ON A 3-DIMENSIONAL ISOPERIMETRIC PROBLEM

BY
MAGELONE KÖMHOFF

Let $L(P)$ denote the total edge length and $A(P)$ the total surface area of a threedimensional convex polyhedron P. In [5] it was shown that if P belongs to the set \mathscr{S}^{3} of all polyhedra with triangular faces then for all $P \in \mathscr{S}^{3}$

$$
L(P)^{2} / A(P) \geq 12 \sqrt{3} \approx 20.785
$$

with equality if and only if $P \in \mathscr{S}^{3}$ is a regular tetrahedron.
It is not difficult to establish the inequality

$$
L(P)^{2} / A(P) \geq 2(12-\sqrt{3}) \approx 20.536
$$

for all $P \in \mathscr{P}^{3}$, where \mathscr{P}^{3} denotes the set of all three-dimensional prisms. Equality holds only for the equilateral triangular right prism $P \in \mathscr{P}^{3}$ with base B and height $h=(6-\sqrt{3}) \cdot p(B) / 9$ where $p(B)$ is the perimeter of the base B.

Now, let P^{3} be the set of all three-dimensional convex polyhedra and let $\alpha\left(P^{3}\right)$ denote the infimum of the quotients $L(P)^{2} / A(P)$ for all $P \in P^{3}$. A theorem of Aberth [1] implies:

$$
\begin{equation*}
\alpha\left(P^{3}\right)>6 \pi \approx 18.850 . \tag{1}
\end{equation*}
$$

Here we will establish the following inequality:

$$
\begin{equation*}
\alpha\left(P^{3}\right) \leq 2\left(\sqrt{3}+\frac{8 \pi}{3}\right) \approx 20 \cdot 219 \tag{2}
\end{equation*}
$$

Proof of (2). Like Besicovitch [2], we construct a sequence of polyhedra $\{P[v]\}$, where $P[v]$ is a so-called "shell-polyhedron" with $2 v$ vertices. We will show:

$$
\lim _{v \rightarrow \infty} \frac{L(P[v])^{2}}{A(P[v])}=2\left(\sqrt{3}+\frac{8 \pi}{3}\right) .
$$

Let C be a circle of unit radius and $M N$ a chord of length $\sqrt{3}$. We divide the longer one of the two arcs $\overparen{M N}$ into $v(v \geq 2)$ equal arcs $\overparen{M X_{1}}, \overparen{X_{1} X_{2}}, \ldots, \overparen{X_{v-1} N}$. Evidently

$$
U=2 v \sin \frac{2 \pi}{3 v}+\sqrt{3}
$$

is the perimeter and

$$
F=\frac{\sqrt{3}}{4}+\frac{v}{2} \sin \frac{4 \pi}{3 v}
$$

is the area of the convex $(v+1)$-gon $M X_{1} X_{2} \ldots X_{v-1} N$.
Received by the editors March 16, 1970.

Let $P[v]$ be that polyhedron which is the convex hull of two such $(v+1)$-gons having the edge $M N$ in common and lying in two different planes. Suppose, for instance, the angle between these planes is $2 \phi, 0<\phi<\pi / 2$, with $\sin \phi=v^{-2}$. Let $M Y_{1} Y_{2} \ldots Y_{v-1} N$ denote the $(v+1)$-gon congruent to $M X_{1} X_{2} \ldots X_{v-1} N$. Then the polyhedron $P[v]$ has edge length

$$
\begin{aligned}
L(P[v]) & =2 U-\sqrt{3}+\sum_{j=1}^{v-1} X_{j} Y_{j} \\
& =\sqrt{3}+4 v \sin \frac{2 \pi}{3 v}+\sum_{j=1}^{v-1} X_{j} Y_{j}
\end{aligned}
$$

and surface area

$$
\begin{aligned}
A(P[v])=2 F+2 \sin \frac{2 \pi}{3 v}\left[\frac{X_{1} Y_{1}}{2} \cos \phi_{1}\right. & +\frac{X_{1} Y_{1}+X_{2} Y_{2}}{2} \cos \phi_{2} \\
& +\cdots+\frac{X_{v-2} Y_{v-2}+X_{v-1} Y_{v-1}}{2} \cos \phi_{v-1} \\
& \left.+\frac{X_{v-1} Y_{v-1}}{2} \cos \phi_{v}\right]
\end{aligned}
$$

Here $2 \phi_{j}(j=1,2, \ldots, v)$ denotes the angle between the line $X_{j-1} X_{j}$ and the line $Y_{j-1} Y_{j}$ with $X_{0} \equiv Y_{0} \equiv M, X_{v} \equiv Y_{v} \equiv N$ and $\phi_{j}=0$ if $X_{j-1} X_{j}$ and $Y_{j-1} Y_{j}$ are parallel.
Since $\phi_{j} \leq \phi$ for $j=1,2, \ldots, v$ and $\phi_{j} \neq \phi$ for at least some $j, 1 \leq j \leq v$, we have:

$$
A(P[v])>\frac{\sqrt{3}}{2}+v \sin \frac{4 \pi}{3 v}+2 \sin \frac{2 \pi}{3 v} \cos \phi \sum_{j=1}^{v-1} X_{j} Y_{j} .
$$

On the other hand, since for $\phi>0$ not all ϕ_{j} can be zero:

$$
A(P[v])<\frac{\sqrt{3}}{2}+v \sin \frac{4 \pi}{3 v}+2 \sin \frac{2 \pi}{3 v} \sum_{j=1}^{v-1} X_{j} Y_{j} .
$$

Now, for $j=1,2, \ldots, v-1$:

$$
\begin{aligned}
X_{j} Y_{j} & =2 \sin \phi\left[\frac{1}{2}+\sin \left(\frac{4 \pi j}{3 v}-\frac{\pi}{6}\right)\right] \\
& =\sin \phi\left[1+\sqrt{3} \sin \frac{4 \pi j}{3 v}-\cos \frac{4 \pi j}{3 v}\right] .
\end{aligned}
$$

Hence

$$
\sum_{j=1}^{v-1} X_{j} Y_{j}=\sin \phi\left[v+\left(2 \sin \frac{2 \pi}{3 v}\right)^{-1}\left\{3 \sin \frac{2 \pi(v-1)}{3 v}-\sqrt{3} \cos \frac{2 \pi(v-1)}{3 v}\right\}\right] .
$$

Since $\sin \phi=v^{-2}$, it follows that

$$
\sum_{j=1}^{v-1} X_{j} Y_{j}=v^{-1}+\left(2 v^{2} \sin \frac{2 \pi}{3 v}\right)^{-1}\left[3 \sin \frac{2 \pi(v-1)}{3 v}-\sqrt{3} \cos \frac{2 \pi(v-1)}{3 v}\right]
$$

Therefore

$$
Q_{1}(v)<\frac{L(P[v])^{2}}{A(P[v])}<Q_{2}(v)
$$

with

$$
\lim _{v \rightarrow \infty} Q_{1}(v)=\lim _{v \rightarrow \infty} Q_{2}(v)=\frac{\left(\sqrt{3}+\frac{8 \pi}{3}\right)^{2}}{\frac{\sqrt{3}}{2}+\frac{4 \pi}{3}}=2\left(\sqrt{3}+\frac{8 \pi}{3}\right) .
$$

Consequently

$$
\lim _{v \rightarrow \infty} \frac{L(P[v])}{A(P[v])}=2\left(\sqrt{3}+\frac{8 \pi}{3}\right)
$$

and (2) is proved.
According to [3], the functional L can be defined on the set C^{3} of all three-dimensional convex bodies. In [3] the set of convex bodies $C \in C^{3}$ with $L(C)<\infty$ is denoted by C_{1}^{3}. Now, suppose

$$
\alpha\left(P^{3}\right)=2\left(\sqrt{3}+\frac{8 \pi}{3}\right)=\kappa .
$$

Then the proof of (2) would imply that $\alpha\left(P^{3}\right)$ is attained by a convex body $\bar{C} \in C_{1}^{3} \backslash P^{3}$. (\bar{C} has evidently no inner points.) In [4, pp. 155-156], Fejes Tóth conjectured that $\alpha\left(P^{3}\right)$ is probably not attained by a convex polyhedron.

Question. Does there exist a convex body $C \in C_{1}^{3}$ with $L(C)^{2} / A(C)<\kappa$?

References

1. O. Aberth, An isoperimetric inequality, etc., Proc. London Math. Soc. (3) 13 (1963), 322-336.
2. A. S. Besicovitch, A cage to hold a unit-sphere, Proc. of Symposia in pure Mathematics, Convexity, VII (1963), 19-20.
3. H. G. Eggleston, B. Grünbaum and V. Klee, Some semicontinuity theorems for convex polytopes and cell-complexes, Comment. Math. Helv. 39 (1964), 165-188.
4. L. Fejes Tóth. Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verlag, Berlin, 1953.
5. M. Kömhoff, An isoperimetric inequality for convex polyhedra with triangular faces, Canad. Math. Bull. 11 (1968), 723-727.

University of Toronto,
Toronto, Ontario

