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Geodesics in a Manifold with
Heisenberg Group as Boundary

Yilong Ni

Abstract. The Heisenberg group is considered as the boundary of a manifold. A class of hypersurfaces

in this manifold can be regarded as copies of the Heisenberg group. The properties of geodesics in the

interior and on the hypersurfaces are worked out in detail. These properties are strongly related to

those of the Heisenberg group.

1 Introduction

The Heisenberg group H1 is the simplest non-commutative nilpotent Lie group. In
this group, we have a natural analogue of the Laplacian, ∆H , which is a sum of squares
of two horizontal vector fields. The geometry associated to this sub-elliptic operator
∆H , known as sub-Riemannian geometry, was introduced in [4]. Sub-Riemannian

metric, which is also called Carnot-Carathéodory metric, is defined as the infimum
of the length among all horizontal curves that join two points. As in the Riemannian
case, we may define geodesics as locally shortest curves. The fact that the entire axis
x = 0 is a line of conjugate points relative to the origin (see [1]) is quite different

from the Riemannian case, in which, for any two points close enough to each other,
there exists a unique shortest geodesic connecting them. Therefore the Heisenberg
group serves as a model for the study of similarities and dissimilarities between sub-
Riemannian geometry and Riemannian geometry.

The purpose of this article is to consider the Heisenberg group H1 with its subel-
liptic Laplacian ∆H as the limit of a family of Riemannian manifolds. We construct
a manifold and identify H1 with its boundary. With a group action, this manifold,

is isomorphic to the direct product H1 × R+. For each u > 0, we endow the hy-
persurface H1 × {u} with a Riemannian metric gu, which degenerates to the usual
sub-Riemannian metric g0 of the Heisenberg group when u → 0. Therefore each
hypersurface can be regarded as an approximation of the Heisenberg group. We will

choose the gu carefully so that the metric of the interior coincides nicely with the
sub-Riemannian metric of the Heisenberg group as boundary. We study the proper-
ties of geodesics in the interior as well as geodesics on the hypersurfaces, and show
their relations with those of the Heisenberg group. We will show that geodesics that

leave the boundary and return to the boundary have the same length as the boundary
geodesics that have the same endpoints.

Also we know that in the Heisenberg group H1, we have infinitely many geodesics

connecting the origin and (0, t), ∀t 6= 0. On the hypersurface H1 × {u}, this is not
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the case. When |t| < 2πu, there is a unique geodesic connecting the origin and (0, t).
However for |t| ≥ 2πu, there will be infinitely many geodesics connecting these two

points. We can see that this property reduces perfectly to the Heisenberg case as
u → 0.

The paper is organized as follows. In Section 2 we go over some basic facts of H1

and construct the Riemannian manifold with Heisenberg group H1 as boundary. In

Section 3 Hamiltonian mechanics is used to study geodesics in the interior. We show
that for any two points in the interior there is a unique shortest geodesic joining
them. In Section 4 we obtain some properties of the geodesics on the hypersurface.
These properties are compared with those of the Heisenberg group.

2 Heisenberg Group as Boundary

The 3-dimensional Heisenberg group H1 can be coordinatized as R3
= (x1, x2, t) =

(x, t), with group law:

(1) (x, t) ◦ (x ′, t ′) = (x + x ′, t + t ′ + 2ax2x ′

1 − 2ax1x ′

2),

where a is a positive real parameter. The vector fields

(2) X1 =
∂

∂x1
+ 2ax2

∂

∂t
, X2 =

∂

∂x2
− 2ax1

∂

∂t
, T =

∂

∂t
.

are left invariant and generate the Lie algebra of H1. The Lie algebra relations are

(3) [X1, X2] = −4aT, [X1, T] = [X2, T] = 0.

Since the vector fields X1, X2 Lie-generate the tangent space of H1, Chow’s Theo-

rem tells us that any two points can be joined by a horizontal curve. The Carnot-

Carathéodory metric is obtained by taking the infimum of the length among all hori-
zontal curves that join two points. This metric was introduced and studied by Gaveau
[3], [4]. The Heisenberg (sub-)Laplacian is the left-invariant subelliptic operator

(4) ∆H =
1

2
(X2

1 + X2
2).

Geodesics, which are locally shortest curves, can be obtained as the traces of Hamil-

tonian paths([5]). The Hamiltonian is the symbol of ∆H .
Consider H1 as a subset of C2

= {(z, w)}. Introduce a group operation in C2 by

(5) (z, w) ◦ (z ′, w ′) = (z + z ′, w + w ′ + 2iaz̄z ′).

Use also real coordinates x1, x2, y1, y2, with

z = x1 + ix2, w = y1 + i y2.

Introduce the functions

t = y1, u = u(z, w) = y2 − azz̄.
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Using the coordinate (x, t, u) = (x1, x2, t, u) the group law is

(6) (x, t, u) ◦ (x ′, t ′, u ′) =
(

x + x ′, t + t ′ + 2a(x2x ′

1 − x1x ′

2), u + u ′
)

.

Since u : C2 → (R, +) is a group homomorphism our group is isomorphic to the di-
rect product H1 ×R. The corresponding Lie algebra is generated by the left-invariant
vector fields

X1, X2, T, U =
∂

∂u
.

Consider the complex vector fields

∂

∂z
=

1

2

( ∂

∂x1
− i

∂

∂x2

)

,
∂

∂w
=

1

2

( ∂

∂y1
− i

∂

∂y2

)

,

Z =
∂

∂z
+ 2iaz̄

∂

∂w
, W =

∂

∂w
,

and their conjugates. The Siegel domain

C2
+ = {Im w > azz̄} = {u > 0}

is a sub-semigroup of C2 and if we identify H1 with {u = 0}, the boundary of C2
+,

then H1 is a subgroup of C2 that acts on C2
+ by left and right translations. For any

choice of b > 0 the operator

L = ZZ̄ + Z̄Z + bu(WW̄ + W̄W ) +
b

2
U =

1

2
(X2

1 + X2
2) +

bu

2
(T2 + U 2) +

b

2
U

is elliptic in C2
+, self-adjoint in L2(C2

+), and invariant with respect to the H1 action.

For each u > 0, the hypersurface H1 × {u} is invariant with respect to the H1

action. The restriction of L to this hypersurface is given by

L =
1

2
(X2

1 + X2
2) +

bu

2
T2.

It degenerates to the Heisenberg sublapacian ∆H as u → 0. We then study the behav-
ior of geodesics in the “interior”, C2

+, associated to L, on the hypersurfaces {u ≡ u0},

and their relations to the geodesics on the boundary H1.

3 Geodesics in the interior

As in [2], take variables (x, t, u) and dual variables (ξ, θ, σ). Let

Λ =

(

0 2a

−2a 0

)

; ζ = ζ(x, θ) = ξ + θΛx.

We take as Hamiltonian the principal symbol of L

(7) H =
1

2
〈ζ, ζ〉 +

bu

2
(θ2 + σ2).
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Hamilton’s equations for a curve
(

x(s), t(s), u(s), σ(s), ζ(s), θ(s)
)

can be organized
as

(8)

ẋ = ζ ;

ṫ = 〈ζ, Λx〉 + buθ;

u̇ = buσ;

ζ̇ = 2θΛζ ;

θ̇ = 0;

σ̇ = −b

2
(θ2 + σ2).

We start with the last two equations, keeping in mind that θ is constant. We have

d

ds

( σ

θ

)

= −bθ

2

(

1 +
( σ

θ

) 2)

,

so for some choice of phase ω,

(9) σ(s) = −θ tan
(

ω +
1

2
bθs

)

.

Then

d

ds
log u = bσ = −bθ tan

(

ω +
1

2
bθs

)

= 2
d

ds
log cos

(

ω +
1

2
bθs

)

.

Therefore we get

(10) u(s) = u0 cos2
(

ω +
1

2
bθs

)

.

First we consider a normalized geodesic which starts from a boundary point and
also makes its first return to a boundary point. Because of the invariance under the
H1 action, we take the origin as our starting point on the boundary. So we have

u
(

−1

2

)

= u
( 1

2

)

= 0; u(s) > 0, −1

2
< s <

1

2
.

Choosing ω = 0 in (10) we have u0 = u(0), 1
4
bθ = ± π

2
, or

(11) bθ = ±2π.

Integrating (8) and using the boundary conditions x( 1
2
) = x, x(− 1

2
) = 0, we

obtain

(12)

ζ(s) = exp(2sθΛ)ζ(0);

x(s) = (2θΛ)−1
(

exp(2sθΛ) − exp(−θΛ)
)

ζ(0);

x = x
( 1

2

)

= (2θΛ)−1 sinh(θΛ)ζ(0) =
sin(2aθ)

2aθ
ζ(0).
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Because Λ is skew symmetric, the first equation of (8) implies that 〈ζ, ζ〉 is con-
stant along the curve. Then from the second equation of (8) we have

(13) ṫ =
1

2θ

〈

ζ, ζ − ζ
(

−1

2

)〉

+ bθu(0) cos2
(

ω +
1

2
bθs

)

=
1

2θ

〈

ζ
(

−1

2

)

, ζ
(

−1

2

)〉

− 1

2θ

〈

ẋ, ζ
(

−1

2

)〉

+
bθu(0)

2

(

1 + cos(bθs)
)

.

Integrating, and using the boundary conditions t( 1
2
) = t , t(− 1

2
) = 0, we obtain,

because of (11),

t =
1

2θ

∣

∣

∣
ζ
(

−1

2

)
∣

∣

∣

2

− 1

2θ

〈

x, ζ
(

−1

2

)〉

+
bθu(0)

2

Consider curves for which ζ ≡ 0, so that x ≡ 0, and bθu(0) = t . Then the action
is

S = H
(

x(0), t(0), u(0), ξ(0), θ(0), σ(0)
)

=
1

2
|ζ(0)|2 +

bu(0)

2

(

θ2 + σ2(0)
)

= tθ

We note that for the boundary situation, S0 = π|t|/2a. If we take θ = sgn(t)π/2a,
then these two coincide with each other. Combining this with (11) we get

θ = sgn(t)
2π

b
= sgn(t)

π

a
, b = 4a.

With this choice of b, θ and ζ , geodesics that leave the origin necessarily return to
the boundary at the t-axis, and have the same length as the boundary geodesics that
have the same endpoints. Condition b = 4a ties the metric in the interior and that of
the boundary together. We then assume b = 4a throughout this paper. We have the

following theorem:

Theorem 1 The geodesics that start from the origin and make their first return to a

boundary point (x, t, 0) necessarily return to the boundary at the t-axis, i.e., x = 0, and

have the same length d1, where

(d1)2
=

π|t|
a

.

All the geodesics with this property are parametrized by a part of a paraboloid in R3.

Proof We now only need to consider geodesics for which ζ 6= 0. b = 4a and bθ =

2π sgn(t) imply that 2aθ = π sgn(t). x = x( 1
2
) =

sin(2aθ)
2aθ ζ(0) = 0. So the endpoint

is on the t-axis. Also

(14)

t =
1

2θ

∣

∣

∣
ζ
(

−1

2

)
∣

∣

∣

2

− 1

2θ

〈

x, ζ
(

−1

2

)〉

+
bθu(0)

2
=

1

2θ
|ζ(0)|2 +

bθu(0)

2

S =
1

2
|ζ(0)|2 +

bu(0)

2

(

θ2 + σ2(0)
)

=
1

2
|ζ(0)|2 +

bθ2u(0)

2
= tθ =

π|t|
2a
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This shows that they have the same length, which satisfies

(d1)2
= 2S =

π|t|
a

.

Furthermore, the geodesics may be parametrized by
(

ζ(0), u(0)
)

. From (14),
(

ζ(0), u(0)
)

satisfies |ζ(0)|2 + π2u(0)/a = π|t|/a, u(0) > 0, which is part of a

paraboloid in R3.

Second, we consider all the normalized geodesics that start from the origin and
return to the boundary(they may hit the boundary many times). We have:

Theorem 2 The geodesics that join the origin to a point (0, t, 0) have lengths d1, d2,
d3, . . . , where d2

n = nπ|t|/a. For each length dn, the geodesics of that length hit the

boundary n + 1 times (including the end points) and are parametrized by
(

ζ(0), u(0)
)

,

satisfying |ζ(0)|2 + π2u(0)/a = nπ|t|/2a, which is part of a paraboloid in R3.

Proof The boundary conditions are

u
(

−1

2

)

= u
( 1

2

)

= 0; u(s) ≥ 0, −1

2
< s <

1

2
.

Choosing ω = 0 in (10) we have 1
4
bθ2m+1 = sgn(t)( 1

2
π + mπ), m = 0, 1, 2, . . .

(n = 2m + 1). b = 4a implies 2aθ2m+1 = (1 + 2m)π sgn(t). x = x( 1
2
) =

sin(2aθ)
2aθ ζ(0)

= 0.

t =
1

2θ2m+1

∣

∣

∣
ζ
(

−1

2

)
∣

∣

∣

2

− 1

2θ2m+1

〈

x, ζ
(

−1

2

)〉

+
bθ2m+1u(0)

2

=
1

2θ2m+1
|ζ(0)|2 +

bθ2m+1u(0)

2
.

S2m+1 = H2m+1(0) =
1

2
|ζ(0)|2 +

bu(0)

2

(

θ2
2m+1 + σ2(0)

)

=
1

2
|ζ(0)|2 +

bθ2
2m+1u(0)

2
= tθ2m+1 =

π|t|
2a

(1 + 2m).

Therefore they have the same length, which satisfies d2
2m+1 = (2m+1)π|t|/a. For each

m, the geodesics hit the boundary 2m + 2 times(including the end points), and may
be parametrized by

(

ζ(0), u(0)
)

, satisfying |ζ(0)|2 + π2u(0)/a = (2m + 1)π|t|/2a,
which is again part of a paraboloid in R3.

Choosing ω = π/2 in (9) and (10) we obtain

σ(s) = θ cot
( 1

2
bθs

)

;

u(s) = u(0) sin2
( 1

2
bθs

)

.
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With the same procedure as above, we get

1

4
bθ2m = sgn(t)mπ, m = 1, 2, 3, . . . (n = 2m).

Note there that m 6= 0. For if m = 0, then u(s) ≡ 0, that means the geodesic lies on
the boundary. b = 4a implies 2aθ2m = 2mπ sgn(t). x = x( 1

2
) =

sin(2aθ)
2aθ ζ(0) = 0.

t =
1

2θ2m

∣

∣

∣
ζ
(

−1

2

)∣

∣

∣

2

− 1

2θ2m

〈

x, ζ
(

−1

2

)〉

+
bθ2mu(0)

2

=
1

2θ2m

|ζ(0)|2 +
bθ2mu(0)

2
.

S2m = H2m(0) =
1

2
|ζ(0)|2 +

bu(0)

2
(θ2

2m + σ2(0)
)

=
1

2
|ζ(0)|2 +

bθ2
2mu(0)

2
= tθ2m =

π|t|
2a

2m.

Therefore they have the same length, which satisfies d2
2m = 2mπ|t|/a. For each m,

the geodesics hit the boundary 2m + 1 times(including the end points), and may be

parametrized by
(

ζ(0), u(0)
)

, satisfying |ζ(0)|2 + π2u(0)/a = 2mπ|t|/2a, which is
still a part of a paraboloid in R3. This completes the proof.

Remark This result is very similar to the result on the boundary. From Theo-

rem 1.41 in [2], we know that in H1 the geodesics that join the origin to a point (0, t)
have lengths d1, d2, d3, . . . , where d2

n = nπ|t|/a. For each length dn, the geodesics
of that length are parametrized by the circle S1, which is the boundary of the above
paraboloid.

Next, we consider the geodesics that start from an arbitrary point in the inte-
rior. Because of the invariance under the H1 action, we can take the starting point
to be (0, 0, u0). Therefore we need to find the Hamiltonian curves with the following
boundary conditions:

(15) x(0) = 0; x(1) = x; t(0) = 0; t(1) = t ; u(0) = u0; u(1) = u.

We use (10), with b = 4a and a different phase shift, so

(16) u(s) = u0 sin2(ω + 2aθs), 0 ≤ s ≤ 1, 0 ≤ ω < π,

and,

σ(s) =
u̇

bu
= θ cot(ω + 2aθs).

We may assume that t ≥ 0, otherwise we only need to change t → −t .
From the boundary conditions (15), integrating (8) we have

ζ(s) = exp(2sθΛ)ζ(0);

x(s) = (2θΛ)−1
(

exp(2sθΛ) − I
)

ζ(0);

x = x(1) = (θΛ)−1 exp(θΛ) sinh(θΛ)ζ(0).
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so

|ζ(0)|2 =
∣

∣θΛ
(

sinh(θΛ)
)−1

x
∣

∣

2

=
(2aθ)2

sin2(2aθ)
|x|2,

and

〈x, ζ(0)〉 =
〈

x, 2θΛ
(

exp(2θΛ) − I
)−1

x
〉

= 〈x, θΛ exp(θΛ) sinh−1(θΛ)x〉
= 〈x, θΛ coth(θΛ)x〉

= 2aθ cot(2aθ)|x|2.

Notice that 〈ζ, ζ〉 is constant, we then have:

ṫ =
1

2θ
〈ζ, ζ − ζ(0)〉 + bθu(0) sin2(ω + 2aθs)

=
1

2θ
〈ζ(0), ζ(0)〉 − 1

2θ
〈ẋ, ζ(0)〉 + 4aθu0 sin2(ω + 2aθs).

Integrating, and using the boundary condition (15), we obtain:

(17)

t =
1

2θ
〈ζ(0), ζ(0)〉 − 1

2θ
〈x, ζ(0)〉 + 4aθu0

∫ 1

0

sin2(ω + 2aθs) ds

=

( 2a2θ

sin2(2aθ)
− a cot(2aθ)

)

|x|2 + 2aθu0

(

1 − sin(2ω + 4aθs)

4aθ

∣

∣

∣

1

0

)

= aµ(2aθ)|x|2 + 2aθu0

(

1 − sin(2ω + 4aθs)

4aθ

∣

∣

∣

1

0

)

,

where

µ(ϕ) =
ϕ

sin2 ϕ
− cot ϕ.

Now return to (16). Set

α = exp(i2aθ), y = exp(iω), λ =

( u

u

0) 1/2

.

λ =

( u

u

0) 1/2

=

( u0 sin2(ω + 2aθ)

u0 sin2(ω)

) 1/2

= −δ
sin(ω + 2aθ)

sin(ω)

=
αy − (αy)−1

y − y−1
=

αy2 − α−1

y2 − 1
,
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where δ = 1, if ω + 2aθ > π; δ = −1, if ω + 2aθ ≤ π. Therefore,

y2
=

δλ + α−1

δλ + α
,

and

u0
= u0 sin2(ω) =

u0

2

(

1 − cos(2ω)
)

=
u0

4

(

2 − exp(i2ω) − exp(−i2ω)
)

=
u0

4

2 − α2 − α−2

λ2 + δλ(α + α−1 + 1)

=
sin2(2aθ)

λ + 2δλ cos(2aθ) + 1
.

So,

(18) u0 =
u + 2δ

√
uu0 cos(2aθ) + u0

sin2(2aθ)
.

In terms of the quantities α, y, and λ,

sin(2ω + 4aθs)|10 =
1

2i

(

(αy)2 − (αy)−2 − y2 + y−2
)

=
1

2i

(

(α2 − 1)(δλ + α−1)

δλ + α
+

(1 − α−2)(δλ + α)

δλ + α−1

)

=
1

2i

(α − α−1)
(

(λ2 + 1)(α + α−1) + 4δλ
)

(δλ + α)(δλ + α−1)

= 2 sin(2aθ)
(u + u0) cos(2aθ) + 2δ

√
uu0

u + 2δ
√

uu0 cos(2aθ) + u0
.

Substitute this equation in (17); we obtain:

(19)

t = aµ(2aθ)|x|2 + 2aθu0

(

1 − sin(2aθ)

2aθ

(u + u0) cos(2aθ) + 2δ
√

uu0

u + 2δ
√

uu0 cos(2aθ) + u0

)

= aµ(2aθ)|x|2 + (u + u0)µ(2aθ) + 2

(

2aθ cos(2aθ)

sin2(2aθ)
− 1

sin(2aθ)

)

δ
√

uu0.
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The associated classical action is

(20)

S(x, t, u; 0, 0, u0; θ) =
1

2
|ζ(0)|2 +

bu(0)

2

(

θ2 + σ2(0)
)

=
(2aθ)2|x|2
2 sin2(2aθ)

+
b

2
u0 sin2 ω(θ2 + θ2 cot2 ω)

=
(2aθ)2|x|2
2 sin2(2aθ)

+ 2aθ2 u + 2δ
√

uu0 cos(2aθ) + u0

sin2(2aθ)

=
2aθ2

sin2(2aθ)

(

a|x|2 + u + 2δ
√

uu0 cos(2aθ) + u0
)

,

where θ is determined from (19).

Let D = a|x|2 + u + u0, E = 2δ
√

uu0, and ϕ = 2aθ, then (19) and (20) can be

rewritten as

(21)

t = Dµ(ϕ) + E

(

ϕ cos ϕ

sin2 ϕ
− 1

sin ϕ

)

2aS =
ϕ2

sin2 ϕ
(D + E cos ϕ)

We denote the right hand side of (19) by F(ϕ). The following lemma gives us some

information on the behavior of function F(ϕ).

Lemma 1 When |x| 6= 0 or u 6= u0, i.e., D > |E|, F(ϕ) is a increasing diffeomorphism

of the interval (−π, π) onto R. On each interval (mπ, (m + 1)π), m = 1, 2, . . . , it has

a unique critical point ϕm. On this interval it decreases strictly from +∞ to its value at

ϕm and then increases strictly to +∞. Also the values F(ϕm) are increasing and goes to

+∞ as m → +∞.

Proof We take the second derivative of F(ϕ) with respect to ϕ:

(22)

d2F

dϕ2
=

1

4 sin4 ϕ

(

D
(

16ϕ + 8ϕ cos(2ϕ) − 12 sin(2ϕ)
)

+ E
(

23ϕ cos ϕ + ϕ cos(3ϕ) − 15 sin ϕ − 3 sin(3ϕ)
)

)

≡ 1

4 sin4 ϕ

(

D · g(ϕ) + E · h(ϕ)
)

.

Notice that

(23)
g(ϕ) + h(ϕ) = 4(1 + cos ϕ)2

(

ϕ(2 + cos ϕ) + 3 sin ϕ
)

≥ 0,

g(ϕ) − h(ϕ) = 4(1 − cos ϕ)2
(

ϕ(2 − cos ϕ) + 3 sin ϕ
)

≥ 0,
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for any ϕ ∈ [0, +∞), and D ≥ |E|, we have

d2

dϕ2
F(ϕ) > 0, ϕ 6= mπ.

∀ϕ ∈
(

mπ, (m + 1)π
)

, we have

F
(

2(m + 1)π − ϕ
)

− F(ϕ) = D

(

2(m + 1)π − 2ϕ

sin2 ϕ
+ 2

cos ϕ

sin ϕ

)

+ E

(

2(m + 1)π − 2ϕ

sin2 ϕ
cos ϕ +

2

sin ϕ

)

≡ D · A + E · B

And

A + B = 2(1 + cos ϕ)
(m + 1)π + ϕ

sin2 ϕ
+ 2

1 + cos ϕ

sin ϕ
> 0

A − B = 2(1 + cos ϕ)
(m + 1)π − ϕ

sin2 ϕ
+ 2

cos ϕ − 1

sin ϕ

=
2

sin2 ϕ
(1 + cos ϕ)

(

(m + 1)π − ϕ
)

− sin ϕ > 0

Since D ≥ |E|, we have F
(

2(m + 1)π − ϕ
)

− F(ϕ) > 0, therefore F(ϕm+1) =

F
(

2(m + 1)π −
(

2(m + 1)π − ϕm+1

))

> F
(

2(m + 1)π − ϕm+1

)

≥ F(ϕm). Also,

F(ϕ) = (D + E cos ϕ)µ(ϕ) − E sin ϕ,

F(ϕ + 2π) − F(ϕ) = (D + E cos ϕ)
(

µ(ϕ + 2π) − µ(ϕ)
)

≥ (D + E cos ϕ)
2π

sin2 ϕ
> Dπ,

imply that
F(ϕm+1) > Dπ + F(ϕm+1 − 2π) ≥ Dπ + F(ϕm−1),

so limm→+∞ F(ϕm) = +∞.

Next we are going to show that the actions associated to the solutions of (19) in-
crease strictly with θ. The argument here is very similar to the proof of Theorem 3.24
in ([2]). Let f (τ ) be a complex function defined as

(24) f (τ ) = −itτ + τ (a|x|2 + u + u0) coth(2aτ ) + 2
√

uu0δ
τ

sinh(2aτ )
.

We will see later that this function is in fact the modified complex action function for
the interior.

We have the following lemma:
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Lemma 2 The function f (τ ) has finitely many critical points on the imaginary axis;

there is one critical point between the origin and the first pole of f on the positive

imaginary axis, and it is a local maximum for f ; there are either zero or two critical

points(counting multiplicity) between each pair of poles on the positive imaginary axis;

of such a pair of critical points the one nearer the origin is a local minimum and the

other a local maximun for f .

Proof Notice that

f (iθ) = tθ + θD cot(2aθ) + Eθ csc(2aθ)

and

(25)

d

dθ
f (iθ) = t + D cot(2aθ) − 2aθD

1

sin2(2aθ)
+

E

sin(2aθ)
− 2aθE cos(2aθ)

sin2(2aθ)

= t − F(ϕ),

where ϕ = 2aθ and F(ϕ) is the function defined above. Then the lemma follows
from the properties of function F(ϕ).

Lemma 3 When |x| 6= 0 or u 6= u0, there is exactly one branch of the set

Γ0 = {τ | Im f (τ ) = 0, Re τ > 0, Im τ > 0}

that goes to ∞ in the quadrant Re τ > 0, Im τ > 0. On this branch Re f increases as

τ → ∞.

Proof Suppose τ = s + iθ, s, θ > 0 and let

f̃ (τ ) = τD coth(τ ) +
2aEτ

sinh(τ )
;

then

Im f̃ (τ ) =
1

sinh2 s + sin2 θ

( D

2

(

θ sinh(2s) − s sin(2θ)
)

+ E(θ cos θ − s sin θ sinh s)
)

For any fixed θ = Im τ > 0,

(26) lim
s→+∞

Im f̃ (τ ) =
Dθ

2
,

uniformly for bounded θ. Moreover, if sin θ = 0, then

(27)

Im f̃ (τ ) =
1

sinh2 s

( D

2
θ sinh(2s) ± Eθ sinh s

)

=
θ

sinh s
(D cosh s ± E)

>
Dθ

s
.
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For sin θ = 0, since f (τ ) =
1

2a
f̃ (2aτ ) − st ,

lim
s→0

f (τ ) = +∞, lim
s→+∞

f (τ ) = −∞,

therefore, ∃sθ s.t. Im f (sθ + iθ) = 0. At sθ + iθ, from (27)

0 = Im f (sθ + iθ) =
1

2a
Im f̃ (2aτ ) − sθt >

Dθ

s
− sθt.

This implies that

(28) sθ >

√

Dθ

t
.

The derivative

∂

∂s

(

Im f̃ (τ )
)

= D
−θ sinh2 s cos2 θ + θ cosh2 s sin2 θ2s cosh s sinh s cos θ sin θ

(sinh2 s + sin2 θ)2

− D cos θ sin θ

sinh2 s + sin2 θ

− 2E sinh s cosh s

(sinh2 s + sin2 θ)2
(θ cos θ sinh s − s sin θ cosh s)

+
E

sinh2 s + sin2 θ
· (θ cos θ cosh s − sin θ cosh s + s sin θ sinh s)

= O
( s + θ

sinh s

)

as s → +∞. This gives the estimate for suitably large θ, and sin θ = 0,

∣

∣

∣

∂

∂s

(

Im f̃ (τ )
)

∣

∣

∣
≤ C

s + θ

sinh s
≤ C1θ exp(−C2

√
θ), s > sθ,

where C , C1, and C2 are positive constants which depend only on a, x, t , u, u0. This
estimate implies that for suitably large θ, and sin θ = 0,

∂

∂s

(

Im f (τ )
)

< 0, s > sθ,

and there is only one solution sθ of Im f (τ ) = 0. It follows from (26) that no branch
of Γ0 can escape to ∞ between two such lines Im τ = θ, with sin(2aθ) = 0. Since
Im f = 0 on the imaginary τ−axis, a branch can escape from the quadrant through
the imaginary τ−axis only at a critical point of f . By previous lemma, for large θ,

there is no critical point of f , and therefore no such escape. Suppose there is a
branching of Γ0 between two consecutive Im τ = θ. Two such branches must join
at the two sθ points, since there are unique. This implies the existence of a bounded
region Ω on which Im f is harmonic and non-constant and vanishes on ∂Ω, which
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is a contradiction. Thus, for large |τ |, there is exactly one branch of Γ0 that goes to
infinity within the quadrant.

In particular, f has no critical points on this single branch of Γ0. Therefore, on

this branch, Re f must increase or decrease, since it can not have a stationary point.
Using (28), for θ such that sin(2aθ) = 0, we have

Re f (sθ + iθ) = θt + Dsθ coth(2asθ) ± E
sθ

sinh(2asθ)
→ +∞, as θ → +∞.

Therefore, Re f increases on the branch of Γ0 which goes off to infinity.

Similar to the Lemma 3.45 of [2], we have

Lemma 4 Assume |x| 6= 0 or u 6= u0. Let the critical points of f on the positive

imaginary axis, counted according to the multiplicity, be iθ1, . . . , iθam+1, with

(29) θ1 < θ2 ≤ θ3 < · · · < θ2m ≤ θ2m+1.

Let Γ be the union of Γ0 and the closed intervals

[0, iθ1], [iθ2, iθ3], . . . , [iθ2m, iθ2m+1].

Then Γ, oriented in the direction of increasing Re f , is a simply connected curve from 0

to ∞.

Proof The proof of Lemma 3.45 of [2] also applies here.

Theorem 3 For any two points in the interior, there is a unique shortest geodesic con-

necting them.

Proof Because of the invariance under the H1 action, we can take the starting point
to be (0, 0, u0). Suppose the ending point is (x, t, u). We continue to assume that t

is positive. Then every solution θ of (19) corresponds to a geodesic connecting these

two points. The square of the length of the corresponding geodesic is S(θ), which is
given by (20). By (25), the solutions of (19) are in one-to-one correspondence with
the critical points of f . Let iθk be the critical points of f on the positive imaginary
axis, numbered as in (29). Since Lemma 4 says that Γ has no self-intersection, the

critical points occur in the order on the oriented curve Γ. Therefore:

f (iθ1) < f (iθ2) ≤ f (iθ3) < · · · < f (iθ2m) ≤ f (iθ2m+1),

with strict inequality where the corresponding inequality in 29 is strict. At critical
point iθ, we have

t = F(θ) = Dµ(2aθ) + E

(

2aθ cos(2aθ)

sin2(2aθ)
− 1

sin(2aθ)

)

,
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and

2a f (iθ) = 2atθ + 2aθD cot(2aθ) + 2aEθ csc(2aθ)

= D

(

ϕ2

sin2 ϕ
− ϕ cos ϕ

sin ϕ

)

+ E

(

ϕ2 cos ϕ

sin2 ϕ
− ϕ

sin ϕ

)

+
Dϕ cos ϕ

sin ϕ
+

Eϕ

sin ϕ

=
ϕ2

sin2 ϕ
(D + E cos ϕ)

= 2aS

by (21), where ϕ = 2aθ. Therefore the corresponding action (and therefore the

length) of the geodesic increases strictly with θ. In the interval 0 6= ϕ < π, for
either case (δ = 1 or δ = −1), we have a unique solution of (19). These two solu-
tions correspond to two geodesics. The shorter of these two will give us the shortest
geodesic.

In order to determine which one is shorter, we only need to look the associated
action. Write ϕδ = 2aθδ , and D = a|x|2 + u + u0. From (19), we have

2δ
√

uu0 =
t − Dµ(ϕ)

ϕ cos(ϕ)
sin2 ϕ

− 1
sin(ϕ)

.

Substituting this in (20), we get:

2aS =
ϕ2

2a sin2 ϕ

(

D + cos ϕ
t − Dµ(ϕ)

ϕ cos ϕ
sin2 ϕ

− 1
sin ϕ

)

=
ϕ2D

1 − ϕ cot ϕ
+

ϕ2t

ϕ − tan ϕ
.

Note that ϕ−1 ≤ ϕ+1, and equality holds if and only if ϕ−1 = ϕ+1 = 0, which
implies t = 0 or u0

= 0, and the two geodesics coincide with each other.
Take the derivative of 2aS with respect to ϕ:

(30)

d

dϕ
(2aS) =

ϕ

(ϕ − tan ϕ)2

(

(

2 tan2 ϕ − ϕ tan ϕ − ϕ2

cos2 ϕ

)

D

+ (ϕ tan2 ϕ + 2ϕ − 2 tan ϕ)t

)

.

We want to prove that d
dϕ (2aS) ≥ 0, for ∀ϕ ≤ ϕ+1.

ϕ+1 satisfies the equation

t = Dµ(ϕ+1) + 2

(

ϕ+1 cos(ϕ+1)

sin2(ϕ+1)
− 1

sin(ϕ+1)

)

δ
√

uu0.
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For any ϕ ≤ ϕ+1, it satisfies the same equation, with a different t ′ ≤ t .

2
√

uu0 ≤ u + u0 ≤ D and
ϕ cos ϕ

sin2 ϕ
− 1

sin ϕ
≤ 0

imply that

t ′ ≥ D

(

µ(ϕ) +
ϕ cos(ϕ)

sin2(ϕ)
− 1

sin(ϕ)

)

.

Substituting this in (30), we have

ϕ

(ϕ − tan ϕ)2D

d

dϕ
(2aS)|ϕ

≥ −ϕ tan ϕ + 2 tan2 ϕ − ϕ2

cos2 ϕ

+
t

t ′

(

ϕ − sin ϕ cos ϕ

sin2 ϕ
+

ϕ cos ϕ − sin ϕ

sin2 ϕ

)

(2ϕ − 2 tan ϕ + ϕ tan2 ϕ)

≥ cos2 ϕ sin2 ϕ
(

ϕ2(2 cos2 ϕ + cos3 ϕ + cos ϕ)

+ ϕ(−3 cos ϕ sin ϕ − sin ϕ − 3 cos2 ϕ sin ϕ − cos ϕ sin3 ϕ)

− 2 cos2 ϕ sin ϕ + 2 cos ϕ sin2 ϕ + 2 cos2 ϕ sin2 ϕ + 2 sin4 ϕ
)

= cos2 ϕ sin2 ϕ(1 + cos ϕ)(ϕ cos ϕ − sin ϕ)
(

(1 + cos ϕ)ϕ − 2 sin ϕ
)

≥ 0.

Therefore we have d
dϕ (2aS) ≥ 0, for all ϕ ≤ ϕ+1, which implies (2aS)|ϕ

−1
<

(2aS)|ϕ+1
. Note that δ = +1 means ω + 2aθ > π, so the geodesic corresponding

to ϕ+1 hits the boundary. The geodesic correspond to ϕ−1 lies completely in the

interior, and gives the shortest geodesic connecting (0, 0, u0) and (x, t, u).

Remark If t is large enough (19) may also have finite solutions outside of interval
|2aθ| < π, which means we can have finitely many geodesics joining (0, 0, u0) to

(x, t, u). But for these geodesics, |2aθ| > π, and (16) shows they will hit the boundary
(u = 0).

Theorem 4 There is a unique shortest geodesic connecting a boundary point and an

interior point. This geodesic lies in the interior except the starting point.

Proof Because of the invariance under the H1 action, we can take the starting point
to be (0, 0, 0). Taking u0

= 0, and following the steps of the proof of Theorem 3, we

have:
u(s) = u0 sin2(ω + 2aθs), s ∈ [0, 1], ω ∈ [0, π)

u(0) = 0 implies

(31) u0 sin2(ω) = 0.
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Since u0 6= 0, ω = 0. Using the boundary condition u(1) = u, we have u0 =

u/ sin2(2aθ). From (19) and (20), θ is the solution of

t = (a|x|2 + u)µ(2aθ)

and the corresponding action

S =
2aθ2

sin2(2aθ)
(a|x|2 + u).

The unique shortest geodesic corresponds to the unique solution of θ that lies in the
interval [0, π/2a).

For any point (x, t, u) in the interior, denote by γ(s ; x, t, u) the shortest geodesic

that connects the origin and this point. If t = 0, then θ = 0 which is trivial. Therefore
we assume that t > 0. An interesting problem is to consider the limit of γ(s ; x, t, u)
as u → 0. Two different cases emerge:

First Case: x 6= 0 In this case, as u → 0, θ(x, t, u) goes to θ0, which is the solution of
t = a|x|2µ(2aθ) that lies in the interval [0, π/2a). With u = 0, (31) implies u0 = 0,
u(s) ≡ 0. Thus the limiting geodesic lies on the boundary.

Second Case: x = 0 As u → 0, θ(0, t, u) goes to θ0 = π/2a. Take the limit of (31):

lim
u→0

u0(0, t, u) = lim
u→0

u

sin2(2aθ)

= lim
u→0

t

µ(2aθ) sin2(2aθ)

= lim
θ→π/2a

t

2aθ − cos(2aθ) sin(2aθ)

=
t

π

Therefore the limiting geodesic can be described as:

x(s) = 0, t(s) =
t

2π

(

2πs − sin(2πs)
)

, u(s) =
t

π
sin2(πs) s ∈ [0, 1].

This corresponds to the case ζ(0) = 0 in Theorem 1.

Remark This verifies the fact that a geodesic that starts from the origin and returns
to the boundary necessarily returns to the boundary at the t-axis (see Theorem 1).
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4 Geodesics on the Hypersurface u ≡ u0

In this section we deal with geodesics on the hypersurface u ≡ u0. We restrict the
Hamiltonian H =

1
2
〈ζ, ζ〉+ 1

2
bu(θ2 + σ2) to the hypersurface and get Hu =

1
2
〈ζ, ζ〉+

1
2
bu0θ

2. Then Hamilton’s equations for a curve
(

x(s), t(s), ζ(s), θ(s)
)

can be written
as

(32)
ẋ = ζ ; ζ̇ = 2θΛζ ;

ṫ = 〈ζ, Λx〉 + bu0θ; θ̇ = 0.

First we consider an arbitrary normalized geodesic. Because of the invariance
under the H1 action, we take the origin (0, 0) as the starting point, i.e., we have the
following boundary conditions:

x(0) = 0, t(0) = 0, x(1) = x, t(1) = t.

Integrating (32) and using the boundary condition, we obtain:

(33)
ζ(s) = exp(2sθΛ)ζ(0)

x(s) = (2θΛ)−1
(

exp(2sθΛ) − I
)

ζ(0).

As before we have that 〈ζ, ζ〉 is constant along the curve. Then (32) implies:

(34) ṫ =
1

2θ
〈ζ, ζ − ζ(0)〉 + buθ =

1

2θ
〈ζ(0), ζ(0)〉 − 1

2θ
〈ẋ, ζ(0)〉 + bu0θ.

We integrate (34) and use the boundary condition:

(35) t =
1

2θ
|ζ(0)|2 − 1

2θ
〈x, ζ(0)〉 + bu0θ.

From (33) we have:

〈ζ(0), ζ(0)〉 =
〈(

exp(2θΛ) − I
)−1

2θΛx,
(

exp(2θΛ) − I
)−1

2θΛx
〉

=
(2aθ)2

sin2(2aθ)
|x|2,

〈x, ζ(0)〉 = ζt (0)(2θΛ)−1
(

exp(2sθΛ) − I
)

ζ(0)

=
1

4aθ
sin(4aθ)|ζ(0)|2 = 2aθ cot(2aθ)|x|2.

Therefore we have

t =
1

2θ

(2aθ)2

sin2(2aθ)
|x|2 − 1

2θ
2aθ cot(2aθ)|x|2 + bu0θ = aµ(2aθ)|x|2 + bu0θ.

https://doi.org/10.4153/CJM-2004-026-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-026-6


584 Yilong Ni

The action is

S = H = H
(

x(0), t(0), ζ(0), θ(0)
)

=
1

2
|ζ(0)|2 +

1

2
bu0θ

2
=

2(aθ)2

sin2(2aθ)
|x|2 +

1

2
bu0θ

2.

Similar to the Theorem 1.36 of [2], we have

Theorem 5 Assume that x 6= 0. There are only finitely many geodesics that join the

origin to (x, t). These geodesics are parametrized by the solutions θ of:

(36) |t| = aµ(2aθ)|x|2 + bu0θ,

and their lengths increase strictly with θ.

The square of the length of the geodesic associated to a solution θ of (36) is

(37) 2S(x, |t|, 1; θ) = ν(2aθ)
( t − bθu0

a
+ |x|2

)

+ u0bθ2,

where ν(0) = 1 and otherwise

ν(ϕ) =
ϕ2

ϕ + sin2 ϕ − sin ϕ cos ϕ
.

Consequently, if 2aθ ∈
(

kπ, (k + 1)π
)

the length dθ of the geodesic satisfies

(38)
(k + 1)2π2

kπ

( |t| − kπu0

a
+ |x|2

)

< d2
θ <

k2π2

(k + 3/4)π + 1

( t −
(

(k + 1/4)π − 1
)

u0

a
+ |x|2

)

.

Proof The geodesics that join the origin to (x, t) correspond exactly to the solution
of (36) if t ≥ 0, and to the negatives of the solutions if t < 0. Therefore the enu-
meration of the geodesics follows easily from the properties of the function µ(ϕ) (see

Lemma 1.33 in [2]). The expression of associated action is

2S(x, |t|, 1; θ) =
(2aθ)2

sin2(2aθ)
|x|2 + bu0θ

2

=
(2aθ)2|x|2

sin2(2aθ)
(

|x|2 + (|t| − bθu0)/a
)

(

|x|2 + (|t| − bθu0)/a
)

+ bu0θ
2

=
(2aθ)2|x|2

sin2(2aθ)(1 + µ(2aθ)

(

|x|2 + (|t| − bθu0)/a
)

+ bu0θ
2

= ν(2aθ)
( |t| − bθu0

a
+ |x|2

)

+ u0bθ2.
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To get the estimate (38), we consider the denominator of ν(ϕ), namely ϕ + sin2 ϕ −
sin(ϕ) cos(ϕ), on the interval [mπ, (m + 1)π]. It is easy to see that the minimum

occurs at the point mπ, and the maximum occurs at the point mπ + 3
4
π. Therefore

mπ ≤ ϕ + sin2 ϕ − sin(ϕ) cos(ϕ) ≤
(

m +
3

4

)

π + 1,

on [mπ, (m + 1)π].

(dθ)2
= 2S = ν(2aθ)

( |t| − bθu0

a
+ |x|2

)

+ u0bθ2

<
(k + 1)2π2

kπ

( |t|
a

− 4θu0 + |x|2
)

+ 4u0a
( (k + 1)π

2a

) 2

= (k + 1)2π2

(

1

kπ

( |t|
a

− 4θu0 + |x|2
)

+
u0

a

)

≤ (k + 1)2π2

(

1

kπ

( |t|
a

− 2kπu0

a
+ |x|2

)

+
u0

a

)

=
(k + 1)2π2

kπ

( |t| − kπu0

a
+ |x|2

)

,

and

(dθ)2
= 2S = ν(2aθ)

( |t| − bθu0

a
+ |x|2

)

+ u0bθ2

>
k2π2

(k + 3/4)π + 1

( |t|
a

− 4θu0 + |x|2
)

+ 4u0a
( (k + 1)π

2a

) 2

= k2π2

(

1

(k + 3/4)π + 1

( |t|
a

− 4θu0 + |x|2
)

+
u0

a

)

≥ k2π2

(

1

(k + 3/4)π + 1

( |t|
a

− 2(k + 1)πu0

a
+ |x|2

)

+
u0

a

)

=
k2π2

(k + 3/4)π + 1

( t −
(

(k + 1/4)π − 1
)

u0

a
+ |x|2

)

.

Finally, we prove that the lengths increase strictly with θ. Let

f (ϕ) = |x|2µ(ϕ) + 2
u0

a
ϕ,

g(ϕ) =
ϕ2

sin2 ϕ
|x|2 +

u0

a
ϕ2,

h(ϕ) =
ϕ2

sin2 ϕ
.
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Then we have t/a = f (2aθ), 2S(x, |t|, 1; θ) = g(2aθ), and
dg
dϕ = ϕ d f

dϕ . Suppose

first that there are two solutions θ1 < θ2 of (36) in the same interval
(

mπ/(2a),

(m + 1)π/(2a)
)

. Since f ′ ′(ϕ) = |x|2µ ′ ′(ϕ) > 0 in the interval, and f (ϕ) → +∞ as
ϕ → mπ+ or ϕ → (m + 1)π−, f (ϕ) has a unique critical point φm on the interval
(

mπ, (m+1)π
)

, and the two solutions θ1 and θ2 satisfy 2aθ1 < φm < 2aθ2. Noticing
that g ′(ϕ) = ϕ f ′(ϕ),

(39) g(2aθ2) − g(φm) =

∫ 2aθ2

φm

g ′(t) dt =

∫ 2aθ2

φm

t f ′(t) dt = t2( f (2aθ2 − f (φm)),

where t2 ∈ (φm, 2aθ2). And similarly

(40) g(2aθ1) − g(φm) =

∫ 2aθ2

φm

t f ′(t) dt = t1

(

f (2aθ1) − f (φm)
)

,

where t1 ∈ (2aθ1, φm). Since t1 < t2 and f (2aθ1) = t/a = f (2aθ2), it follows from
(39) and (40) that:

2S(x, |t|, 1; θ1) = g(2aθ1) < g(2aθ2) = 2S(x, |t|, 1; θ2).

Now turn to the case that θ1 and θ2 are consecutive solutions of (36) that lie on either
side of mπ/2a. From the properties of the function µ(ϕ) (see [2]), on each interval
(

mπ, (m + 1)π
)

, m = 1, 2, 3 . . . , µ has a unique critical point ϕm.

h(2aθ1) = h(ϕm) +

∫ 2aθ1

ϕm

tµ ′(t) dt

=
ϕ2

m

sin2(ϕm)
+ 2aθ1µ(2aθ1) − ϕmµ(ϕm) −

∫ 2aθ1

ϕm

µ(t) dt

= 1 + 2aθ1µ(2aθ1) −
∫ 2aθ1

ϕm

µ(t) dt.

Therefore,

g(2aθ1) = h(2aθ1)|x|2 +
u(2aθ1)2

a

= |x|2 + 2aθ1 f (2aθ1) − u0(2aθ1)2

a
− |x|2

∫ 2aθ1

ϕm

µ(t) dt,

and similarly

g(2aθ2) = |x|2 + 2aθ2 f (2aθ2) − u0(2aθ2)2

a
− |x|2

∫ 2aθ2

ϕ(m+1)

µ(t) dt.
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Subtract the above two equations and notice that f (2aθ1) = f (2aθ2) = t/a:

(41)

g(2aθ2) − g(2aθ1) = (2aθ2 − 2aθ1)
t

a
− u0

a

(

(2aθ2)2 − (2aθ1)2
)

+ |x|2
(

∫ ϕm+1

2aθ2

−
∫ ϕm

2aθ1

)

µ(t) dt.

Since t/a = h(2aθ2) + u0(2aθ2)2/a,

(2aθ2 −2aθ1)
t

a
− u0

a

(

(2aθ2)2 − (2aθ1)2
)

=
2aθ2 − 2aθ1

a

(

t −u0(2aθ1 + 2aθ2)
)

> 0.

It is obvious that 2aθ2 ≤ φm+1 < ϕm+1. Moreover

f (ϕm) = µ(ϕm)|x|2 +
2u0ϕm

a
< |x|2µ(ϕm+1) − π + 2

u0φm+1

a

< |x|2µ(2aθ2) − π + 2
u0

a
ϕm = |x|2µ(2aθ1) +

2u0

a
(2aθ1 − 2aθ2) +

2u0

a
ϕm

= f (2aθ1) +
2u0

a
(ϕm − 2aθ2) − π < f (2aθ1)

imply that ϕm < 2aθ1. It follows from (41) that g(2aθ1) < g(2aθ2).

Next, we consider the geodesic which starts from the origin and ends at a point on
the t−axis. The boundary conditions we have now are

(42) x(0) = 0, t(0) = 0, x(1) = 0, t(1) = t.

Without loss of generality, we may assume that t > 0. We have the following theorem:

Theorem 6 If t < 2πu0, there is a unique geodesic joining the origin and (0, t), and

this geodesic coincides with the line segment [0, t] on the t−axis. If 2nπu0 ≤ t <
2(n + 1)πu0, n ∈ N, besides the geodesic, which coincides with the line segment [0, t]
on the t−axis, for each m ≤ n, n ∈ N, we have a family of geodesics, which are

parametrized by the circle S1, join the origin to (0, t), and they have the same length

dm =
√

mπ
a

(t − mπu0).

Proof We have two cases: (1) ζ(0) 6= 0. In this case, (33) and the boundary con-
dition (42) imply exp(2sθΛ) − I = 0, so exp(2aθ) = I. We get ζ(s) = ζ(0) and
2aθ = mπ, m = 1, 2, 3 . . . . The Hamiltonian is constant along the curve:

(43) H = H
(

x(0), t(0), ζ(0), θ(0)
)

=
1

2
|ζ(0)|2 +

1

2
bu0θ

2.

(36) is not applicable in this case, therefore we use (35) instead and get:

t =
1

2θ
|ζ(0)|2 + bu0θ =

H

θ
+

1

2
bu0θ.
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From (43) H ≥ 1
2
bu0θ

2, we therefore have a restriction for t : t ≥ bu0θ = 2mπu0.
The length of such geodesic is

L =
√

2H =

√

2
(

t − 1

2
bu0θ

)

θ =

√

mπ

a
(t − mπu0).

Noticing that t ≥ 2mπu0, we have L ≥ mπ
√

u0

a
. For each m,

xm(s) = (2θΛ)−1
(

exp(2sθΛ) − I
)

ζ(0)

=

( mπ

a
Λ

)

−1(

exp
(

s
mπ

a
Λ

)

− I
)

ζ(0).

Integrating (34) yields

tm(s) =

∫ s

0

1

2θ
〈ζ(0), ζ(0)〉 − 1

2θ
〈ẋ(r), ζ(0)〉 + bu0θ dr

=
as

mπ
|ζ(0)|2 − a

mπ
〈x(s), ζ(0)〉 + 2mπu0s

=
as

mπ
|ζ(0)|2 − a

mπ

〈( mπ

a
Λ

)

−1(

exp
(

s
mπ

a
Λ

)

− I
)

ζ(0), ζ(0)
〉

+ 2mπu0s

=
as

mπ
|ζ(0)|2 − sin(2mπs)

2mπ
|ζ(0)|2 + 2mπu0s.

Along such geodesics, |ζ(0)|2 = mπ(t − 2mπu0)/a is a constant. These show that for
each m, the geodesics

(

xm(s), tm(s)
)

may be parametrized by ζ(0) ∈ S1.
(2) ζ(0) = 0. In this case, we obtain, from (33), x(s) ≡ 0, ζ(s) ≡ 0. Therefore we

have t(s) = bu0θs, t = bu0θ. So, in fact the geodesic coincides with the line segment

[0, t] on the t-axis.

H =
1

2
bu0θ

2
=

1

2
bu0

( t

bu0

) 2

=
t2

2bu0
,

L =
√

2H =
t√
bu0

.

If t < 2πu0, then case (1) cannot occur, therefore we have a unique geodesic

joining the origin and (0, t), and this geodesic coincides with the line segment [0, t]
on the t-axis. If 2nπu0 ≤ t < 2(n + 1)πu0, both cases occur. Since in case (1) we have
the restriction t ≥ 2mπu0, m can only take values 1, 2, . . . , n.

Remark When t = 2πu0 these two kinds of geodesics have the same length π
√

u0

a
.

And as t increases, the case (2) geodesic will no longer be the shortest one. Its length
t/(2

√
au0) is greater than the length of the geodesics in case (1) for m = 1. For small

t , case (1) can not occur and we have a unique geodesic. This result is different from
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the Heisenberg group H1, where we have infinitely many geodesics connecting the
origin and (0, t). But this is not surprising; because the hypersurface is a Riemannian

manifold, for any two points which are close enough to each other, there is only
one geodesic joining them. As u0 → 0, we can see this result reduces nicely to the
Heisenberg case.
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