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Abstract

Our purpose in this paper is to display the stability analysis of Runge-Kutta methods
applied to a Volterra integral equation of a simple form. As prerequisite we define, and
then develop the structure of, the class of Runge-Kutta methods considered. The test
equation is taken as the "basic" equation/(JC) — \foJ[y) dy = g(x); the simple form of
this equation permits ready insight into features which are more obscure when consider-
ing (as elsewhere [1], [2], [6]) equations of a more complicated form. Due to the structure
of the methods and the nature of the test equation, the stability analysis reduces to the
study of recurrence relations of the form 9k + t = M $ t + yk (k = 0, 1, 2, . . . ) which
are common in stability discussions in numerical analysis.

1. Numerical methods and stability

We consider methods applicable to the numerical solution of the Volterra

integral equation

f(x) - fXK(x,y,f(y)) dy = g(x), x > 0, (1.1)

wherein the given functions K(x,y, v) and g(x) are continuous on suitable

regions; we assume Lipschitz continuity (in v) for the "kernel function" K. The

methods we consider are Runge-Kutta methods; they bear an affinity to quadra-

ture methods associated with a family of quadrature rules

['"<t>(y)dy =* h 2 uik<t>(kh) for i = 1, 2, . . . ; h > 0. (1.2)
Jo k-o

We define uik = 0 if k > /.
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DEFINITION 1.1. A quadrature method for (1.1) defined by the rules (1.2)
consists of determining values f(ih), i = 1, 2, 3, . . . , such that /(0) = /(0) = g(0)
and

f(ih) - h i "ikK(ih, kh, f{kh)) = g(ih), / = 1, 2, 3, . . . . (1.3)
*=o

There is a conceptual difference (which it would be pedantic to insist upon)
between a method and its formulae, and we shall refer, for example, to the
formulae1 (1.3) as a quadrature method defined by (1.2). By the same token we
shall later describe a method, applied to a test problem, as stable when the
resulting recurrence relations are stable.

1.1. Mixed and extended Runge-Kutta methods

In quadrature methods, we determine in "step-by-step" fashion the values
f(h), f(2h), f(3h), . . . . More general methods involve the selection of 90>

#i> • • • > ̂ - i a n d Qp ~ 1 a n d t n e calculation of blocks of related values f]
approximating/(x) at points

Tj=ih + 9rh, r = 0, 1, ...,p, (1.4)

successively for i = 0, 1, 2, . . . , withy = i(p + 1) + r + 1 and^ , = g(0). The
blocks of values define successive vectors

i > 0.

Amongst such methods are the Runge-Kutta methods of interest to us here2. To
avoid confusion when the points {T,} are not distinct, we write fj rather than

f\ih + 9rh). Observe that r = (J — 1) mod(/> + 1) in equation (1.4).
The principal purpose of the Runge-Kutta methods may be considered to be

the determination of approximations for /(/i), /(2/i), f(3h), . . . . The required
approximations are found, since 9p = 1, as

Kih)=fi(P+n, i = 0 , 1 , 2 , . . . . (1.5)

The intermediate values fiU, + l)+s, s 5* 0 mod(/? + 1), may also be of interest [9].
The Runge-Kutta methods under discussion correspond to a choice of 90,

9U . .. , ^,_, and a set of formulae

fTj<t>(y)dy =* h 2 aJk<K*k)> j = 1 , 2 , 3 , . . . , (1.6)
•'o k>o

1 We here assume the formulae will be solved exactly.
2 See also [5]. More general methods have been proposed by Beltyukov [4), [11], van der Houwen
[17] and Weiss (see [4]).
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which, applied to discretize (1.1) with x = T,, yield equat ions

I•- h 2 ^JkK(Tj, rk, fk) = g(r,.), j = 1, 2, 3, . . . . (1.7a)
k>0

We suppose that

QJk = 0 if [(& — 1) / (p + 1)] > / = [(_/ — 1)/ (/? + 1)], (l-7b)

where [z] denotes the integer part of z. The methods (1.7a, b) appear as natural
extensions of the quadrature methods. In Runge-Kutta methods the choice of
parameters {9j) {&Jk} is motivated by questions of order of accuracy, and we
offer the following definition.

DEFINITION 1.2. A method (1..7a, b) is a Runge-Kutta method if the values (1.5)
display superconvergence as h —» 0, with ih fixed, for a suitably restricted set of
problems (1.1).

REMARK. If the values TJt j = 0, 1, 2, . . . , contain repetitions it is not, in
general, possible to define a single-valued function / on the mesh {T,} with
f(ij) = fy Therefore, the reader may wish to assume that OQ, 6,,..., 0p _x are
distinct points in (0, 1) and we may then write/(T,) = fj and

j(Tj) - n 2J MjkK\Tj> rk'J\Tk)) - 8\Tj)- \ l ° )
k>0

We shall not concern ourselves here with questions of order of convergence
but shall refer to our methods, described in more detail below, as Runge-Kutta
methods. Our intention has been to motivate Runge-Kutta methods for (1.1).
Specific methods result from a choice of formulae (1.6), satisfying (1.7b), which
we shall here associate with formulae

0 s = 0

The rules (1.9) correspond to a Runge-Kutta tableau

(1.10)

DEFINITION 1.3. A Runge-Kutta array (1.10) occurring {normally with A^ = 0
for r = 0, 1 , . . . , / > ) in the numerical treatment of ordinary differential equations
will be called a convent ional R - K array.

1°
[O\A] = :

Op = 1

•4 00

Ap-i,o

Apo

AI '•'•• X

Ap-\,\ Ap_Xp

Ap\ • • • App
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We write Tj = ih + 9rh, r = (J — 1) mod(p + 1), and (whether or not T, > ih)

f\(y) dy = (*<Ky) dy + f\(y) dy. ( l . l l )
J0 J0 Jih

The rules (1.9) applied (a) in repeated form with t = p (b) with t = r yield
/-I p p

y-fi?, 2 VK^( / ,+ i ) +*+ I) + A 2 ^ra4>(T,(p+1)+J+1), (1.12)
k = 0 s = 0 s-0

Tj being defined above.

DEFINITION 1.4. A Runge-Kutta method (1.7a, b) is called an extended
Runge-Kutta method if the formulae (1.6) and (1.12) coincide.

We may employ (1.2) to approximate j'^^iy) dy in (1.11) and obtain, in lieu of
(1.12), and setting WQQ = 0, the formulae

T
I J<j>(y)

•'0
Kp ) l ) . ( 1 . 1 3 )

s=0

DEFINITION 1.5. A Runge-Kutta method (1.7a, b) is called a mixed
quadrature-Runge-Kutta method if the formulae (1.6) and (1.13) coincide.

1.1.1. Another class of "mixed" methods (considered by Pouzet [21] and of
some interest in [9]) arises on identifying (1.6) with formulae

I
^0

/ - i p p

dy =* h 2 2 Bps<}>(T«p + 1)+s+l) + h 2 A^{Tiip+l)+s+i). (1.14)

We indicate what we shall call economized versions of the mixed quadrature-
Runge-Kutta methods, available when 60 = 0. In this case, since 9p = 1, T,(/,+1)

= T, ( P + 1 ) + 1 = ih and we have two approximations at the point ih. Some ap-
parent saving of effort is achieved if we modify the methods of Definition 1.5 by
setting fKp + n+l = UP+\) = /('*)» rather than compute the new value fl(j,+Y)+v

(In general this leads to a new method. Van der Houwen [17] has constructed
methods which generalize the economized methods and have interesting proper-
ties.) We observe that methods of Beltyukov type [4], [11] reduce to economized
methods when applied to the basic test equation which we considered here.

1.2. Stability

The study of stability of the solution of the integral equation (1.1) is the study
of the sensitivity of f(x) to perturbations in the problem (say in g(x)) in
particular as x —» oo. For an introduction to this topic we refer to the review of
Tsalyuk [23]. The study of stability is not amenable to investigation unless
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restrictions are placed on the class of "admissible" perturbations and on (1.1).
When (1.1) is linear, progress in the stability analysis can be made by analyzing
the resolvent or differential resolvent [23]. For the basic test equation

f(x)-\fXf(y)dy = g(x) (1.15)

a constant change 8 in g(x) results in a change e(x) = 8 exp(\x) in f(x) (see
below) which (a) is bounded if and only if Re(\) < 0 and (b) decays to zero as
x -» oo if and only if Re(A) < 0. The consequent classification of (1.15) is
embodied in the following definition.

DEFINITION 1.6. Equation (1.15) is stable if Re(X) < 0 and asymptotically
stable // Re(X) < 0.

The behaviour of e(x) in the preceding discussion follows from the equation
e(x) — Xfoe(y) ay = 8, which yields

e'(*) = Xe(x), e(0) = 8, (1.16)
on differentiating. On the other hand, equations (1.7a) yield, when applied to
(1.15),

fj - Xh 2 QjJk - gj (1.17)
* o

and we seek the effect of perturbations in the values gy on the values^. Structure
in the weights Qjk permits us to mirror (via a differencing process) the derivation
of (1.16), in order to obtain a finite term recurrence relation from (1.17).

13. Stability of recurrence relations

A differencing procedure applied to (1.17) will yield, under conditions as-
sumed here, recurrence relations of the form

*k+l = M*k + y k , k = 0, 1,2, . . . , (1.18)

where

M = M(A/i), (1.19)
and 4»0 = y is given. The components of the vectors <&* will be successive values
fj. The study of (1.18) is commonplace in numerical analysis but has interest in
its own right (Hahn [14, p. 47], Miller [20]).

A perturbation e in <I>0 results in perturbations M*e in «I»A which certainly
decay if the spectral radius p(M) < 1, and are bounded if p(M) = 1 and also M
is3 of class M. In each case, however, we may find that the norm ||Me|| of the
3 A matrix is of class M if and only if its eigenvalues of largest modulus are semi-simple (i.e. have
equal algebraic and geometric multiplicities).
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change in 4», associated with e is larger than ||e|| unless ||M|| < 1 in the
particular subordinate norm. (For any M, p(M) < ||M||.)

DEFINITION 1.7. (a) A recurrence (1.18) is block-stable in the specified norm \\ \\
if the subordinate norm of the amplification matrix M satisfies ||M|| < 1 and the
stability is strict if \\M\\ < 1. (b) A square matrix is strictly stable if p(M) < 1 and
is stable (Varga [24]) if and only if either (i) p(M) < 1 or (ii) p(M) = \ andM is
of class M. A recurrence (1.18) is called (strictly) stable when its amplification
matrix is (strictly) stable.

REMARK. A rank-one matrix with non-zero spectral radius is of class M.
Recurrences frequently encountered have the form

2 X/(XA)Xn+1_/ = y;+1, dct[Xo(XA)] * 0, (1.20)
1=0

which may reduce to a scalar recurrence. We obtain a relation (1.18) on writing

M(\h)

—XQ X,

I
0

0

-Xg X2

0
I

0

0 0

. (1.21)

DEFINITION 1.8. A recurrence (1.20) is (strictly) stable if and only if (1.21) is
(strictly) stable.

When p(M) = 1 in (1.21) it is necessary for stability to ensure that the largest
eigenvalues of (1.21) are semi-simple. We state the following result without
proof.

LEMMA 1.9. Let M(Xh) be given by (1.21); then an eigenvalue p is semi-simple if
and only if it is a semi-simple zero of the auxiliary polynomial

det f 2 x
I / = 0

(1.22)

in the sense that exactly v linearly independent vectors £ satisfy
{27-oX/(M)/iim~'}J = 0 where v is the multiplicity of fi as a zero of the auxiliary
polynomial. If (1.20) is a scalar recurrence, fi is semi-simple if and only if it is
simple.
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[71 Stability of Runge-Kutta methods 521

Since stability of recurrence relations is related to the location of zeros of

det(M — fiT) or (1.22) we recall the following definitions.

DEFINITION 1.10. 4̂ polynomial is said to be a von Neumann polynomial if its
zeros lie on the closed unit disk centred on the origin, and its zeros of modulus unity
are semi-simple4. A polynomial is Schur if it is a von Neumann polynomial with no
zeros of modulus unity.

The amplification matrix (1.19) depends upon \h, where X is given in (1.15).

DEFINITION 1.11. The region of (strict) stability of a recurrence (1.18) or (1.20)
is the set of values W i 6 C for which the recurrence is (strictly) stable. A region of
block-stability (respectively strict block-stability) in some norm \\ \\ is the set

{Xh G C| ||M(AA)|| < 1} (respectively {Xh G C| ||M(M)|| < 1}).

We hope to model the properties in Definition 1.6 with corresponding proper-
ties of (1.18) or (1.20). This leads us to concepts such as A -stability, which we
define in Section 3. (Strict) stability of (1.18) is analogous to (asymptotic)
stability of (1.15).

2. Quadrature methods revisited

Our objective is the analysis of Runge-Kutta methods, but to study mixed
quadrature-Runge-Kutta methods we require structured rules (1.2). We can
then exploit the connection between (1.15) and (1.16).

Suppose that

K(x,y,f(y)) = F(y,f(y)), g'(x) - 0 (2.1)

so that (1.1) reduces to

/'(*) = F{x, Ax)), /(0) = g(0). (2.2)

A linear multistep method for (2.2) is defined by the parameters {ak, fik} in the
formula

m m

2 «,/((« - l)h) = h 2 P,F((n - l)h,f((n - l)h)), (2.3)
/=o /«o

and by suitable starting values. Associated with (2.3) are (see Lambert [18]) the
first and second auxiliary polynomials

2 AM"- ' . (2.4)
1=0 1=0

4 If the polynomial is expressed as a determinant (1.22), semi-simplicity will be interpreted in the
sense of the preceding lemma.
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The application of (2.3) is equivalent to applying the quadrature method to
(1.1) with (2.1), when certain conditions are satisfied.

DEFINITION 2.1. The rules (1.2) are called reducible to the linear multistep
method {a,, /?,} or, simply, (p*, a*)-reducible, if for some n0 > 0,

m

2 «/"„+,_/„ = 0, v = 0, 1, . . . , n - m; (2.5a)
1=0

m
2 « , « „ + , _ , „ = / ? „ + , _ „ , v = n - m + l , n - m + 2 , . . . , n + l , ( 2 . 5 b )
/ = o '

w h e n n > n 0 , a n d
m

2 «, = 0. (2.5c)
1 = 0

Suppose (1.2) are (p*, 0*)-reducible and consider (1.3) with (2.1). Noting that
u)nj = 0 if j > n we have

2 «, 2 «n+x-,Mn + l - 0h,A(n + i - 0*))
i-o j>o ( 2 6 )

= 2 PAi" + 1 - l)hj{(n + 1 - /)/»))
/=o

for n > n0 and we can deduce (2.3) for n > n0 + 1, given (2.1).
The Gregory rules [4], [7] reduce to Adams-Moulton multistep formulae;

other reducible rules can be generated from given p*, a*.

EXAMPLE 2.1. If u>i0 = <au = \, wy = \,j = 1, 2, . . . , / — 1, then a0 = - a , = 1,

5-
A more general property of the weights (1.2) can be exploited. First observe

that the lower-triangular array of weights unj can quite commonly be partitioned
into square submatrices of each of the same order, q, namely

V
0,0

K) = •' ' • . (2.7)
V,/,o

V / + u • • • V / + M V

such that for fixed matrices {A,, B,}™ we have (defining V/y = 0 if y > /)
m

S ¥ , + i-,, = B, + 1 - , (n>n'o) (2.8a)
/=o
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for some n'o > 0,

and

Stability of Runge-Kutta methods

A, = B, = 0, {0, 1, 2 m),

523

(2.8b)

o (2.8c)

where e = [1, 1, . . . , l ] r G R9. Relations (2.8a, b, c) correspond to generaliza-
tions of (2.5a, b, c). We assume, with little loss, that n0 = n'o = 0.

DEFINITION 2.2. The rules (1.2) are called reducible to the m-step block-method
{A,, B/}Q , or, simply, block-reducible, // (2.8a, b, c) hold.

A subset of the block-reducible rules (1.2) are those for which (2.7) assumes
the form

W

w w0 w0
w w0 w0

(2.9)

Wo W, W 2

w0 w0 w,
that is, \,j = WP_I+J for j > 1, where WP+r = 0, W_r = WQ, for r > 0, and
V/o = W, / > n0. All the rules considered by Baker and Keech [7] are of the
latter form.

EXAMPLE 2.2. Let the weights (1.2) be defined by equation (1.14) of [7], that is

j = 0 1 2 2s - 1 2s 2s + 1

(02s,j 3
]_

3

4 2

3 3
4 2

3 3

4
3
4
3

1
3

1 1.
2>

1
2

Then /* = 1 and

W =

The weights uik correspond to the use of the repeated Simpson's rule, with the
trapezium rule.

1
3
1
3"

4
3
4
3

_
o -

2
3
2
3

4 "
3
4
3

1 ~

1
3
5
6

0

1
2
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EXAMPLE 2.3. Let the weights have the structure (2.9) and define AQ = I,
A, = - I , A7 = 0, / = 2, 3, . . . , / > ; m = P. Then Bo = W^,, B , = W / , _ , -
W p , . . . , Bj> = W o — W t .

Quadrature rules which reduce to ^-cyclic linear multistep methods in the
sense that

1 = 0

wherein a/M) = 0 and /J/"* = 0 for / £ {0, 1, . . . , m(n)}, m = max(w(/t)), can
be identified by the reader (to whom we leave the details) as block-reducible, on
writing

A , =

aq+\

and so on and likewise for Bo, B , , . . . ; see Stetter [22, p. 218].

EXAMPLE 2.4. Consider the weights of Example 2.2. As shown, they can be
partitioned as (2.9) and therefore treated as in Example 2.3. Alternatively we
may define A;, B, = 0 if / > 1 and

1 0
-1 l l '

A, =
o o

1
3
i
l

_ 2

0

i
l

2

. B. =
1
6
0

5 '
6
0
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1
- 1

1

3
1
2

0
1

0

1
2

-1
0

1
3
0

0

oj'
4 "
3
0
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or yet again

A , =

B, =

Each formulation corresponds to a recognisable 2-cyclic method.
Since the quadrature methods discussed here reduce to methods for (2.2)

when applied with (2.1), the stability of the methods applied to (1.15) can be
deduced from results in ordinary differential equations, by reference to
det[27_0{A, - MB,} fim"7]. We refer to Stetter [22].

3. Stability of Runge-Kutta methods

The earliest stability studies in the numerical treatment of (1.1) have been
concerned with (1.15), namely

f{x)-\Cf{y)dy =
Jn

(3.1)

We shall derive criteria for the numerical stability of Runge-Kutta methods for
(3.1) and comment on the use of this test equation later. We can distinguish two
types of stability.

DEFINITION 3.1. A Runge-Kutta method (1.7a, b) displays full-step stability
{when applied to a given test equation) if and only if there exists a stable recurrence
between vectors whose components are the values f{ih) =//(y7 + 1) generated {for
i > n0). The method likewise displays internal stability if and only if there exists a
stable recurrence relation between vectors whose components are successive values

.,, / = n0, n0 + 1, ; r = 0, 1, . . . ,p, involved non-trivially.

Strict-stability, and block-stability in a prescribed norm, are similarly defined.
Since we seek to model the properties of (3.1) we introduce a concept of
A -stability (here restricted to full-step values).

DEFINITION 3.2. A Runge-Kutta method (1.7a, b) is A-stable if it displays strict
full-step stability whenever Re(X/i) < 0.
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For the methods and test equation considered here, the criteria for full-step
and internal stability are broadly the same (though there are distinctions in strict
stability); this may not be so when considering other test equations.

We write <*>„ = 8(0)11 1, . . . . I]7" and

for / = 0, 1, 2, . . . , where the values {/} are defined by a given Runge-Kutta
method (1.7a, b) applied with K(x,y, v) = Xv, that is, where

fj'•- ** 2 V * = 8(rj). (3.3)
k>0

We shall require some additional notation and we write

e o = [ l , O , . . . , O ] 7 ' , e , = [ 0 , 0 , . . . , 0 , I]7", e = [1, 1, . . . , l ] r , (3.4)

and

*p=[Ap0,ApV...,App]
T (3.5)

in terms of the elements of [0|A] in (1.10). We also introduce the matrices

Ap = E,A, E, = eej. (3.6)

Observe that ej<£1 + 1 = /((/ + l)h).

3.1. Extended Runge-Kutta methods

The extended Runge-Kutta methods are described by Definition 1.4. With
the method thus defined in terms of (1.10), the equations (3.3) can be recast
using (3.2), and in view of (1.12), as

Here, g,+ 1 = [g(rKp+l)+l), . . . , g(T(,+ 1X/,+1))]r. A recurrence of the form (1.18)
is sought! We apply Ep of (3.6) to (3.7) and subtract the result from (3.7), to
obtain

(I - A*A)*,+, - E,fc = g,+, - E^g,.. (3.8)

Excluding the (at most p + 1) exceptional values of X for which (I — XhA) is
singular and for which the method fails, we deduce

* I + 1 = N(M)<fc + vl+l, (3.9)

where N(A/J) = (I - XhA)-lEp and v,+l = (I - XhA)'\gi+l - Epg,.). The recur-
rence (3.9) is of the form (1.18) with amplification matrix

N(Xh) = d(M)eJ (3.10a)
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wherein

d(A/i) = (I - \hA)'le. (3.10b)

We shall employ (3.10a, b) later; observe that N(M) is of rank one, with

eJ
= ej(l - MA)-'e. (3.11)

Thus, P(N(A/I)) = | fi(Xh)\. Observe also that

||N(A/OIL = ||d(AA)|L, ||N(A/i)lli = ||d(M)||,. (3.12)

Conditions for stability and block stability in || Ĥ , and || ||, for (3.9) now follow.
Analysis of (3.9) is sufficient for internal stability, but applying e j to (3.9)

yields e j ^ , + 1 = ej(l - XhA)'leeJ^ + eJV,+1 or, since ej£,. = f(ih),

= fi(Xh)f(ih) + v,+ l, (3.13)

where vi+, = eji>1+,. Thus the condition for full-step stability is | (i(\h)\ < 1. The
following theorem summarizes the results.

THEOREM 3.3. The extended Runge-Kutta method applied to (3.1) displays
internal and full-step stability if and only if \ (L(Xh)\ < 1. For I = 1, oo it displays
block-stability in || ||, if and only if \\d(Xh)\\, < 1. For strict stability the inequali-
ties must be strict.

In addition we have the following result, using Definition 1.3.

THEOREM 3.4. Let (1.10) be a conventional R-K array. Then the region of
stability of (3.9) is the same as the region of stability for the corresponding
Runge-Kutta method applied to y\x) = Xy(x), y(0) = yQ.

PROOF. See Stetter [22, pp. 131, 174], and observe that eJd(M) is the "growth
function" of [22] under the given assumption.

COROLLARY 3.5. Use of an A-stable conventional R-K array yields an extended
method which displays A-stability.

The following example serves, inter alia, to show that requesting stability (of
(3.9)) in a prescribed norm may be too severe.

EXAMPLE 3.1. Consider the conventional R-K tableau
1
2
1

1
2

1

0

0
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We find d(\h) = [(1 - ±\hyl, (1 + ±\h) (1 - \\h)-l]T and /x(AA) =
(1 + jA/z)/(l — j\h) and have yl-stability. Moreover, (3.9) is strictly block-sta-
ble in the uniform norm when Re(A/i) < 0. In the norm || ||, this feature is lost,
and \h = 0 is not in the region of block-stability.

3.1.1. We consider the effect of applying the formulae (1.14) rather than
(1.12), and write

bp =[Bp0'BPv • • • >BPP] .

to find

replacing (3.7). We deduce a relation of the form (3.9) with NQJt) replaced by

N,(M) = N(M) + AAd(AA)(bJ - aj),

a rank-one matrix whose non-trivial eigenvalue is

fi.m(Xh) = 1 + MbJ(I - \hA)-le.

For more detail, and an example, refer to [2]. Paul Wolkenfelt observed that a
relation similar to (3.13) (with /x replaced by /£„) can also be found. Thus, the
condition for internal and full-step stability is that | (lt(\h)\ < 1.

3.2. Mixed quadrature-Runge-Kutta methods with reducible rules

Amongst the methods of Definition 1.5 are those employing (p*, o*)-reducible
quadrature rules, satisfying (2.5a, b, c). The scalar equations for the method
applied to (3.1) can be re-written in the notation (3.2), (3.6), and in view of (1.13)
we obtain

1 - A A 2 » ^ * * - g , + i. 1 - 0 , 1 , 2 , . . . . (3.14)
*=o

Thus, when (I - XhA)~l exists,

•H-I " ** 2 aaFQJtfa = (

employing the matrix (3.10a). We deduce that
m m
2 «/*„+!-/ - A/I 2 «/ 2 Un-

1=0 1=0 k>0
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where yn +, = 'Z^afl - A/iA)"'gn+, _„ whence, by virtue of (2.5a, b),
m m

S «/*„+.-/ - A* 2 AN(AA)^_, = Yn+1. (3.16)
/=o /=o

The recurrence (3.16) is of the form (1.20) and we deduce the following lemma.

LEMMA 3.6. the mixed quadrature-Runge-Kutta method employing (p*, a*)-re-
ducible quadrature displays internal stability if and only if

det[ HP*(H)1 - \ho*(ii)NQJi)] (3.17)

is a von Neumann polynomial.

For the analysis of full-step stability we apply e j to (3.16) to produce, directly
on observing that ejN(AA) = /2(X/i)eJ,

m m

2 aj((n + 1 - /)*) - Xh(i(Xh) 2 &/((« - l)h) = efrK+l. (3.18)
1=0 1=0

Lemma 1.9 yields the following result for full-step stability.

THEOREM 3.7. The mixed quadrature-Runge-Kutta method of Lemma 3.6
exhibits full-step stability when applied to (3.1) if and only if

VLp'iti-WMo'bi) (3.19)

is a von Neumann polynomial. The stability is strict //(3.19) is Schur.

Theorem 3.7 prompts re-examination of (3.17), to relate it to (3.19) under
standard assumptions [22, pp. 188, 206].

THEOREM 3.8. Suppose p*([i), o*( n) have no common factors, and p*(ju) is a von
Neumann polynomial with p*(l) = 0. The method of Theorem 3.7 applied to (3.1)
exhibits internal stability if and only if it exhibits full-step stability.

REMARK. We are not in a position to replace "stability" by "strict stability" in
the above statement because p*( /t) has roots of modulus unity.

PROOF. The value ju' is a zero of (3.17) if and only if, for some £ 3= 0,

^ • U ' ) N ( M ) J > / i ' P * ( / O f .

If p*, a* have no common factor, either ft' = 0 and N(A/i)f = 0 or

/i*£ (3.20)

where /t* = ii'p*(n')/{\ho*(n')}. For (3.20) to be satisfied, either ju* = 0,
whence p*(/x') = .0, or p.* = {iQJi) whence /x' must be a zero of (3.19). If n' is a
zero of (3.19) then £ is necessarily a multiple of d(AA) and fi' is semi-simple only
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if it is simple. (If jw' is a zero of p* then £ is any vector in a /^-dimensional
subspace of vectors annihilated by NQJi). We expect to find p*( /i') = 0 for some
/x' with | n'\ = 1 and if /*' is a zero of (3.19) then there exist linearly independent
vectors £ corresponding to /x.)

EXAMPLE 3.2. Consider the mixed Runge-Kutta method employing the re-
peated trapezium rule (Example 2.1) and the Runge-Kutta tableau in Example
3.1, which yields (l(\h) = (1 + j\h)/(l - j\h). The polynomials p*(|tt), a*(/x)
are determined by the coefficients given in Example 2.1 and the polynomial
(3.19) is (i(n - 1) - JA/J(1 + j\h)(l - j\h)~\fi + 1). The zeros of this poly-
nomial are pt, = -\\h, /^ = (1 + \h)/(\ — jAA). The method exhibits full-step
stability if and only if ReQJi) < 0 and \Xh\ < 2.

In view of the preceding example we may state the following theorem, which
is of some significance.

THEOREM 3.9. A mixed method based on an A-stable reducible quadrature rule
and an A-stable Runge-Kutta tableau need not exhibit full-step A-stability.

3.2.1. The previous theorem is disturbing when ^-stability is a desirable
feature, since mixed quadrature-Runge-Kutta methods consume less effort than
their extended counterparts. However, the mixed methods can sometimes be
modified to obtain A -stability. We consider only the economized version of the
mixed method, applicable where 9Q = 0. For this method we replace (3.14) by

fc=

where

A=[l-etf£]A. (3.21)

In consequence

*. + i - ** 2 «*[N,(

where N0(Xh) = [I - XhAyle^, N,(\/i) = [I - MAj-'eeJ, and y/ + 1 =
[I-MA]- '[I-eoejng1 + 1 .Thus,

2 «/{*„+,_, - NoCAA)*,,.,} - Xh 2 A[N,(AA) - No
/=o /=o

m (3.22)
= Z «/Yn+/-i

/-o
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If we consider full-step stability we take the inner product of ep and (3.22) to

obtain

n - l)h)}
i-o

- M 2 A{ f*.(M) - lkfrh)}K(n ~ Oh)
/-o

/-o

where, in the notation of (3.21) and (3.4)

H{Xh) = ej[l - AAAj-'eo, M,(M) = ej[l - MA]"1* (3.23)

We deduce the following result.

THEOREM 3.10. Suppose that in the economized mixed quadrature-Runge-Kutta
method the rules (1.2) are (p*, a*)-reducible. Then the method applied to (3.1)
displays full-step stability if and only if

is a von Neumann polynomial, and the stability is strict if and only if it is Schur.

EXAMPLE 3.3. Consider the economized version of the method in Example 3.2.
The economized method is ,4-stable.

Unfortunately, it is not always true that economized methods have increased
regions of stability.

3 3 . Mixed quadrature-Runge-Kutta methods using block-redudble rules

Consider the methods of Definition 1.5 employing rules (1.2) which satisfy
(2.8a, b, c). (For convenience below, Am+I = Bm + 1 = B_, = 0.) We require
some additional notation, and we set, for / = 0, 1, . . . , m + 1,

B, = B/_1J« + B/J (3.24)

where, in partitioned form,

J = [ e , , e 2 , . . . , e , _ I , 0 ] , (3.25a)

J*=[0,0, . . . , 0 , e 0 ] , (3.25b)
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and e0, e,, . . . , eq_x are the successive columns of the identity matrix \q of order
q. (We continue to write I for the identity of order/J + 1.) Recall the definition
of/i(A/0in(3.11).

The principal result of this section may now be stated.

THEOREM 3.11. The mixed quadrature-Runge-Kutta method employing rules
(3.2) satisfying (2.8a, b, c) displays full-siep siabiliiy when applied io (3.i) // and
only if

det
m + l

2 (A, - M
/=o

is a von Neumann polynomial; the stability is strict if and only if the polynomial is
Schur.

We apply the theorem to an example later but now undertake a proof of the
theorem. We define matrices V/y- by prescribing the columns V,̂ cr = Vy-er+,
(/• = 0, 1, . . . , q - 2) and V(y-e,_, = ViJ+le0 in terms of (2.7) where V,-, = 0 if
j > i. Thus

\iJ = V(7J + V,y+1J*. (3.26)

We shall employ the notation for a Kronecker (direct) product between
matrices.

DEFINITION 3.12. Let A, B, be square matrices of order m, n respectively. Then
the direct product A ® B is a matrix of order mn whose (r, s)th submatrix is ArsB,
where Ars is the entry in the rth row, sth column, of A.

We set, for k = 0, 1, 2, . . . ,

£ ] r (3-27)

where <£, is defined by (3.2). On reflection (see Example 3.4) we find that the
scalar equations defining the method applied to (3.1) can be rewritten as

[I , ® (I - MA)]¥ t - M 2 [ Vv ® E j¥ , . - yk(\h), (3.28)

where the components of yk(Xh) have the form g(jv) + XhupOfo. Since
[A <g> B][C <8> D] = AC ® BD, multiplying (3.28) by I ® (I - AAA)'1 yields
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** - M 2 [Vv ® N(M)]*, = rt(AA), (3.29)
o

where I\(A/z) = [Iq ® (I -
By virtue of the relations (2.8a, b, c) we find

2 A^.^-B^,^, (3.30)
/=o

where B, = 0 if j• $. {0, 1, . . . , m + 1}. It follows that, if we multiply (3.29) by
A/ <8> I and sum over / we find

m+\ m+\
2 {(A, ® I) - MB, ® N(M)}*,, + ,-, = 2 (A, ® I)rn+1_,. (3.31)
/=o /=o

The auxiliary polynomial for this relation, which allows a study of internal
stability, is

det 2 {A/®I-AAB/<S>N(M)}Mm+1~/ • (3-32)
\ /=o /

Multiplying (3.31) by I, ® Ep yields, since EpN(Xh) = (iQJi)^, the relation

2 { / ( ^ ) } ^
(3.33)

Let us now define ^ = [/((A:9 + l)h), f((kq + 2)h), ...J((k+ \)qh)]T

where f((kq + r)h) is of course ej<frt9+r- Then (3.33) is equivalent to

m+1 m+1 m+1
2 AA + , - ( - W(AA) 2 B , ^ , . , = 2 A/Yn+1_, (3.34)
/=o /=o /-o

for appropriate vectors y, derived from T,. The stability of (3.34) governs the
full-step stability of the method.

EXAMPLE 3.4. Consider the mixed method based on the quadrature weights
discussed in Examples 2.2 and 2.4, and the Runge-Kutta tableau discussed in
Example 3.1. The tableau of coefficients SlJk in (1.7) assumes the form which we
partition as shown, the diagonal blocks of order two being the matrix A. The
dotted partitioning corresponds to partitioning for the vectors <f>\> 4*2> ^3. • • •
with the conventions of (3.2) (/(0) being known), whilst the unbroken partition-
ing corresponds to determination of * , , * 2 , ^ 3 , . . . defined by (3.27).
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0

0

2
1

3

3

3
J_
3

1

2
1

0

0

0 2
i0 i

I

5

1

2
1

0

0

0 3

• 5

I
I
!
!

1

2
1

0

0

0 2

o 1
1

2
1

0

0

0 3
1

2
1

0

0

The coefficients of the system of equations (3.29) are obtained as

1
0

0

0

0

0

0

0

0
1

1

-d
3

I*
4

4

1

0

0

0

0

0

0

1

1 ,
3 '

I*.
o

1

0

0

0

0

1

1

]

1 0

0 1

and so on, and a direct approach via differencing allows a stability analysis. For
full-step stability the result may be obtained directly by substitution in the
determinantal expression given in Theorem 3.11. From Example 2.4 we know
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that we may take m = 1,

B, = 3
0

0
0

4
3
0

Bo =

-1

3
j_
2

0
1

0

2
which yields

B2 = 0

0

1
3
0 .

» B , =

' 4
3"

0

1

3
1

2

, Bo =
0
1
2

0

0

From Example 3.1 we know that ji = (i(\h) = (1 + jA)/(l - jM)- By Theorem
3.11 we require

2 M 2 - -2

to be a von Neumann polynomial. Denoting its zeros by fit, fi^, fo, /14 we find
Ht = H2 = 0, n3 ~ |A/J /X, ju4 2^ 1 + 2AA/I (and, indeed, we find /x4 = exp(2A/i) +
O(hA), as might be expected), on substituting the value of £. If /x3 = n4 we must
check for semi-simplicity.

4. Extensions

Our analysis, based on the structure of the Runge-Kutta methods, has
resulted in recurrence relations and stability polynomials which permit stabihty
results for the "basic" test equation (3.1). We conclude by indicating extensions
to the analysis.

Our discussion has been related to the condition p(M) < 1 in recurrences of
the form (1.18), resulting in definitions of "absolute" stabihty. The remarks of
Stetter [22, Section 3.5.5] can be paralleled here, and one may seek regions in the
M-plane wherein p(M) < p', p' < 1 for M = M(A/i). Given the nature of the
vectors 4>t in (1.18) and the behaviour of the solution of the test equation it is
possible to define relative stability concepts (Baker [4]) which can also be
analyzed in terms of the eigenvalues of M = M(A/i).

The analysis presented here provides a necessary foundation on which to
develop a theory for more involved test equations. With regard to the practical
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conclusions which may be drawn from the present work, it is appropriate to
issue a caveat. We recall that Baker [4, p. 763] wrote as follows: "It is, of course,
the very simplicity of the (test) equation which makes it ideal for mathematical
analysis, and a study of this simple case does give some genuine insight . . . .
What we must guard against is an unquestioning acceptance that a method
which is suitable for this special equation is suitable for more complicated
equations." It now seems to be generally accepted that suitability of a method
for the test equation (3.1) is a necessary (but not sufficient) requirement for an
all-purpose method.

The structure developed here is of some use in analyzing more general test
equations than (3.1) and we note the results in [1], [2] for test equations of the
form

- f
•'o

- y)rf(y) dy = *(*)• (4-0

For such equations the concepts of stability and asymptotic stability depend on
R and are not covered by Definition 1.6. The appropriate definitions result in
generalizing the concept of A -stability (applicable to methods for equation (3.1))
to a concept of {A; /^-stability (see [2]), for R = 1, 2, 3 . . . . ,4-stable methods
need not be (A; R)-stable, for R > 1.

Other directions in which our analysis can be extended arise when we seek to
mimic properties other than those represented by Definition 1.6. Thus, for
example, we motivated the definitions of stability and asymptotic stability by
classifying the response of f(x) to constant perturbations in g(x). When consider-
ing the effect of more general perturbations it is natural to turn explicitly to the
properties of, in the linear case, the resolvent kernel, and (for the numerical
methods) the inverse of the infinite block-lower-triangular matrix of coefficients
in the formulae (1.7) defining the method. The differencing procedure, by which,
in the case of (3.1), the latter equations are reduced to the form (1.18), is in
effect an eliminaton process permitting such an approach.

Finally let us observe that separable kernels (for example) yield [6] a stability
analysis resulting in recurrence relations of the form

where strict stability requires IItM^ —»0. The local stability criterion p(Mt) < 1,
for all k, is necessary but not sufficient, whilst the local block-stability criterion
||AfJ| < 1, for all k, is sufficient but not necessary. The analysis for (3.1),
wherein Mk = M, provides some insight into which tests are meaningful in the
more general case, and the limitations of such tests. We may compare, for
example, regions of block-stability in differing norms for the special case, in
order to gain insight for the more general case.
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