
Canad. J. Math. Vol. 75 (4), 2023 pp. 1147–1175
http://dx.doi.org/10.4153/S0008414X22000360
© The Author(s), 2022. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

On the general dyadic grids on Rd

Theresa C. Anderson and Bingyang Hu
Abstract. Adjacent dyadic systems are pivotal in analysis and related fields to study continuous
objects via collections of dyadic ones. In our prior work (joint with Jiang, Olson, and Wei), we
describe precise necessary and sufficient conditions for two dyadic systems on the real line to be
adjacent. Here, we extend this work to all dimensions, which turns out to have many surprising
difficulties due to the fact that d + 1, not 2d , grids is the optimal number in an adjacent dyadic system
in R

d . As a byproduct, we show that a collection of d + 1 dyadic systems in R
d is adjacent if and only

if the projection of any two of them onto any coordinate axis are adjacent on R. The underlying geo-
metric structures that arise in this higher-dimensional generalization are interesting objects them-
selves, ripe for future study; these lead us to a compact, geometric description of our main result.
We describe these structures, along with what adjacent dyadic (and n-adic, for any n) systems look
like, from a variety of contexts, relating them to previous work, as well as illustrating a specific exa.

1 Introduction

The purpose of this paper is to give an optimal description of adjacent dyadic systems
(or more generally, adjacent n-adic systems) in R

d . Dyadic systems are ubiquitous in
harmonic analysis, as well as many other fields. Oftentimes, one wants to understand
a continuous operator or object via its dyadic counterparts; our goal is to say, in an
optimal and precise fashion, exactly what these dyadic counterparts are.

The study of continuous objects via dyadic ones is a central theme in analysis
and its application to many different areas of mathematics. For instance, dyadic
decompositions and partitions underlie the study of singular integral operators and
maximal functions (among others), weight and function classes, partial differential
equations, and number theory; our bibliography lists a few out of many references
here. In our recent paper [2] joint with Jiang, Olson, and Wei, we gave a necessary
and sufficient condition on characterizing the adjacent n-adic systems on R. Here,
we generalize these results to higher dimensions. Although we use ideas from [2], the
construction of the analogous objects in R

d is not trivial; indeed, we have to adapt our
techniques from [2] to a way that is compatible with the underlying lattice structure
inherent in the construction of adjacent n-adic systems in R

d .
Let us begin with the definition of n-adic systems in R

d , which is our main object
of study.
Definition 1.1 Given n ∈ N, n ≥ 2, a collection G of left-closed and right-open cubes
on R

d (that is, a collection of cubes in R
d of the form
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1148 T. C. Anderson and B. Hu

[a1 , a1 + �) × ⋅ ⋅ ⋅ × [ad , ad + �), a i ∈ R, i = 1, . . . , d ,

where � > 0 is the sidelength of such a cube) is called a general dyadic grid with base n
(or n-adic grid) if the following conditions are satisfied:

(i) For any Q ∈ G, its sidelength �(Q) is of the form nk , k ∈ Z.
(ii) Q ∩ R ∈ {Q , R,∅} for any Q , R ∈ G.

(iii) For each fixed k ∈ Z, the cubes of a fixed sidelength nk form a partition of Rd .
In particular, if n = 2, we also refer to such a collection a dyadic grid, which is usually
denoted by D.

The defining property of such a structure is a certain dyadic covering theorem. The
one that we use is due to Conde Alonso [5], and is optimal in terms of the number of
grids required.

Theorem 1.2 [5, Theorem 1.1] There exist d + 1 dyadic grids D1 , . . . ,Dd+1 of R
d

such that every Euclidean ball B (or every cube) is contained in some cube Q ∈
d+1
⋃
i=1

Di

satisfying that diam(Q) ≤ Cd diam(B). The number of dyadic systems is optimal.

We make a remark that the optimal number d + 1 in Theorem 1.2 plays an important
role throughout this paper. Motivated by Theorem 1.2, we introduce the following
definition of adjacent n-dic systems in R

d , our main object of study.

Definition 1.3 Given d + 1 many G1 , . . . ,Gd+1 n-adic grids, we say that they are
adjacent if, for any cube Q ⊆ R

d (or any ball), there exists i ∈ {1, . . . , d + 1}, and R ∈ Gi ,
such that:
(1) Q ⊆ R;
(2) �(R) ≤ Cd ,n�(Q), where Cd ,n is a dimension constant that only depends on d

and n.

This characterizing property of adjacent dyadic systems is sometimes referred to
as Mei’s lemma due to the work [13] on the torus (hence, the definition we use is
sometimes called the optimal Mei’s lemma). This property has been widely explored
in a wide array of contexts and settings (see [9, 12, 14]), and has a long history; see
the introduction of [2] and also the monographs [6, 11] for details. The applications of
Mei’s lemma are vast; adjacent dyadic systems are crucially used in the area of sparse
domination (initiated by Lerner to prove the A2 theorem in [10]; see also [4, 7] among
others), functional analysis [8, 12, 14], and measure theory [3].

Note that Conde Alonso’s theorem only guarantees the existence of a collection
of adjacent dyadic systems in R

d ; it does not say how to construct such systems in
general nor how to tell if a system is adjacent. Inspired by [2], we ask “what are the
necessary and sufficient conditions so that a given collection of d + 1 n-adic grids in R

d

is adjacent?”
In [2], we give a complete answer to this question on the real line, which we will

briefly review in Section 2. In order to extend these results in [2] to higher dimensions,
we must deal with how d + 1 n-adic grids, instead of only 2, interact with each other.
The main idea to overcome such a difficulty is to work on a certain quantified version
of the n-adic systems. We introduced a one-dimensional analog of this in [2]; however,
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extending this concept to higher dimensions requires many new ideas. The geometric
structures that we define to quantify adjacency collapse into much simpler concepts
on the real line, and we provide perspective on this throughout the paper.

1.1 Statement of the main result

Suppose we are given d + 1 n-adic grids G1 , . . . ,Gd+1 in R
d . Here is how to verify

whether they are adjacent or not.

Algorithm 1.4 Step I: For each i ∈ {1, . . . , d + 1}, write

Gi ∶= G(δ i ,La⃗i ),

where
(a) δ i ∈ Rd is called the initial position of Gi ;
(b) La⃗i ∶ N→ N

d is the called the location function of Gi , where a⃗i ∈Md×∞(Zn) is
an infinite matrix with d rows, infinitely many columns, and entries belonging to
Z

n .
Here, the term G(δ i ,La⃗i ) is referred as the representation of the n-adic grid G (see
Section 3 for more detailed information about this concept).

Step II: Apply the following theorem, which is the main result of this paper.

Theorem 1.5 Let d , n, δ i , and a⃗i be defined as above. Then the n-adic systems
G(δ1 ,La⃗1), . . . ,G(δd+1 ,La⃗d+1) are adjacent if and only if the following conditions hold:
(1) For any �1 , �2 ∈ {1, . . . , d + 1} where �1 ≠ �2, and s ∈ {1, . . . , d}, (δ�1)s − (δ�2)s is

n-far, that is, there exists some constant C(�1 , �2 , s) > 0, such that for any m ≥ 0
and k ∈ Z, there holds

∣(δ�1)s − (δ�2)s −
k

nm ∣ ≥
C(�1 , �2 , s)

nm .

(2) For any k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, and s ∈ {1, . . . , d}, there holds

0 < lim inf
j→∞

1 ≤ lim sup
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
< 1.

Here and in the sequel, we use (δ)s to denote the sth component of a vector δ ∈ Rd .

Note that Theorem 1.5 is sharp, in the sense that the number of the dyadic systems
is optimal. The proof of the above theorem uses the idea of representation of n-adic
grids, which was introduced in [2]. Moreover, combining with the one-dimensional
result (see [2, Theorem 3.8] or Theorem 2.2), Theorem 1.5 is equivalent to the following
result.

Theorem 1.6 The collection of n-adic systems G1 , . . . ,Gd+1 is adjacent if and only if for
any j ∈ {1, . . . , d} and k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, Pj(Gk1) and Pj(Gk2) are adjacent
on R.

Here, Pj is the orthogonal projection onto the jth axis of Rd , and for any n-adic grid
G, Pj(G) is defined to be the collection of all Pj(Q), Q ∈ G.

https://doi.org/10.4153/S0008414X22000360 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000360


1150 T. C. Anderson and B. Hu

Remark 1.7 Recall that in the classical approach of constructing an adjacent system
in R

d , what we usually do is first take any two adjacent dyadic systems (on R) on each
coordinate axis, and then take the Cartesian products of these dyadic systems. Note
that this will give us a collection of 2d adjacent dyadic systems in R

d . We would like
to point out that Corollary 1.6 does not follow from this classical approach. First of
all, our result is optimal, in the sense that the number of the n-adic systems is d + 1,
rather than 2d ; moreover, our result provides a necessary and sufficient condition to
tell whether a collection of d + 1 n-adic grids are adjacent or not, rather than a single
construction.

Another interesting question to ask is whether there is a more inherent geometric
approach to study the adjacency of the systems of the n-adic grids. More precisely,
can we generalize the one-dimensional result (see Theorem 2.2) in a more parallel
way, that respects the underlying geometric structure present in d + 1 adjacent dyadic
systems?

In the second part of this paper, we give an affirmative and precise answer to the
above question. The key idea is to introduce the so-called fundamental structures of a
collection of d + 1 n-adic grids in R

d . These basic structures allow us to generalize the
one-dimensional result (see Theorem 2.2) in a more heuristic way (see Theorem 8.1),
whereas Theorem 1.5 is much less obviously connected with the geometry of adjacent
dyadic systems. The intuition for introducing these structures comes from a first,
natural attempt to generalize the results in [2] to R

d (see Remark 7.10 and Section 8.1).
Furthermore, all of these constructions are illustrated by a concrete example, which
is elaborated on in detail before the proof of the main result (see Theorem 8.1). This
allows the reader to connect the underlying geometry with the results and examples
in [2] in a concrete way.

The novelty in this paper is that we generalize the results in [2] via two different
ways that retain the key lattice structure implicit in the proof of [5] for d + 1 grids.
These generalizations are nontrivial, and motivate us to look at the underlying lattice
structures inherent in the construction of d + 1 grids and to expand them in a manner
adaptable to the constructions underlying the main result (Theorem 3.8) in [2]. These
constructions allow us to better connect the geometry of the lattice with the arithmetic
properties outlined in Theorem 8.1, and likely will have applications to a variety of
other problems in dyadic harmonic analysis.

The outline of this paper is as follows. Part I begins with a brief reminder of our
one-dimensional results, followed by relevant definitions to state and prove our main
theorem on necessary and sufficient conditions for adjacency—this statement mirrors
the one-dimensional results only in notation, and does not shed light at the interesting
geometric interactions taking place. Therefore, Part II is devoted to studying these.
Part II fully describes the rich geometry underlying the main result, including the
fundamental structures which we define. These descriptions not only motivate a
restating of our main result that is geometrically driven, but provide a clear (and
unifying) relationship between our one-dimensional result and higher dimensions.
They also allow us to comment on the uniformity of such representations. Finally, we
illustrate everything with a concrete example, first introduced in Part I and revisited
in Part II.
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Part 1. Background and the proof of the main result
In the first part of this paper, we first make a short review of the one-dimensional

results, which were considered in [2]. Then, using the idea of representation of n-adic
grids, we prove Theorem 1.5. Finally, we give an example on how to apply our main
result.

2 One-dimensional results and some application

Let us make a brief review of the case d = 1, which was considered in our early work
[2]. The main question that was under the consideration in [2] is the following “Given
two n-adic grids G1 and G2 on R, what is the necessary and sufficient condition so that
they are adjacent?”

We start with recalling the following definition.

Definition 2.1 A real number δ is n-far if there exists C > 0 such that

∣δ − k
nm ∣ ≥

C
nm , ∀m ≥ 0, k ∈ Z,(2.1)

where C may depend on δ but independent of m and k.

The key idea in [2] to study this problem is to quantify each n-adic grids. More
precisely, for any n-adic system G on R, we can find a number δ ∈ R, and an infinite
sequence a ∶= {a0 , a1 , . . . , a j , . . . } ∈ {0, . . . , n − 1}∞, such that G can be represented
as G(δ,La), where La ∶ N→ N is called the location function associated to a, which is
defined as

La( j) ∶=
j−1

∑
k=0

a i nk , j ≥ 1,

and La(0) = 0.
Given two n-adic systems G1 and G2, let us write them as G1 = G(δ1 ,La1) and G2 =

G(δ2 ,La2). Here is the main result in [2].

Theorem 2.2 [2, Theorem 3.8] The n-adic grids G(δ1 ,La1) and G(δ2 ,La2) are adja-
cent if and only if:
(1) δ1 − δ2 is n-far.
(2) There exists some 0 < C1 ≤ C2 < 1, such that

0 < C1 = lim inf
j→∞

∣La1( j) −La2( j)
n j ∣ ≤ lim sup

j→∞
∣La1( j) −La2( j)

n j ∣ = C2 < 1.

Remark 2.3 To check whether δ1 − δ2 is n-far or not, it suffices to check whether
T ({δ1 − δ2}) is finite or not, where {⋅} indicates distance to the nearest integer, and
for any δ ∈ [0, 1), T(δ) is defined to be the maximal length of consecutive 0’s or
(n − 1)’s in the base n representation of δ (see [2, Theorem 2.8]).

Although the representation of an n-adic grid is indeed not unique (see the remark
after [2, Definition 3.11] for the case d = 1, or see Proposition 3.3 for the general case),
Theorem 2.2 still enjoys some uniformness property.
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Theorem 2.4 [2, Theorem 3.14] Under the same assumption of Theorem 2.2, let
G(δ′1 ,La′1) andG(δ′2 ,La′2) be some other representations ofG1 andG2, respectively. Then
either

lim inf
j→∞

∣
La′1( j) −La′2( j)

n j ∣ = C1 and lim sup
j→∞

∣
La′1( j) −La′2( j)

n j ∣ = C2

or

lim inf
j→∞

∣
La′1( j) −La′2( j)

n j ∣ = 1 − C2 and lim sup
j→∞

∣
La′1( j) −La′2( j)

n j ∣ = 1 − C1 .

With the help of Theorem 1.6, we can easily generalize Theorem 2.4 to higher
dimensions.

Corollary 2.5 Under the same assumption of Theorem 1.5, let

G(δ′1 ,La⃗′1), . . . ,G(δ′d+1 ,La⃗′d+1
)

be some other representations of G1 , . . . ,Gd+1, respectively. Moreover, for each k1 , k2 ∈
{1, . . . , d + 1} and s ∈ {1, . . . , d}, denote

D1(k1 , k2 , s) ∶= lim inf
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
,

D2(k1 , k2 , s) ∶= lim sup
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
,

and D′1(k1 , k2 , s), D′2(k1 , k2 , s) similarly, then either

D′1(k1 , k2 , s) = D1(k1 , k2 , s) and D′2(k1 , k2 , s) = D2(k1 , k2 , s)

or

D′1(k1 , k2 , s) = 1 − D2(k1 , k2 , s) and D′2(k1 , k2 , s) = 1 − D1(k1 , k2 , s).

Proof Corollary 2.5 is an easy consequence of Theorems 1.5 and 1.6, and we would
like to leave the detail to the interested reader. ∎

3 Representation of n-adic grids

Let us extend the concept of the representation of n-adic grids to higher dimension.
The setting is as follows.
(1) δ ∈ Rd , in particular, δ should be thought as a vertex of some cube belonging to

the zeroth generation, and we may think it as the “initial point” of our n-adic
system.

(2) An infinite matrix

a⃗ ∶= {a⃗0 , . . . , a⃗ j , . . . } ,(3.1)

where a⃗ j ∈ {0, 1, . . . , n − 1}d , j ≥ 1.
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(3) The location function associated to a⃗:

La⃗ ∶ N�→ Z
d ,

which is defined by

La⃗( j) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j−1
∑
i=0

n i a⃗ i , j ≥ 1.

0⃗, j = 0.

For a vector δ ∈ Rd , we use the notation (δ)i , 1 ≤ i ≤ d, refers to the ith component
of δ. Note that we will frequently be working with sets of d vectors in R

d , which
we label δ1 , . . . , δd . Therefore, the parentheses distinguish the selection from the
components: (δ i)s is the sth component of the vector δ i .

Definition 3.1 Let δ ∈ Rd , a⃗, and La⃗ be defined as above. Let G(δ,La⃗) be the
collection of the following cubes:

(1) For m ≥ 0, the mth generation of G(δ,La⃗) is defined as

G(δ)m ∶= G(δ,La⃗)m ∶=
⎧⎪⎪⎨⎪⎪⎩
[(δ)1 +

k1

nm , (δ)1 +
k1 + 1
nm ) × ⋅ ⋅ ⋅

× [(δ)d +
kd

nm , (δ)d +
kd + 1

nm ) ∣(k1 , . . . , kd) ∈ Zd
⎫⎪⎪⎬⎪⎪⎭

.

We make a remark and sometimes we drop the dependence of the location
function here, since location function only contributes to the negative genera-
tions.

(2) For m < 0, the mth generation is defined as

G(δ,La⃗)m ∶=
⎧⎪⎪⎨⎪⎪⎩
[(δ)1 + [La⃗(−m)]1 +

k1

nm , (δ)1 + [La⃗(−m)]1 +
k1 + 1
nm ) × ⋅ ⋅ ⋅

× [(δ)d + [La⃗(−m)]d +
kd

nm , (δ)d + [La⃗(−m)]d +
kd + 1

nm ) ∣(k1 , . . . , kd) ∈ Zd
⎫⎪⎪⎬⎪⎪⎭

.

Or equivalently:

(1) For m ≥ 0, the vertices of all mth generation are defined as

A(δ)m ∶= A(δ,La⃗)m ∶= {δ + k⃗
nm , k⃗ ∈ Zd} .

(2) For m < 0, the vertices of all mth generation are defined as

A(δ,La⃗)m ∶= {δ +La⃗(−m) + k⃗
nm , k⃗ ∈ Zd} .
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Note that in the above definition, the term δ +La⃗(−m) can be interpreted as the
location of the “initial point” (that is, δ ∈ A(δ,La⃗)0) after choosing n-adic parents
(with respect to the zeroth generation) (−m) times.

Proposition 3.2 G(δ,La⃗) is an n-adic grid in R
d .

Proof If we restrict the grid to each axis, we obtain an n-adic grid with respect to that
axis [2]. Since cubes are a one-parameter family, one can easily see (by contradiction)
that cubes of a given level tile the space, two cubes are either contained one in the
other or disjoint, and each cube has nd children (each with 1/nd of its parent’s size)
and exactly one parent. ∎

Proposition 3.3 Given any n-adic grid G, we can find a δ ∈ Rd and an infinite matrix
a⃗ = {a⃗0 , . . . , a⃗ j , . . . }, where a⃗ j ∈ {0, . . . , d − 1}d , j ≥ 1, such that

G = G(δ,La⃗).

However, this representation may not be unique.

Proof The proof of this result is an easy modification of [2, Proposition 4.10],
and hence we leave the detail to the interested reader. While the fact that such a
representation is not unique is also straightforward, one example in R

d would be

G ((0, 0),La⃗1) = G ((2, 2) ,La⃗2) ,

where

a⃗1 = (
1 0 0 0 . . .
1 0 0 0 . . .) and a⃗2 = (

0 n − 1 n − 1 n − 1 . . .
0 n − 1 n − 1 n − 1 . . .) .

∎

4 Proof of the main result

In this section, we prove the main result Theorem 1.5.

4.1 Necessity

Suppose G1 = G(δ1 ,La⃗1), . . . ,Gd+1 = G(δd+1 ,La⃗d+1) are adjacent. We prove the neces-
sary part by contradiction.

Assume condition (a) fails, that is, there exists some �1 , �2 ∈ {1, . . . , d + 1}with �1 ≠
�2 and s ∈ {1, . . . , d}, such that for each N1 ≥ 1, there exists some m1 ≥ 0 and K ∈ Z,
such that

∣(δ�1)s − (δ�2)s −
K

nm1
∣ < 1

N1nm1
,

which implies that the distance between the hyperplane {(x)s = (δ�1)s} and the
hyperplane {(x)s = (δ�2)s + K/nm1} is less than 1/(N1nm1). On the other hand, note
that

{(x)s = (δ�1)s} ⊂ b [G�1 ,m1]
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Figure 1: p1 , p2 , the hyperplane {(x)1 = (δ1)1} (red part), the hyperplane
{(x)1 = (δ2)1 + K/nm1} (blue part), the line L ∶= {(x)2 = (δ3)2} ∩ ⋅ ⋅ ⋅ ∩ {(x)d = (δd+1)d},
and the cube Q containing both p1 and p2 .

and

{(x)s = (δ�2)s +
K

nm1
} ⊂ b [G�2 ,m1] ,

where b [G�1 ,m1] is the union of all the boundaries of the cubes in G�1 with sidelength
1/nm1 , and similarly for the term b [G�2 ,m1].

Now, the idea is to find two sufficiently closed points on the intersection of the
boundaries of these n-adic grids. Without loss of generality, let us assume s = �1 = 1
and �2 = 2. Now, let us consider the points

p1 ∶= {(x)1 = (δ1)1} ∩ {(x)2 = (δ3)2} ∩ ⋅ ⋅ ⋅ ∩ {(x)d = (δd+1)d}

and

p2 ∶= {(x)1 = (δ2)1 +
K

nm1
} ∩ {(x)2 = (δ3)2} ∩ ⋅ ⋅ ⋅ ∩ {(x)d = (δd+1)d}},

which satisfy the following properties:

(a) p1 ∈ b [G1,m1] ∩
d+1
⋂
t=3

b [Gt ,m1] and p2 ∈
d+1
⋂
t=2

b [Gt ,m1].
(b) dist(p1 , p2) = ∣(δ1)1 − (δ2)1 − K/nm ∣ < 1/(N1nm1).

Note that property (b) above allows us to choose an open cube Q of radius
1/(N1nm1) that containing both p1 and p2, whereas property (a) asserts that if there is
a dyadic cube D ∈ G� , � ∈ {1, . . . , d + 1} covering Q, then �(D) > 1/nm1 , and hence

�(D) > N1�(Q).

This will contradict to the second condition in Definition 1.3 if we choose N1 suffi-
ciently large (see Figure 1).
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Next, expecting a contradiction again, we assume (b) fails. The proof for this part
is very similar to the previous one. Let us consider two different cases.

Case I: There exists some k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, and s ∈ {1, . . . , d}, such
that

lim inf
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
= 0.(4.1)

Again, for simplicity, we may assume s = k1 = 1 and k2 = 2. By (4.1), for any ε > 0, there
exists some j1 sufficiently large, such that

∣[La⃗1( j1)]1 − [La⃗2( j1)]1∣ < ε ⋅ n j1 ,

which implies that

∣[δ1 +La⃗1( j1)]1 − [δ2 +La⃗2( j1)]1∣ < 2ε ⋅ n j1 ,

since we assume j1 is sufficiently large. Now, we can exactly follow the idea in part (a)
now. More precisely, we define

q1 ∶= {(x)1 = [δ1 +La⃗1( j1)]1} ∩
d
⋃
t=2
{(x)t = [δt+1 +La⃗t+1( j1)]t}

and

q2 ∶=
d
⋃
t=1
{(x)t = [δt+1 +La⃗t+1( j1)]t} ,

which enjoy similar properties as p1 and p2:

(a) q1 ∈ b [G1,− j1] ∩
d+1
⋂

k=3
b [Gk ,− j1] and q2 ∈

d+1
⋂

k=2
b [Gk ,− j1].

(b) dist(q1 , q2) < 2ε ⋅ n j1 .
Then desired contradiction will follow by taking an open cube with sidelength 2ε ⋅ n j1

containing both q1 and q2, where ε is sufficiently small.
Case II: There exists some k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, and s ∈ {1, . . . , d}, such

that

lim sup
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
= 1.(4.2)

The proof for the second case is an easy modification of the first one. Indeed, (4.2)
implies that for any ε > 0, there exists some j2 sufficiently large, such that either

∣[δk1 +La⃗k1
( j2)]s − [δk2 +La⃗k2

( j2) + n j e⃗s]s ∣ < ε ⋅ n j2

or

∣[δk1 +La⃗k1
( j2)]s − [δk2 +La⃗k2

( j2) − n j e⃗s]s ∣ < ε ⋅ n j2

holds, where in the above estimates, e⃗s refers to the stand unit vector in R
d with the

sth entry being 1. The rest of the proof is the same as Case I.
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4.2 Sufficiency

Suppose the conditions (a) and (b) hold, that is,

(1) For any �1 , �2 ∈ {1, . . . , d + 1} where �1 ≠ �2, and s ∈ {1, . . . , d}, there exists some
constant C(�1 , �2 , s) > 0, such that for any m ≥ 0 and k ∈ Z, there holds

∣(δ�1)s − (δ�2)s −
k

nm ∣ ≥
C(�1 , �2 , s)

nm .(4.3)

(2) For any k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, and s ∈ {1, . . . , d}, there holds

0 < lim inf
j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
≤ lim sup

j→∞

������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
< 1.

(4.4)

Denote

C1 ∶= min
1≤�1≠�2≤d+1,1≤s≤d

C(�1 , �2 , s), D1 ∶= min
1≤k1≠k2≤d+1,1≤s≤d

D1(k1 , k2 , s),

and

D2 ∶= 1 − max
1≤k1≠k2≤d+1,1≤s≤d

D2(k1 , k2 , s),

where the quantities D1(k1 , k2 , s) and D2(k1 , k2 , s) are defined in Corollary 2.5. Note
that C1 , D1 , D2 > 0 by our assumption (4.4). Moreover, by (4.4), there exists some
N ∈ N, such that for any k1 , k2 ∈ {1, . . . , d + 1}, k1 ≠ k2, s ∈ {1, . . . , d}, and j ≥ N , there
holds

D1

2
<
������������

[La⃗k1
( j)]s − [La⃗k2

( j)]s
n j

������������
< 1 − D2

2
.(4.5)

Recall that the goal is to show that the collection G1 = G(δ1 ,La⃗1), . . . ,Gd+1 =
G(δd+1 ,La⃗d+1) is adjacent in R

d . Take some C > 0 sufficiently small, such that

0 < C < min{C1 , D1

4
, D2

4
, 1

10
} .

Now, for any cube Q in R
d , let m0 ∈ Z such that

C
nm0+1 ≤ �(Q) < C

nm0
.

We consider several cases.
Case I: m0 > 0. Let us show that Q is contained in some cube in Gk ,m0 for some

k ∈ {1, . . . , d + 1}. We argue by contradiction. If Q is not contained in any cubes in
Gk ,m0 for all k = 1, . . . , d + 1. Then, for each k ∈ {1, . . . , d + 1}, there exists some jk ∈
{1, . . . , d}, such that

Pjk(Q) ∩ Pjk(Ak ,m0) ≠ ∅,
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where we recall Ak ,m0 is the collection of all the vertices of the cubes in Gk ,m0 . By
pigeonholing, there exists some �1 , �2 ∈ {1, . . . , d + 1} with �1 ≠ �2, but j∗ ∶= j�1 = j�2 ,
such that

Pj∗(Q) ∩ Pj∗(A�1 ,m0), Pj∗(Q) ∩ Pj∗(A�2 ,m0) ≠ ∅,

which implies that there exists some K1 , K2 ∈ Z, such that

∣(δ�1) j∗ +
K1

nm0
− (δ�2) j∗ −

K2

nm0
∣ ≤ �(Q) < C

nm0
< C(�1 , �2 , j∗)

nm0
,

which contradicts to (4.3).
Case II: m0 ≤ −N . Again, we wish to show that Q is contained in some cubes in

Gk ,m0 for some k ∈ {1, . . . , d + 1} and we prove it by contradiction. Following the
argument in Case I above, we see that there exists some k1 , k2 ∈ {1, . . . , d + 1} with
k1 ≠ k2 and j∗ ∈ {1, . . . , d}, such that

Pj∗(Q) ∩ Pj∗(Ak1 ,m0), Pj∗(Q) ∩ Pj∗(Ak2 ,m0) ≠ ∅.

This implies that there exists some K3 , K4 ∈ Z, such that

∣[δk1 +La⃗k1
(−m0)] j∗ +

K3

nm0
− [δk2 +La⃗k2

(−m0)] j∗ −
K4

nm0
∣ < C

nm0
.

Note that since we can always choose N sufficiently large, we can indeed reduce the
above estimate to

∣[La⃗k1
(−m0)] j∗ +

K3

nm0
− [La⃗k2

(−m0)] j∗ −
K4

nm0
∣ < 2C

nm0
,

which implies that
�������������

[La⃗k1
(−m0)] j∗ − [La⃗k2

(−m0)] j∗

n−m0
+ (K3 − K4)

�������������
< 2C .(4.6)

We claim that K3 − K4 ∈ {−1, 0, 1}. Indeed, by the choice of C, the right-hand side
of the above estimate is bounded by 1/5; on the other hand, by the definition of the
location function, we have

[La⃗k1
(−m0)] j∗ − [La⃗k2

(−m0)] j∗

n−m0
∈ (−1, 1).

The desired claim then follows from these observations and the fact that K3 − K4 is an
integer. Therefore, the estimate (4.6) implies either

�������������

[La⃗k1
(−m0)] j∗ − [La⃗k2

(−m0)] j∗

n−m0

�������������
< 2C < D1

2

or
�������������

[La⃗k1
(−m0)] j∗ − [La⃗k2

(−m0)] j∗

n−m0

�������������
> 1 − 2C > 1 − D2

2
,

which contradicts (4.6).
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Case III: −N < m0 ≤ 0. Indeed, we can “pass” the third case to the second case, by
taking a cube Q′ containing Q with the sidelength is nN . Applying the second case to
Q′, we find that there exists some D ∈ Gk for some k ∈ {1, . . . , d + 1}, such that Q′ ⊂ D
and �(D) ≤ C4�(Q′), which clearly implies
(1) Q ⊂ D.
(2) �(D) ≤ C4nN�(Q).

The proof is complete. ∎

5 An illustrated example

We now take some time to illustrate the effects of this theorem with a concrete
example. To begin with, let δ1 = ( 1

3 , 1
3) , δ2 = ( 2

3 , 2
3), δ3 = ( 1

5 , 1
5), d = 2, and n = 2.

Moreover, define the location functions via

a⃗1 ∶= (
1 0 1 0 . . .
1 0 1 0 . . .) ,

a⃗2 ∶= (
0 1 0 1 . . .
0 1 0 1 . . .) ,

and

a⃗3 ∶= (
0 0 0 0 . . .
0 0 0 0 . . .) .

We will show that the grids G1 = G(δ1 ,La⃗1), G2 = G(δ2 ,La⃗2), and G3 = G(δ3 ,La⃗3)
form adjacent dyadic systems in R

2. Note that this example is optimal, in the sense
that any two dyadic systems are not adjacent in R

2.
We start by verifying Condition (i) in Theorem 1.5, which is straightforward.

Clearly, it suffices to show the numbers
2
3
− 1

3
= 1

3
, 1

3
− 1

5
= 2

15
, and 2

3
− 1

5
= 7

16
are 2-far (in the sense of Definition 2.1). This is an easy exercise due to [2, Proposition
2.4] (see also [1, Lemma 3]).

While for the second condition, let us compute all the location functions. Indeed,
the cases j = 1, 2 provide the key for the computations.

δ1 +La⃗1( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 2 j

3 , 2 j

3 ) , j even,

( 2 j+1

3 , 2 j+1

3 ) , j odd,
δ2 +La⃗2( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 2 j+1

3 , 2 j+1

3 ) , j even,

( 2 j

3 , 2 j

3 ) , j odd,

and

δ3 +La⃗3( j) ≡ ( 1
5

, 1
5
) , j ≥ 1.

The second condition can be easily verified, and we would like to leave the detail to
the interested reader.
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Part 2. A geometric approach
In the second part of this paper, we provide an alternative way, based on the

underlying geometry of n-adic systems, to generalize the one-dimensional result
Theorem 2.2. This approach is much more intuitive and unifies the proof of both the
cases d = 1 and d > 1.

6 Notations

For A, B ⊂ R
d , we write the distance between them by

dist(A, B) ∶= inf
x∈A, y∈B

∥x − y∥Rd .

Definition 6.1 Let x ∈ Rd and A ⊆ R
d , and the natural deviation between x and A is

defined to be
dev(A, x) ∶= max

1≤k≤d
diste⃗k(A, x),

where diste⃗k(A, x) denotes the distance between x and A along the direction e⃗k .

Remark 6.2 Let us make some remarks for the above definition.
(1) The word “natural” refers to the fact that we take the natural basis

{e⃗1 , . . . , e⃗d}

in the definition. In general, one can replace {e⃗1 , . . . , e⃗d} by any other basis inR
d ;

however, it is enough to take the natural basis in this paper.
(2) The word “deviation” refers to the fact that we take the maximal directional

distance along all the directions e⃗1 , . . . , e⃗d .
(3) In our application later, A will be either a corner set (see Definition 7.1), a

modulated corner set (see Definition 7.17), or a union of them.

Let us include an easy example for these definitions (see Figure 2). In this example,
we consider the case d = 2, x is the point ( 1

2 , 3
10), and A is the red part (which we will

refer as a corner set later). Then it is clear that

dist(x , A) = 3
10
− 1

10
= 1

5
and dev(x , A) = 1

2
− 1

6
= 1

3
.

We frequently use the terms offspring and ancestor to refer to the generations of a
given dyadic cube. In particular, we often use the letter m to refer to any generation
(that is both offspring and ancestor) while the letter j is specifically reserved for
ancestors. This use comes from the roles of m and j in the shift and location, parameters
described below.

7 Fundamental structures of d + 1 n-adic systems in Rd

In this section, we introduce several basic structures of a collection of d + 1 n-adic
systems, where we recall that d + 1 is optimal in the sense that any d n-adic systems
in R

d are not adjacent, while there exists a collection of d + 1 n-adic grids, which are
adjacent. Using these basic structures, we are able to generalize Theorem 2.2 to higher
dimensions in a natural way.
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Figure 2: Distance and natural deviation.

This section consists of three parts, which are the all generations case, the small-
scale case, and the large-scale case. Here, the word “small scale” refers to all the
offspring generations of the zeroth generation, whereas the word “large scale” refers
to all the ancestor generations of the zeroth generation, together with itself. Moreover,
we also introduce the concept of n-far vector, which generalize the early definition of
n-far number in one-dimensional case (see Definition 2.1). Finally, there are also many
concrete examples given for the purpose of understanding these structures better.

Here is a list on all the structures that we are going to introduce in this section.
• All generations case (Section 7.1): Corner sets (see Definition 7.1);
• Small-scale case (Section 7.2): Small-scale lattice (see Definition 7.5) and n-far vectors

(see Definition 7.9);
• Large-scale case (Section 7.3): Large-scale sampling (see Definition 7.12), Large-scale

lattice (see Definition 7.14), and Modulated corner sets (see Definition 7.17).

7.1 Corner sets

In the first part of this section, let us introduce an important structure for G(δ,La⃗),
which can be viewed as a “generator” of G(δ,La⃗).

Definition 7.1 Let G(δ,La⃗) be an n-adic grid in R
d . For � ∈ Z, we define the �th

corner operation

Cδ
a⃗(�) ∶ A(δ,La⃗)� → R

d

is given by

[Cδ
a⃗(�)] (x) ∶=

d
⋃
i=1
∏

i
(x , [(x)1 , (x)1 + n−�) × [(x)d , (x)d + n−�)) ,

where for any x ∈ Rd and A ⊂ R
d , ∏i(x , A) denotes the projection of A to the

hyperplane {y ∈ Rd ∶ (y)i = (x)i}. We call the collection [Cδ
a⃗(�)] (x) the �th corner
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Figure 3: Corner and corner set.

set associated to x with parameters (δ, a⃗), and we refer x as the corner of the corner set
[Cδ

a⃗ ] (x).

Below is an example of a corner set with its corner x = ( 1
3 , 1

3) when d = 2, n = 2,
and � = 1 (see Figure 3).

7.2 Small-scale lattices and n-far vectors

The goal of the second part of section is to generalize the concept of far numbers in
one dimension to higher dimension. It turns out that the correct thing to do is looking
at the so-called small-scale lattices with respect to d many vectors in R

d . We point out
that such a construction is implicitly mentioned in Conde Alonso’s proof of showing
that d grids are never adjacent [5].

Definition 7.2 Let δ ∈ Rd , and we say δ is of unit size if (δ)i ∈ [0, 1) for each i ∈
{1, . . . , d}.

Let us first state an easy fact for the adjacent n-adic systems.

Lemma 7.3 Let G1 , . . . ,Gd+1 be adjacent, with each of them having a representation

Gi = G(δ i ,La⃗i ), 1 ≤ i ≤ d + 1.

Then, for each k ∈ {1, . . . , d},

(δ i)k /≡ (δ j)k (mod 1), 1 ≤ i ≠ j ≤ d + 1.

Proof To start with, we may assume that all δ i ’s are of unit size. Otherwise, we
consider δ′i ∶= δ i (mod 1), where the modulus 1 is taken over all the coordinate
components.

We prove it by contradiction. Without loss of generality, we may assume

A ∶= (δ1)1 = (δ2)1 .
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This implies that

{x ∈ Rd ∶ x1 = A} ⊂ bG1,0 ∩ bG2,0 ,

where bG1,0 means the boundary of all cubes in the zeroth generation of G1. This
further shows that for any m ≥ 0, the set

d+1
⋂
i=1

bGi ,m is not empty.

Indeed, it suffices to show that
d+1
⋂
i=1

bGi ,0 is not empty,(7.1)

since
d+1
⋂
i=1

bGi ,0 ⊂
d+1
⋂
i=1

bGi ,m

for all m ≥ 0. While for a proof of (7.1), it suffices to note that the set

{x ∈ Rd ∶ x1 = A, x2 = (δ3)2 , . . . , xd = (δd+1)d} ⊂
d+1
⋂
i=1

bGi ,0 .

To complete the proof, it suffices to follow Conde Alonso’s argument. Namely, we pick

a point a ∈
d+1
⋂
i=1

bGi ,0 and we take a small cube centered at a. It is clear that the only

way to cover this ball by using the cubes from
d+1
⋃
i=1

Gi is to use a cube whose sidelength
is at least n. Shrinking the sidelength of the cube as small as we want, this gives a
contradiction to the second property in Definition 1.3. ∎

Therefore, this easy lemma suggests the following definition.

Definition 7.4 Given δ1 , . . . , δ� ∈ Rd , where � ≥ 1, � ∈ Z, we say that they are sepa-
rated if

(δ i)k ≠ (δ j)k (mod 1),

for all k ∈ {1, . . . , d} and 1 ≤ i ≠ j ≤ �.

Now, we are ready to introduce the so-called small-scale lattices.

Definition 7.5 Let m ≥ 0 and δ1 , . . . , δd ∈ Rd be separated. Then the small-scale
lattice associated to δ1 , . . . , δd at level m is defined as

L(δ1 , . . . , δd ; m) ∶=
d
⋂
i=1

b [G(δ i)m] ,

where G(δ)m is defined as in Definition 3.1 and b [G(δ)m] refers to the union of all
the boundary of the cubes in G(δ)m .
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Figure 4: L (( 1
3 , 1

3 ) , ( 2
3 , 2

3 ) ; 1).

Example 7.6 Let us give an example of such a structure (see Figure 4), in which we
consider the setL (( 1

3 , 1
3) , ( 2

3 , 2
3) ; 1)with d = 2 and n = 2. More precisely, in Figure 4,

the red dashed lattice represents b [G (( 1
3 , 1

3))1], the blue dashed lattice represents
b [G (( 2

3 , 2
3))1], and the collection of all green points stands for L (( 1

3 , 1
3) , ( 2

3 , 2
3) ; 1).

Remark 7.7
(1) We call it “small scale,” in the sense that set L(δ1 , . . . , δd ; m) is constructed with

respect to the boundary of cubes of small sidelength.
(2) Since δ1 , . . . , δd are separated,L(δ1 , . . . , δd ; m) is countable (it contains no lines).
(3) L(δ1 , . . . , δd ; m) ⊂ L(δ1 , . . . , δd ; m′) for all m′ ≥ m.

There is an equivalent way to define L(δ1 , . . . , δd ; m).

Lemma 7.8 Let δ1 , . . . , δd be separated. For each σ ∈ Sd , where Sd refers to the finite
symmetric group over {1, . . . , d}, denote

δσ ∶= ((δσ(1))1 , . . . , (δσ(d))d) ∈ R
d .

Then, for each m ≥ 0, there holds

L(δ1 , . . . , δd ; m) = ⋃
σ∈Sd

A(δσ)m .

Proof The desired result follows from the observation that δσ ∈ L(δ1 , . . . , δd ; m)
and hence A(δσ)m ⊂ L(δ1 , . . . , δd ; m). One may consult Figure 4 for an example of
such a fact. ∎
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Let us denote

L(δ1 , . . . , δd) ∶= ⋃
m≥0

L(δ1 , . . . , δd ; m)

be the union of all small-scale lattices.
We are ready to generalize the concept of far number in dimension-one case.

Definition 7.9 Given δ1 , . . . , δd ∈ Rd being separated, we say δ ∈ Rd is an n-far vector
with respect to L(δ1 , . . . , δd), if there exists some C > 0, such that for every m ≥ 0,
there holds

dist (b [G(δ)m] ,L(δ1 , . . . , δd ; m)) ≥ C
nm .(7.2)

Remark 7.10 While the above definition looks quite different from Definition 1.3 of
[2], we can actually motivate our definition from [2]. In the one-dimensional case, the
set {δ1 , . . . , δd} reduces to the set {0}. Therefore, n-far in the one-dimensional case
reduced to checking that

∣δ − k
nm ∣ ≥

C
nm ,(7.3)

for k ∈ Z and m ≥ 0 (see Remark 1.4(2) in [2]). Due to such a simple structure,
Theorem 2.8 in [2] asserted that δ ∈ R is n-far if and only if the maximal length of
tie, that is, the maximal length of consecutive 0’s or consecutive (n − 1)’s in the base
n-representation of δ, is finite.

The key point to generalize the concept of n-far number in higher dimension is
to realize that δ and k

nm are indeed playing different roles in condition (7.3). More
precisely, rewrite (7.3) as

∣(δ − k1

nm ) −
k2

nm ∣ ≥
C

nm

for k1 , k2 ∈ Z and m ≥ 0. Here are the key observations: let m ≥ 0 be fixed, then:

(1) when k1 varies, the set

{δ − k1

nm ∶ k1 ∈ Z}

represents the all the boundary points b [G(δ)m];
(2) when k2 varies, the set

{ k2

nm ∶ k2 ∈ Z}

represents the small-scale lattice L(0; m). This is clear from Lemma 7.8.
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Figure 5: A nonexample of small-scale lattice: b[G(δ1)]0 (black part), b[G(δ2)]0 (blue part),
b[G(δ3)]0 (red part), and the nonexample b [G(δ1)]0 ∩ b [G(δ2)]0 (green part).

Hence, an equivalent way to state (7.3) is the following: for any m ≥ 0,

dist (b [G(δ)m] ,L(0; m)) ≥ C
nm ,

which is precisely (7.2). The key here is that the boundary points and the small-scale
lattice align in dimension 1.

Example 7.11 We now illustrate via an example why the idea of generalizing the
concept of far numbers to pairwise distances is not sufficient to show that d + 1
grids are adjacent. Take δ1 = (0, 0), δ2 = (0, 1

3 , ) and δ3 = ( 1
3 , 1

3). Consider the natural
pairwise generalization of far where δ and δ′ are far if (δ)i is far from (δ′)i for some i.
Using this definition, we see that each of these points is far from each other, but
δ1 , δ2 , δ3 do no form an adjacent n-adic system. In fact, if one looks at L(δ1 , δ2; 0),
one does not get a lattice, but a set of vertical lines (see Figure 5).

Therefore, this pairwise comparison between points is not enough to determine an
adjacent n-adic system and the lattice structure is needed.

7.3 Large-scale sampling, large-scale lattice, and modulated corner sets

The purpose of the last part of section is to introduce all the basic structures with
respect to d separated vectors and d location functions, which is used to study the
large-scale case. Informally, these structures are the counterparts of the small-scale
lattice (see Definition 7.5) and the usual corner sets (see Definition 7.1); however, one
new phenomenon for the large scale is that one needs to use the cube [0, n j)d to
quantify the behavior of the location function (see Theorem 8.1(ii)), and this suggests
that we need a localized version of those structures in the large-scale case.

The setting is as follows. Let δ1 , . . . , δd ∈ Rd be separated, a⃗1 , . . . , a⃗d be the d many
infinite matrices defined in (3.1), and La⃗1 , . . . ,La⃗d be the corresponding location
functions.
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Figure 6: An example of large-scale sampling: A = δ1 +La⃗1(1) = (
4
3 , 4

3 ), B = δ2 +La⃗2(1) =
( 2

3 , 2
3 ), b [G(δ1 , a⃗1)]−1 (red part), b [G(δ2 , a⃗2)]−1 (blue part), and the large-scale sampling

Sδ1 ,δ2
a⃗1 ,a⃗2
(1) (green part).

Definition 7.12 For each j > 0, the large-scale sampling associated to the tuples

(δ1 , a⃗1) , . . . , (δd , a⃗d)

at level j is defined by

S
δ1 , . . . ,δd
a⃗1 , . . . ,a⃗d

( j) ∶= (
d
⋂
k=1

b [G(δk ,La⃗k)− j]) ∩ [0, n j)d .

Example 7.13 Let d = 2, n = 2, δ1 = ( 1
3 , 1

3), and δ2 = ( 2
3 , 2

3). We illustrate below the
large-scale sampling (see Figure 6) for j = 1 for (δ1 , a⃗1) and (δ2 , a⃗2) (in the cube
[0, 2)2)) in Figure 6, where

a⃗1 ∶= (
1 0 1 0 . . .
1 0 1 0 . . .)

and

a⃗2 ∶= (
0 1 0 1 . . .
0 1 0 1 . . .)

Let us extend the definition of small-scale lattice to the large scales, which can be
viewed as a “global” version of the large-scale sampling.

Definition 7.14 For each m < 0, the large-scale lattice associated to the tuples

(δ1 , a⃗1) , . . . , (δd , a⃗d)

at level m is defined by

L
δ1 , . . . ,δd
a⃗1 , . . . ,a⃗d

(m) ∶=
d
⋂
k=1

b [G(δk ,La⃗k)m] .
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Figure 7: (mC)
( 1

3 , 1
3 )

a⃗ (1).

Remark 7.15 Again, we emphasize the use of j = −m where m < 0 and j refers to
the jth ancestor (that is, the − jth generation in Definition 3.1). We only use this
identification for the large cubes; the reason we do so is to be consistent with the
terminology in [2].
Remark 7.16
1. Note that since δ1 , . . . , δd are assumed to be separated, Sδ1 , . . . ,δd

a⃗1 , . . . ,a⃗d
( j) is a finite set,

whereas Lδ1 , . . . ,δd
a⃗1 , . . . ,a⃗d

(m) is countable.
2. The reason for us to start with a negative m in the definition of large-scale lattice is

to keep the consistency with the definition of small-scale lattice.
3. The large-scale sampling can be viewed as a “generator” of the large-scale lattice.

More precisely, we have, for each m > 0, there holds

L
δ1 , . . . ,δd
a⃗1 , . . . ,a⃗d

(m) = ⋃
p∈Zd

(Sδ1 , . . . ,δd
a⃗1 , . . . ,a⃗d

(−m) + n j p) .

We need one more definition to state our main result in large scale.
Definition 7.17 Let j ≥ 0, δ ∈ Rd , a⃗ be an infinite matrix defined in (3.1), and La⃗ be
the associated location function. Then the jth modulated corner set associated to (δ, a⃗)
is defined to be

(mC)δ
a⃗( j) ∶= (b [G(δ,La⃗)]− j) ∩ [0, n j)d .

Example 7.18 We give an easy example of such a structure (see Figure 7). Here, we
take our favorite example, that is, we consider the case when d = 2, n = 2, j = 1, δ =

( 1
3 , 1

3), and a⃗ ∶= (1 0 1 0 . . .
1 0 1 0 . . .).

Remark 7.19
1. A trivial observation would be for any y′ ∈ Sδ1 , . . . ,δd

a⃗1 , . . . ,a⃗d
( j), there holds

0 ≤
dev ((mC)δ

a⃗( j), y′)
n j < 1.
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2. The corner sets and modulated corner sets are closely related. More precisely, we
have, for any d ≥ 1 and j ≥ 0, there holds

[Cδ
a⃗(− j)] (δ +La⃗( j) (mod n j)) ≡ (mC)δ

a⃗( j) (mod n j).

In our later application, the modulated corner sets will only be applied to study the
ancestors of the zeroth generation, whereas the corner sets defined early will take care
of all the generations. More precisely, the modulated corners are important to take
care of points near the boundary of the cube [0, n j)d that might be close to a corner
lying just outside [0, n j)d but far from the modulated corner. This remark will be made
clearer in the next section and indeed underlies our use of modulated corners.

8 An alternative approach

Let us go back to the main question that we are interested in, namely, what the
necessary and sufficient conditions are, so that a given collection of d + 1 n-adic grids
are adjacent?

The goal of this section is to provide an alternative way to answer the above question
via the fundamental structures, and to comment about the uniformity of such a
representation. To begin, let us write these d + 1 n-adic grids by their representations,
namely G(δ1 ,La⃗1), . . . ,G(δd+1 ,La⃗d+1). Moreover, using Lemma 7.3, we may assume
δ1 , . . . , δd+1 are separated.

8.1 Motivation and the structure theorem of adjacency

As mentioned in the introduction, the intuition behind the next theorem originates
back to the one-dimensional result (see Theorem 2.2). The main idea to generalize
the first condition is already contained in Remark 7.10. More precisely, we can rewrite
condition (1) as: there exists some absolute constant C > 0, such that for any k1 , k2 ∈ Z
and m ≥ 0, it holds that

∣(δ1 −
k1

nm ) − (δ2 −
k2

nm )∣ ≥
C

nm .

For simplicity, we may assume both δ1 , δ2 ∈ [0, 1), that is, both of them are of unit size
(although we do not require such a restriction in our main result). As in Remark 7.10,
there are two different ways to interpret the sets

{δ i −
k

nm ∶ k i ∈ Z} , i = 1, 2.

The first way is to interpret each set as the set of all the boundary points b [G(δ i)m],
whereas the second way is to treat it as the small-scale lattice L(δ i ; m). Therefore, we
can restate the first condition as

δ1 is n − far with respect to L(δ2) and δ2 is n − f ar with respect to L(δ1).
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While for condition (2), note that it is equivalent to the following:

0 < lim inf
j→∞

∣δ1 +La⃗1( j) − δ2 −La⃗2( j)
n j ∣ ≤ lim sup

j→∞
∣δ1 +La⃗1( j) − δ2 −La⃗2( j)

n j ∣ < 1.

(8.1)

Similarly, there are two ways to interpret the sets (which contain only one element in
the one-dimensional case):

{δ i +La⃗i ( j)} , i = 1, 2,(8.2)

for any j ≥ 1. The first way is to regard each as a jth modulated corner set, namely,
(mC)δ i

a⃗i
( j), whereas the second way is to consider it as a large-scale sampling at level

j, that is, Sδ i
a⃗i
( j). If one sets the interpretation of the first set as the modulated corner

and of the second set as the large-scale sampling, then additionally there are also two
different ways to understand the term

∣δ1 +La⃗1( j) − δ2 −La⃗2( j)∣ .(8.3)

The first way is to treat it as

dist ((mC)δ i
a⃗i
( j), Sδ i′

a⃗i′
( j)) ,

where {i , i′} = {1, 2}, whereas the second way is to regard it as the “maximum
distance” between these two sets, that is,

max
y′∈S

δi′
a⃗i′
( j)

dev ((mC)δ i
a⃗i
( j), y′) .

Note that all these complicated structures (that is, the modulated corner set and
large-scale sampling) collapse into a single point in the one-dimensional case, and all
those quantities coincide with each other and take the value (8.3); however, in higher
dimension, we need to treat them differently.

Here is the main result for the second part, which can be thought as some structure
theorem of adjacency with respect to a collection of d + 1 n-adic grids.

Theorem 8.1 The collection of n-adic gridsG(δ1 ,La⃗1), . . . ,G(δd+1 ,La⃗d+1) are adjacent
if and only if:

(i) For each i ∈ {1, . . . , d + 1}, δ i is n-far with respect toL (δ1 , . . . , δ̂ i , . . . , δd+1). Here,
δ̂ i means that in the sequence {δ1 , . . . , δd+1}, we remove the term δ i .

(ii) For each i ∈ {1, . . . , d + 1}, there holds

0 < lim inf
j→∞

dist ((mC)δ i
a⃗i
( j), Sδ1 , . . . , δ̂ i , . . . ,δd+1

a⃗1 , . . . , ̂⃗ia, . . . ,a⃗d+1
( j))

n j

≤ lim sup
j→∞

max
y′∈Sδ1 ,.. . , δ̂ i , . . . ,δd+1

a⃗1 ,.. . , ̂⃗ia, . . . ,a⃗d+1
( j)

dev ((mC)δ i
a⃗i
( j), y′)

n j < 1.(8.4)
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Note that in the above statement, for each j > 0 and i ∈ {1. . . . , d + 1},

S
δ1 , . . . , δ̂ i , . . . ,δd+1

a⃗1 , . . . , ̂⃗ia, . . . ,a⃗d+1
( j)

is a finite set, and hence the maximum value in the limit superior can be attained.

Remark 8.2 Note that the above result is independent of the choice of the repre-
sentation of the n-grid and hence contains the uniformness result Theorem 2.4 as a
particular case. The reason is that the structures that we are working with, that is, the
collection of all the boundary points at certain generations, the small-scale lattices, the
modulated corner sets, and the large-scale sampling, are independent of the choice of
the representations, whereas for the term

δ +La⃗( j)

(see (8.2) and (8.1)) that we used in our one-dimensional result indeed depends on the
particular choices of the representation; more precisely, it is possible for us to find two
equivalent presentations G(δ,La⃗) and G(δ′ ,La⃗′) such that

δ +La⃗( j) < n j ≤ δ′ +La⃗′( j)

for j sufficiently large. In such a situation, Theorem 8.1 suggests us to work with the
point δ′ +La⃗′( j) − n j instead of δ′ +La⃗′( j), and this will guarantee that there is only
one limit infimum and one limit superior in (8.4), instead many of them.

Proof of Theorem 8.1 It turns out the conditions (i) and (ii) above are indeed
equivalent to the conditions (1) and (2) in Theorem 1.5, which indeed suggests
Theorem 8.1 is a much more natural statement to consider. We would like to leave
the detail to the interested reader. ∎

8.2 Example revisited

Let us use Theorem 8.1 to verify the adjacency of the dyadic grids considered in
Section 5. We start by verifying Condition (i) in Theorem 8.1. This means we have
to show:

(a) δ1 is 2-far with respect to L (δ2 , δ3);
(b) δ2 is 2-far with respect to L (δ1 , δ3);
(c) δ3 is 2-far with respect to L (δ1 , δ2).

We will show (c). First, it is easy to see that {δ1 , δ2 , δ3} are separated. Note that
calculating the quantity (7.2) for m = 1 reduces to calculating in a “local region” (see
the cyan part in Figure 8), as both b[G(δ3)]1 and L(δ1 , δ2; 1) behave periodically.
Therefore, we can see that

dist (b [G(δ3)]1 ,L(δ1 , δ2; 1)) = min{ 1
3
− 1

5
, 1

5
− 1

6
} = 1/15

2
.
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Figure 8: b[G(δ3)]1 (red part), the small-scale lattice L(δ1 , δ2 ; 1) (green part), the line segment
with length 1

3 −
1
5 =

2
15 (the horizontal magenta colored line), and the line segment with length

1
5 −

1
6 =

1
30 (the vertical magenta colored line).

It turns out that this case m = 1 already illustrates the main point. The case m = 0
is even easier, and for all other m > 0, we will get either

dist (b [G(δ3)]m ,L(δ1 , δ2; m)) = inf
k1 ,k2∈Z

∣( 1
3
± k1

2m ) − (
1
5
± k2

2m )∣

≥ inf
k1 ,k2∈Z

∣ 2
15
− k

2m ∣ ≥
C

2m

by techniques in [2, Proposition 2.4] (see also Lemma 3 in [1]), or a similar claim where
1
3 is replaced by 2

3 . The other calculations for (a) and (b) are similar. For example, by
an easy modification of the above arguments, we have, for any m ≥ 0,

dist (b [G(δ1)]m ,L(δ2 , δ3; m))
(this is for (a)) is either

inf
k1 ,k2∈Z

∣(2
3
± k1

2m ) − (
1
3
± k2

2m )∣

or

inf
k1 ,k2∈Z

∣( 1
5
± k1

2m ) − (
1
3
± k2

2m )∣ ,
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Figure 9: All modulated corner sets (mC)δ i
a⃗i
(1) for i = 1, 2, 3 (red parts) and all corresponding

large-scale samplings Sδ1 , . . . , δ̂ i , . . . ,δ3
a⃗1 , . . . , ̂⃗ia, . . . ,a⃗3

(1) for i = 1, 2, 3 (green parts).

which is clearly bounded below by some C
2m , where C is independent of the choice

of m. We leave the details to the interested reader.
We now verify Condition (ii). We first calculate the limit infimum, and begin by

examining the case j = 1. In this case, it is clear from Figure 9 that

dist ((mC)δ1
a⃗1
(1), Sδ2 ,δ3

a⃗2 ,a⃗3
(1))

2
= 1

3
,

whereas

dist ((mC)δ2
a⃗2
(1), Sδ1 ,δ3

a⃗1 ,a⃗3
(1))

2
=

dist ((mC)δ3
a⃗3
(1), Sδ1 ,δ2

a⃗1 ,a⃗2
(1))

2
= ∣2/3 − 1/5∣

2
= 7

15
.

Let us also calculate the case when j = 2 (see Figure 10). In this case, we have

dist ((mC)δ2
a⃗2
(2), Sδ2 ,δ3

a⃗1 ,a⃗3
(2))

4
= 1

3
,

whereas

dist ((mC)δ1
a⃗1
(2), Sδ2 ,δ3

a⃗2 ,a⃗3
(2))

4
=

dist ((mC)δ3
a⃗3
(2), Sδ1 ,δ2

a⃗1 ,a⃗2
(2))

4
= 4/3 − 1/5

2
= 17

60
.

Similarly, the cases j = 1, 2 (that is, m = −1 and−2, respectively) contain all the main
ideas for the large-scale case (that is, m < 0). Recall that, for j ≥ 0,

δ1 +La⃗1( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 2 j

3 , 2 j

3 ) , j even,

( 2 j+1

3 , 2 j+1

3 ) , j odd,
δ2 +La⃗2( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 2 j+1

3 , 2 j+1

3 ) , j even,

( 2 j

3 , 2 j

3 ) , j odd,

and

δ3 +La⃗3( j) ≡ ( 1
5

, 1
5
) .
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Figure 10: All modulated corner sets (mC)δ i
a⃗i
(2) for i = 1, 2, 3 (red parts) and all corresponding

large-scale samplings Sδ1 , . . . , δ̂ i , . . . ,δ3
a⃗1 , . . . , ̂⃗ia, . . . ,a⃗3

(2) for i = 1, 2, 3 (green parts).

This suggests that the first two limit infimums, which are

lim inf
j→∞

dist ((mC)δ1
a⃗1
( j), Sδ2 ,δ3

a⃗2 ,a⃗3
( j))

2 j and lim inf
j→∞

dist ((mC)δ2
a⃗2
( j), Sδ1 ,δ3

a⃗1 ,a⃗3
( j))

2 j ,

are either

lim
j→∞

2 j+1/3 − 2 j/3
2 j = 1

3
or

lim
j→∞

2 j/3 − 1/5
2 j = 1

3
.

To see this, one may consider two different cases by requiring j being even or being
odd, the desired claim will then follow from plotting the corresponding modulated
corner sets and large-scale samplings out, as the first two graphs illustrated in Figure 9.

While for the third limit infimum, that is,

lim inf
j→∞

dist ((mC)δ3
a⃗3
( j), Sδ1 ,δ2

a⃗1 ,a⃗2
( j))

2 j ,

we can see that it will be

lim
j→∞

2 j/3 − 1/5
2 j = 1

3
.

One may consult the third graph in Figure 9 for a visualization of this case. Overall,
we can take 1

3 as the limit infimum in Condition (ii) of our main result.
The calculations for the limit supreme are similar and can be visualized from

Figure 9. More precisely, we can see that the quantity

max
i=1,2,3

⎡⎢⎢⎢⎢⎢⎢⎣

lim sup
j→∞

max
y′∈Sδ1 ,. . . , δ̂ i , . . . ,δ3

a⃗1 ,. . . , ̂⃗ia, . . . ,a⃗3
( j)

dev ((mC)δ i
a⃗i
( j), y′)

2 j

⎤⎥⎥⎥⎥⎥⎥⎦
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is the limit

lim
j→∞

2 j+1/3 − 1/5
2 j = 2

3
.

This verifies Condition (ii) in Theorem 8.1. ∎
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