
SEMI-GROUPS OF MAPS IN A LOCALLY COMPACT 
SPACE 
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Suppose t h a t 5 is a locally compact Hausdorff space. A one-parameter semi
group of maps in S is a family {4>t\ t > 0} of continuous functions from S 
into 5 satisfying 

(i) 4>t o cf)u = (f)t+u for t, u > 0, where the circle denotes composition, and 
(ii) <£o = e, the identi ty m a p on 5 . 

A semi-group {<j>t} of maps in S is said to be 

(iii) of class (Co) if <j>t(x) - ^ x a s t —> 0 for each x in 5 , 
(iv) separately continuous if the function £ —> <t>t(x) is continuous on [0, °o ) 

for each x in 5 , and 

(v) doubly continuous if the function (t, x)-^ (j>t(x) is continuous on 
[0, oo ) x S. 

W e show t h a t separate continuity implies double continui ty and t h a t if S is 
(7-compact (the union of countably many compact sets) , then every class 
(Co) semi-group of maps in S is separately continuous. 

We establish a 1-1 correspondence between the class of all separately con
tinuous semi-groups of maps in 5 and a certain easily describable class of 
linear operators in Cb(S), the linear space of all bounded, real-valued, con
tinuous functions on S. T h e correspondence would seem to justify calling the 
linear operator corresponding to a given semi-group of maps in S the in
finitesimal generator of t ha t semi-group. A topology, called the bounded 
strict topology, is introduced on the space C6(5), and it is shown tha t if S is 
paracompact , then the bounded strict topology coincides with the more 
familiar strict topology; see (1) or (3). I t is then shown tha t if \<t>t', t > 0} is 
a separately continuous semi-group of maps in S, a > 0, and Ttf = fo<j>t 

for / in Cb(S) and t > 0, then {e~atTt\ t > 0} is an equi-continuous semi
group of class (Co) in Cb(S) with the bounded strict topology; see (9, p . 
234). This is the major step in establishing the correspondence between 
semi-groups of maps in 5 and their generators. T h e generator of \4>t) is given 
by 

Af=lim(fo4>t-f)/t (*-»0). 

T h e class of generators A of separately continuous semi-groups {</>̂ } of maps 
is the class of derivation operators A in Cb(S) such t h a t the domain of A is 
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dense in Cb(S) with the bounded strict topology, and for some a > 0 (equiva-
lently, for each a > 0) , the collection 

{[I - n~\A - a)]-m}-,n=1 

is an equi-continuous collection of operators on Cb(S) with the bounded strict 
topology. Hufford (6) has carried out a similar program for S compact. 

1. Topo log ie s o n f u n c t i o n spaces . Let C(S) denote the linear space 
of all continuous real-valued functions on S. Then Cb(S) is the space of all 
bounded functions in C(S). Let Co (S) denote the linear space of all functions 
in C(S) which vanish a t infinity, and let CC(S) denote the linear space of all 
functions in C(S), which have compact support . 

T h e norm, | | / | | , of a function / in Cb(S) will mean the supremum norm 
of/, and if K is a compact subset of 5 and / is in C(S), then W/WK means the 
supremum norm of f\K, the restriction o f / to K. If K is a compact subset of 
S, then C(K) denotes the Banach space with supremum norm of continuous 
real-valued functions on K. For each r > 0, Br denotes the set of all / in 
Cb(S) such tha t | | / | | < r. 

T h e compact open topology (the topology of uniform convergence on com
pact sets) on C(S) will be denoted by y, and its restriction to Cb(S) will be 
denoted by y'. T h e strict topology, see (1), on Cb(S) will be denoted by ft 
and has a local neighbourhood basis a t the origin the sets V+ = {/: | | /^ | | < 1} 
for \p in Co(S). An equivalent neighbourhood basis, by (4), consists of the sets 

V{Kn,*n} = {/: I l/l Un < «» f ° r " = 1, 2 , 3 , . . . } , 

where {en} is a strictly increasing sequence of positive numbers approaching 
infinity, and {Kn) is an increasing sequence of compact sets. Conway (3) 
has shown tha t if S is paracompact , then (Cb(S), 13) is a Mackey space, i.e., 
there is no locally convex linear topology on Cb(S) which properly contains 
/3 and yields the same continuous linear functionals as /3. 

T h e bounded strict topology on Cb(S) is denoted by /3r and has as a local 
neighbourhood basis a t the origin the system of all convex, balanced, absorbent 
sets V such t ha t for each r > 0 there is a /3 neighbourhood W of 0 such tha t 
W C\ Br (Z. V. T h a t this is a basis for a locally convex linear topology follows 
from (7, Theorem 2, p . 10). This method of generating topologies is discussed 
by Collins in (2, § 5, pp. 265-268). 

The author will a t t empt , a t appropriate places in the paper, to point out 
the reason for introducing the strict and the bounded strict topologies on 
Cb(S). Although the bounded strict topology has a somewhat cumbersome 
definition, it does have several interesting connections with the strict topol
ogy and, besides, agrees with it on norm bounded sets and gives rise to the 
same continuous linear functionals. A linear transformation T from Cb(S) 
into a locally convex topological vector space (£ , r ) is /3' — r continuous if 
and only if its restriction to each norm bounded set is /3 — r continuous. Also, 
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a linear t ransformation T from Cb(S) into Cb(S) is ft — ft cont inuous if and 
only if its restriction to each norm bounded set is ft — 13 continuous. These 
last two properties are no t needed in this paper, so no proof is given. How
ever, the last proper ty comes close to giving the reason for the introduct ion 
of the ft topology. 

T H E O R E M 1. (Cb(S), ft) is sequentially complete and has the same continuous 
linear junctionals as (Cb(S), ft. Thus ft = (3 if (Cb(S), ft is a Mackey space, 
which is the case if S is paracompact. 

Proof. Since (3 C ft, every ft Cauchy sequence is (3 Cauchy, and thus /3 
convergent and norm bounded, by (1). B u t ft and f3 agree on norm bounded 
sets, so every ft Cauchy sequence is ft convergent. 

Since (3 C ft, every j3 continuous linear functional on Cb(S) is ft con
tinuous. Suppose L is a ft continuous linear functional on Cb(S). Then L is 
norm continuous, so by the Riesz representat ion theorem there exists a unique 
bounded regular Borel measure JJL on S such t h a t Lf = ff du for a l l / in CQ(S). 
Let Pf = Jf d/j, for all / in Cb(S). Then P is /3 continuous on Cb(S)} by (1), 
and also is therefore ft continuous. Bu t Co(S) is ft dense in Cb(S) since {\[/a g] 
is norm bounded and f3 convergent to g for g in Cb(S) and {\f/a} an approximate 
identi ty for the Banach algebra Co(S). Therefore Pf = Lf for a l l / in Cb(S). 

2. S e m i - g r o u p s of operators . A semi-group of operators in a linear 
space X is a collection {Tt\ t > 0} of linear t ransformations from X into X 
satisfying 

TQ = I, the identi ty operator on X, 

and Tt Ts = Tt+S for s, t > 0. 

See (5) for the theory and terminology of semi-groups in a Banach space, 
and (9) for the theory and terminology in a topological vector space. In this 
section, {</>*; t > 0} denotes a class (Co) semi-group of maps in S, and 
Ttf = f o 4>t f o r / in Cb(S) and t > 0. T h u s {Tt} is a semi-group of operators 
in Cb(S), and | | r « / | | < | | / | | f o r / in Cb(S) and / > 0. 

T H E O R E M 2.1. Let $ denote the set of all f in Cb(S) such that \\Ttf — / | | —» 0 
as t —-> 0. Then $ is a Banach algebra under the supremum norm, and Tt $ C $ 
for t > 0, so that {T\) is a class (Co) semi-group when restricted to the Banach 
space <£. Also, $ is (3 dense in Cb(S). 

Proof. Clearly $ is a linear space. $ is an algebra since Tt (fg) = (Ttf)(Tt g). 
If / is in Cb(S), {fn} C $, and | | /n | | -> 0, then 

Ttf-f= Tt(f-fn)+ (Ttf„-fn) + (fn-f) 

and \\Ttf-f\\ < 2 \\f - fn\\ + \\Ttfn-fn\\, 

so t h a t / is in <î>. If s, t > 0, then Tt Tsf — Tsf = Ts(Ttf — / ) , so t h a t 

Ts $ C $ . 
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If / is in Cj,(S) and a > 0, then define fa on S by 

/„(*) = ( l /«) ( f(4>t(x))dt. 

The integral exists for each x in S because the integrand is bounded and 
continuous from the right. fa is clearly bounded. Take y in 5 and K a compact 
neighbourhood of y. Let g(t) = Ttf\K for 0 < t < a. Then g is weakly con
tinuous from the right as a function from [0, a] into C(K) and is therefore 
strongly measurable. Since g is bounded, g is Bochner integrable, and 

fa\K= (1/a) fg(0<ft. 

Therefore /« is in Cb (5). For each x in 5, 

|/«(*i(*)) -/«(*) I = (1/a) f+/(*,(*))<fc- f/(*,(*))<** 
I «/ z «Jo 

/(*,(*)) <k- /(*.(*)) <fc| < (2*/«)||/||, 
« «Jo 

so that fa is in $>. Also /« —>/ weakly in (C&(5), /3) as a —* 0, so that <ï> is 
weakly dense in (C6(5), 0) and therefore dense in (CÔ(S), £). 

Remark. For / in <£, the function £ —» 7 ^ / is norm continuous (from both 
sides) since for t > 0 and 0 < h < t, we have 

and 

Tt+hf - Ttf = r» T V - r , / 

r , / - T W = rt_h(Thf-f). 

Theorem 2.1 provides perhaps the most pressing reason for the use of the 
jS topology. The /3-denseness of <£ is needed to prove Theorem 2.2, which is 
essential to all that follows. The /3-denseness is obtainable because of the 
simple nature of /3 weak sequential convergence. 

We give an example in which $ is not all of Cb(S), and the setting cannot 
be easily reduced to a simpler one. Take 5 to be real Euclidean 4-space E4l 

and let 

<t> t (#i> #2, #3, #4) = (xi/ (1 + |#i| t) , %2 e*, x% cos t -\- x4 sin t, — x3 sin t + x4 cos /). 

Then f(xi, x2, x3, x±) = sin x2 is not in <É>. The problem cannot be reduced to 
linear semi-groups in E4 because of the first term, and the maps <j>t have no 
apparent continuous extension to any reasonable compactification of 5 in 
such a way that the extended maps would form a separately continuous 
semi-group. The generator of {<£*} is an extension of 

— Xi \xi\ (d/dXi) + x2{d/dx2) + X±(d/dXz) — Xz(d/dx±). 
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T H E O R E M 2.2. If {<t>t} is separately continuous, then {<f>t} is doubly continuous. 

Proof. Suppose x is in 5 and t > 0 (the case / = 0 requires only a trivial 
modification). Suppose U is an open set in S having compact closure U~ 
and containing <t>t(x). Take V open in 5 with <j>t{pc) in V and V~ C U. T a k e 
/ in Cb(S) w i t h / ( 5 ) C [0, l],f(4>t(x)) = 0, and f(y) = 1 for y in S \ F . 

Since $ is fi dense in Cb(S), $ is certainly 7 ' dense in Cb(S). T a k e g in <ï> 
such t h a t ||g -f\\u- < 1/8 T a k e <5 > 0 such t h a t \\TS g - Ttg\\ < 1/8 for 
\s — t\ < 8. Let W denote a neighbourhood of x such t ha t <t>t(y) is in F and 
g(<t>t(y)) < 1/4 for 3/ in W. 

If |s — t\ < 8, and 3/ is in W, then 

gfo.OO) = g(4>*(y)) - g(4>t(y)) + sfoiOO) < 3/8, 

so t h a t 0 s (y) is in F U (S\U~), because g(z) > 7 /8 for s in U~\V. Now 
fix y in W, and let &(s) = <l>s(y) for |s — t\ < 5. T h e range of h is connected, 
and h{t) is in F, so h(s) is in F for all \s — t\ < 8, since F and 5 \ £ 7 ~ are 
separated. 

T H E O R E M 2.3. If S is a-compact, then {4>t} is separately continuous. 

Proof. For each / in C(S) and t > 0, let Ptf = f o <t>t. Then each Pt is a 
continuous linear operator from (C(S), 7) into (C(S), 7 ) , because 

11̂ /11* = ll/IU« 
for £ > 0 and K compact . Clearly [Pt] is a semi-group of operators in C(S), 
and Ptf

 = Ttf îor t ^ 0 and / in C6(5). T h e function t -^ Ptf is norm con
tinuous, and thus 7 measurable on [0, 00 ) for each / in $. Since <ï> is f3 dense 
in Cb(S), $ is 7 dense in C(S). Since 5 is o--compact, (C(S), 7) is a Fréchet 
space, so t h a t every f u n c t i o n / in C(S) is the limit of a sequence of functions 
in $ , and thus {Pt\ t > 0} is a strongly measurable semi-group of continuous 
operators in (C(S), 7 ) . Therefore, by (8), {Pt) is strongly continuous on 
( 0 , œ ) . 

Suppose t ha t x is in S, t > 0, and U is an open set containing <j>t(x). T a k e 
/ in C(S) such t h a t / ( 5 ) C [0, 1], f(<f>t(x)) = 0, and f(y) = 1 for y in S \ £ / . 
T a k e 8 > 0 such t h a t 

I I ^ / - ^ « / I I M < I / 2 

for |s - t\ < 8. Thenf(<t>s(x)) < 1/2 for \s - t\ < 8 so t ha t <£6,(x) is in U. 

T H E O R E M 2.4. If {<j>t} is separately continuous, and k > 0, //&era the family 

\Tt\ 0 < / < k) is an equi-continuous family of operators from (Cb(S), fi) into 

(C 6 (S ) , 0 ) . 

Proof. Let V[Kn,tn} be a /3 neighbourhood of 0. Let Kn' = G([0, k] X Kn) for 
w = 1, 2, 3, . . . , where G(/, x) = cj>t(x) for / > 0 and x in S. Then 

C F{Kn,en} for 0 < t < &. 
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THEOREM 2.5. If {<j>t) is separately continuous, and a > 0, then 

{e-«tTt]t>0} 

is an equi-continuous family of operators from (Cb(S),f3f) into (Cb(S), fi'). 

Proof. Let Qt = e~atTt for t > 0, and let V denote a convex balanced (3' 
neighbourhood of 0. For each r > 0, let Vr denote a convex balanced /3 neigh
bourhood of 0 such that Vr P\ Br C V, take r' > 0 such that r' < r and 
-Br' C Vr, and take &r > 0 such that e~akr < (rf/r). Let WT denote a convex 
balanced (3 neighbourhood of 0 such that TtWT(Z Vr for 0 < t < kr. Then 

Qt(Br n rag c (sr n 7r) c 7 for * > o. 
Let 

Then ^ r H 17, C W for r > 0, so that W is a /3' neighbourhood of 0. 

Remark. (Theorem 2.5 shows the reason for the use of the /^'-topology. In 
order to use the semi-group theory as given in (9), it is necessary that the 
operators form an equi-continuous collection in the topological vector space 
in which they are considered, and (Cb(S)} /3') is the only satisfactory space 
the author can find. 

THEOREM 2.6. If {<j>t} is separately continuous, and a > 0, then {e~at Tt} is 
strongly continuous on [0, °° ) as a semi-group of operators in (Cb(S), y'), 
(C6(S),0), or (Cb(S),Pf). 

Proof. It suffices to prove strong continuity in (C&(5), y'), since y', 13, 
and jSr agree on norm bounded sets. Also, it suffices to take a = 0. The strong 
continuity in (Cb(S), yf) follows by a routine argument based on the double 
continuity of {<j>t}-

THEOREM 7. Suppose {Zt; t > 0} is a semi-group of linear operators in 
Cb (S). Then the following statements are equivalent: 

(i) there exists a unique separately continuous semi-group {0t\ t > 0} of 
maps in S such that Ztf = f o 6t for f in Cb(S) and t > 0; 

(ii) (a) each Zt is a non-zero algebraic homomorphism on Cb(S); 
(b) each Zt is either fi continuous, (3f continuous, or y' continuous; 
(c) for each f in Cb(S), the function t—>Ztf is either p continuous, 

/3f continuous, or y' continuous on [0, <» ); 
(iii) each Zt is a non-zero algebraic homomorphism on Cb(S), and for each 

a > 0, {eatZt;t^0} is an equi-continuous semi-group of class (Co) in 
(C6(S),/3'), see (9, p. 234). 

Proof. That (i) implies (iii) has already been established. That (iii) implies 
(ii) is apparent. We shall show that (ii) implies (i). 
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Suppose t > 0 and x is in S. Let 

Lf = [Ztf](x) for each / in Cb(S). 

Then L is a non-zero multiplicative linear functional on Cb(S). Therefore, 
there is a unique point y in S~, the Stone-Cech compactification of S, such 
that Lf = f~(y) for a l l / in C&(5), w h e r e / - denotes the continuous extension 
of/ to S~. But by (b), (1), and Theorem 1, y is in S. Therefore, for each 
s > 0, there exists a unique function 6S from S into 5 such that Zs f = f o 6S 

for all / in Cb(S). The fact that each 6S is a map follows from the complete 
regularity of S and the fact t h a t / o 9S is continuous for each/ in Cb(S). Clearly, 
\ds: s > 0} is a semi-group of maps in S. We now have | |Z 5 / | | = ||/|| f o r / in 
Cb(S) and 5 > 0, so the three types of strong continuity described in (c) are 
all equivalent. The separate continuity of {6S} follows by an argument like 
the last part of the argument for Theorem 2.3. 

THEOREM 2.9. Let A be a linear transformation from a subspace D(A) of 
Cb(S) into Cb(S). Then the following statements are equivalent: 

(i) there exists a unique separately continuous semi-group \6t] t > 0} of 
maps in S such that f is in D(A) if and only if 

\im(foOt - f)/t (*-»0) 

exists in the fif topology (or, equivalently, in the /3 topology) and 

Af=lim(foet-f)/t (*-0) 
for all f in D{A); 

(ii) D(A) is dense in (Cb(S), &') (or equivalently, in (Cb(S), /3)), A is a 
derivation (i.e., fg is in D(A) and A(fg) = f(Ag) + g(Af) for f, g in D(A)), 
and for each a > 0, the collection 

Fa= {[I-n-\A -a)]-m\Tn,„^ 

is an equi-continuous collection of operators in (Cb(S), fif); 
(iii) D(A) is dense in (Cb(S), (3'), A is a derivation, and for some a > 0, 

Fa is an equi-continuous collection of operators in (Cb(S), (3f). 

Proof. First, let us remark that the equivalence of the /3 and /3' denseness 
of D(A) is a consequence of Theorem 1 and the fact that weak density and 
density of a subspace are equivalent. 

Suppose that (i) holds. Then A is clearly a derivation. Suppose a > 0, 
and let 

M tf = e-^fodt 

for / in Cb(S) and t > 0. Then {Mt} is an equi-continuous semi-group of class 
(Co) in (Cb(S),t3f), by Theorem 2.7. Clearly, the infinitesimal generator of 
{Mt} is A — a, so that (ii) follows from (9, p. 246). 

That (ii) implies (iii) is clear. Suppose (iii) is true, and let a denote a 
positive number such that the collection Fa is equi-continuous. 

https://doi.org/10.4153/CJM-1967-063-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-063-3


LOCALLY COMPACT SPACES 695 

Let {Nt} denote the semi-group generated by A — a. By (9, Remark, p. 
248), 

Ntf = limw_œ (exp[t(A - a)(I - n~l(A - a))-1])/ for each/ in Cb(S). 

Let Zt = eat Nt for t > 0. Then {Zt} is a semi-group of operators in Cb(S). 
Moreover, {Zt} is strongly /3' continuous on [0, °° ) and 0' equi-continuous 
on each interval [0, k). Also 

(d/dt)Ztf=A(ZJ) =Zt(Af) 

fo r / in D(A) and / > 0. We now prove that each Zt is a non-zero algebraic 
homomorphism. 

Take / , g in D 04 ), and let 

H{t) = (ZJ)(Ztg) for * > 0 . 
Then 

^'(t) = (z«/)4(z(g) + (zfgM(z«/), 
H'(s) - AH{s) = 0, 

Zt_sH'(s) - Zt^AH{s) = 0, 

(d/ds)Z^sH(s) = 0, 
Z^sH{s) = ZtH(0) = Z0H(t), 

H(t) = Zt(fg). 

Since Z?04) is dense in (C6(5), /3') and each Z* is continuous, each Zt is an 
algebraic homomorphism. Since Ztf—>f as / —» 0 for all / in Cb(S),Zt is 
certainly non-zero for small /. Suppose /w is a sequence of continuous non-zero 
algebraic endomorphisms on (C6(5), /3') and Jnf-+ 0 as w —> co for a l l / in 
C&(5). Then, by the argument for Theorem 2.7, there is a unique sequence 
{\f/n} of maps in 5 such that Jnf = / o \f/n. Fix an x in S. Then {^(x)}) must 
cluster at some point y in S~, the Stone-Cech compactification of S, and 
/ 0/^0*0) must cluster at /_0y) for every / in Cb(S), where /~ denotes the 
extension of/ to S~~. Therefore /~ (y) = 0 for a l l / in Cb(S), a contradiction. 
Therefore, each Zt is non-zero. 

Therefore, by Theorem 2.7, there is a unique separately continuous semi
group of maps {6t} such that Ztf = f odt fo r / in Cb(S) and / > 0. Thus 4̂ 
is defined as in (i). 

Remark. In connection with Theorem 2.8, we mention t h a t / is in D(A) 
if there exists a g in C&(5) such that (f(6t(x)) — f(x))/t —* g(x) as £ —> 0 for 
all x in 5. Suppose there is such a function g. Then for each x, the function 
t—>f(dt(x)) has right derivative g(0*0*0) a t J for all / > 0. Since this right 
derivative is continuous, it is also the derivative (see, for instance, (9, pp. 
239, 240)). Thus, for each x in S, we have 

f(0t(pc))-f(x) = f g(0€(*))d£ 
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and 

Lfo0,-/](*) = [ fjoOidtjix), 
so that 

(fo6t-f)/t= (1/0 ( goe.ds, 

and 4 / = g, the last two integrals being taken as integrals of continuous 
functions from [0,/] into (C&(5), £')• 
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