarios

varying in number of marker alleles and frequency of

missing marker genotypes. As a first case, we studied

three scenarios that varied in the number of marker

alleles. It was assumed that there are no missing

marker genotypes.

From these data, it follows that, for both methods,

the distance increases with decreasing number of

marker alleles in the parental lines. For the scenario

with ten and five marker alleles, the average distances

are very close to the distance of 0±18, as expected when

using completely informative markers. When the

number of marker alleles is two, distances arising

from both MCMC and OH are far from 0±18. It is

easy to see that, in general, the MCMC approximation

gives better results than the OH approximation: the

mean distance is smaller when QTL coefficients are

calculated using MCMC. The use of MCMC is

advantageous for a low number of alleles : when there

are ten alleles, the difference between the mean

distances of MCMC-based and OH-based prediction

is only 0±002, whereas, when the number of alleles is

two, it increases substantially to 0±039.

Although the general tendency is clear from Table 1,

the curves of the mean F ratio (Fig. 1A) and Table 2

(which presents the mean F-ratio at the QTL position)

are more demonstrative and show directly how much

the results of the search for a QTL might be affected

by the use of either OH or MCMC approximation.

Fig. 1A shows that the mean F ratios increase with the

number of alleles. It can be seen from Table 2 that, at

the QTL location (50 cM), the mean F ratio based on

the QTL coefficients calculated using MCMC is higher

than the F ratio resulting from QTL coefficients

calculated using OH for all cases. When the number of

common alleles is high (ten or five), there is only a

small increase in the F ratio calculated at the 50 cM

point based on MCMC over that calculated based on

OH (factors of 1±006 and 1±012, respectively). In Fig.

1A, the curves resulting from OH and MCMC are

nearly indistinguishable. When the number of com-

mon alleles is small, the F ratio is increased by a factor

of 1±124 when the MCMC approximation is used.

This 10% increase in the F ratio might have an

important influence on the power and so MCMC-

based QTL coefficients should be chosen in this

situation.

We also studied the dependence of approximation

accuracy and the frequency of missing marker

genotypes. 100 data sets were simulated for scenarios

assuming the frequency of missing markers to be

either 0±05 or 0±2, and assuming two, five or ten

equally frequent alleles common for both parental

lines at the marker loci.

As expected, Table 1 indicates that, in all cases with

missing data, the efficiency of a method to predict

QTL genotypes is lower: the higher the frequency of

missing markers, the lower the precision. Table 1 also
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shows that the MCMC approximation gives better

results than OH: the prediction is always better when

QTL coefficients are calculated using MCMC. More-

over, as the number of alleles decreases and the

frequency of missing markers increases, the difference

between the precision of MCMC and OH approxi-

mations increases in favour of MCMC. From Table 1,

it follows that the situation with two marker alleles

and a frequency of missing genotypes of 0±2 is crucial

for the OH approximation: the mean distance between

true and estimated QTL genotypes is approaching

0±55, as expected in a situation with a lack of marker

information; at the same time, the distance resulting

from MCMC is considerably smaller. This indicates

that MCMC should be preferred in situations where

the frequency of missing marker genotypes is high and

especially if the number of marker alleles is low and

the allelic frequency distribution is similar in both

parental lines.

Fig. 1B,C shows the influence of the frequency of

missing marker genotypes and number of marker

alleles on the mean F ratio obtained by OH and

MCMC approximations. A comparison of Fig. 1A–C

and the columns of Table 2 demonstrates that, when

data is missing, the mean F ratio decreases, irrespective

of the approximation used: the higher the frequency,

the lower the mean F ratio. Remarkably, the difference

between the F ratios calculated by OH and MCMC

approximations increases in favour of MCMC as the

frequency of missing data increases.

At the QTL location point, the MCMC-based F

ratios increase over the OH-based ratios by factors of

1±007, 1±040 and 1±245 when the number of alleles is

ten, five and two, respectively, and the frequency of

missing data is 0±05. When the frequency of missing

data is 0±2, the increase of the mean F ratios calculated

using MCMC becomes even higher (increasing by

factors of 1±065, 1±085 and 1±377 for ten, five and two

marker alleles, respectively).

It is worth noting that, when there are no missing

marker genotypes or the frequency is 0±05, the mean F

ratios resulting from the analysis of the data assuming

ten alleles are higher than the ratios resulting from the

analysis of data assuming five alleles, which in turn

are higher than the two-allele ratios. When the

frequency of missing data is 0±2, the two curves

resulting from MCMC assuming ten or five alleles

exhibit the highest values (Fig. 1C).

The results indicate that, when the frequency of

missing data is high or even moderate, the MCMC

approximation for calculation of QTL coefficients is

superior to the OH approximation. The MCMC

approximation should certainly be preferred when the

frequency of missing marker genotypes is high, the

number of marker alleles is low and the allelic

distributions overlap substantially in both popu-

lations.
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Fig. 1. Mean F ratio by number of marker alleles segregating at equal frequency in parental populations, the approximation used and the frequency of missing marker genotypes.
Four marker loci are located at 0 cM, 20 cM, 40 cM and 60 cM along the chromosome, and a QTL is located at 50 cM. (A) No missing marker genotypes. (B) Frequency of
missing marker genotypes : 0±05. (C) Frequency of missing marker genotypes : 0±20.
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4. Discussion

The method originally proposed by Haley et al. (1994)

for the calculation of probabilities of line origin of

alleles is not well suited to the case when all

information that can possibly be used by a sim-

ultaneous consideration of all animals in a pedigree

and all marker genotypes is intended to be used.

However, when the markers are highly polymorphic

and}or the allelic distribution between lines is

sufficiently different, and the number of missed marker

genotypes is small, the benefits from the speed and

simplicity of Haley’s method should normally out-

weigh the benefits from slower and more complex

methods that make use of complete information. An

example is the case of two lines in which different

marker alleles are fixed and there is no missing data.

Here, Haley’s method uses all marker information for

calculating QTL coefficients (Haley et al., 1994; Haley

& Knott, 1992).

However, a practical experiment might deviate

from the ideal situation. The frequency of missing

marker genotypes might be substantially higher than

zero, the distributions of marker allele frequencies

might overlap and the number of different marker

alleles might be small in outbred lines. In these

situations, a method that uses all information should

be preferred. The implementation of an exact like-

lihood method using all available information,

although theoretically possible, is in practice too

expensive in relation to the time needed for compu-

tations (Sobel & Lange, 1996; Heath, 1997). There-

fore, approximate methods should be used. We

propose a modification of the regression method of

Haley using QTL coefficients, which are calculated by

means of the Markov chain Monte Carlo method.

The advantage of this is that it uses all available

information about these coefficients. We have studied

the extent to which deviations from the ideal situation

(missing marker genotypes, similarity of allelic dis-

tribution in parental lines) affect the relative op-

erational characteristics of the original Haley ap-

proach and MCMC approximations.

In all situations considered, the MCMC approxi-

mation to calculating QTL coefficients exhibits a

better precision than the original approximation

proposed by Haley and colleagues. Use of the MCMC

allows better prediction of QTL genotypes. The mean

F ratios are generally higher if MCMC rather then

OH approximation is used. The benefits from the use

of MCMC approximations are most evident if the

frequency of missing marker genotypes is high and}or

the distribution of allelic frequencies is similar in both

parental lines while the number of marker alleles is

small.

In this study, we considered one 60 cM-length

chromosome with four marker loci, located at 0 cM,
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20 cM, 40 cM and 60 cM. We assumed that the

distribution of the frequency of marker alleles is equal

in both parental lines. Scenarios studied differed in the

assumed number of marker alleles in parental lines

and the frequency of missing data. We demonstrated

that, as the number of marker alleles segregating at

equal frequency in both parental populations

decreases, the precision and power of analysis also

decreases, regardless of the method used to calculate

QTL coefficients. The same is true for the frequency of

missing marker genotypes : as this frequency grows,

the precision and power of the analysis is reduced.

Remarkably, the precision and power of Haley’s

original approach decreases faster than those of the

MCMC approach as the number of marker alleles

decreases. This occurs because the line origin of alleles

of a genotype of an F
"
heterozygous offspring whose

parents have the same heterozygous genotypes cannot

be recovered within the framework of OH approxi-

mation, whereas the MCMC approximation attempts

to recover the line origin by the joint use of information

from all animals and flanking markers. When the

number of marker alleles is small and these alleles are

common in both parental lines, any types of markers

can be used if the intercrossed populations under

analysis are derived from a common ancestral popu-

lation with low number of marker alleles (see for

example Brockmann et al., 1998).

We have also demonstrated that, when the fre-

quency of missing markers increases, the precision

and the power of the OH approach decreases faster

than those of MCMC. This occurs because missing

marker genotypes lead to situations in which the OH

approximation fails to recover the population origin

of marker alleles in F
#
progeny, whereas this does not

occur under MCMC. For example, if a couple of

grandparents include one with a missing genotype and

one that is heterozygous, and their offspring has the

same heterozygous genotype, this F
"

offspring is

considered to be uninformative by the OH approach.

At the same time, the line origin of alleles of this F
"

individual might be recovered by the joint con-

sideration of its sibs and half-sibs. Furthermore, even

if individuals in parental and F
"

generations are not

genotyped at all, MCMC has the potential to recover

the line origin of alleles in F
#

provided that the

pedigree structure is complex enough.

It is common for there to be several missing marker

genotypes in experimental data. We have demon-

strated that, even if the frequency of missing data is

small (5%), the use of MCMC leads to an increase of

the mean F ratio from 1% to 25% in situations that

differ in the frequency distribution of marker alleles.

As the frequency of missing data increases, the benefits

from the use of MCMC become more and more

evident. When the frequency of missing data is 20%,

the increase in the mean F ratio is between 7% and

38%. Theoretically, the use of MCMC should be

most beneficial if, for some grandparents and}or

parents, there is no marker information at all.

The major advantage of the OH method is its

computational speed and relative simplicity. Although

the calculation of QTL coefficients at 61 points for

1100 iterates of MCMC in our simulation study

required 2–6 min on a 650 MHz Pentium III, the OH

algorithm required only a few seconds. However, we

demonstrated that, in some situations, the use of

MCMC approximation to calculate QTL coefficients

might help to improve the results of gene hunting

significantly. Even with current computational fa-

cilities, it is feasible to calculate QTL coefficients

genome-wide for several hundred individuals using

several hundred thousand MCMC iterations. We

suppose that, with further development of compu-

tational facilities, the MCMC approximation will

more and more become the method of choice.

The original software implementing the algorithm

of Haley et al. (1994) is restricted to the analysis of

three-generation pedigrees in which all individuals are

genotyped and only F
#

progeny are phenotyped.

Although this type of data is typical for livestock

(Andersson et al., 1994; Knott et al., 1998; Brockmann

et al., 1998; de Koning et al., 1999; Jeon et al., 1999;

de Koning et al., 2000), several other experimental

designs are possible. Based on the LOKI v.2.3

program, we have created a package of programs that

calculate MCMC-based QTL coefficients. The soft-

ware is not restricted to three-generation outbred

pedigrees coming from an intercross experiment.

Rather, it can deal with any type of pedigree from a

cross between individuals from two populations. The

software is available via anonymous access from

http:}}mga.bionet.nsc.ru}SOFT}.

We are grateful to S. Heath for the software and his useful
comments. Y.S.A. acknowledges financial support from
RFBR (01-04-49518, 01-04-48875), a short-term research
grant from the German Academic Exchange Service
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