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ABSTRACT. A simple prescription for the dynamics of convection 
perturbed by stellar pulsation is used in an estimation of the growth 
rates of solar five-minute modes. Convection appears to enhance the 
excitation of the modes, and the maximum in the growth rate versus 
frequency found previously when oscillatory convective perturbations 
were ignored is still present. 

1. INTRODUCTION 

The principal cause of the excitation of the solar five-minute 
oscillations of the sun is still an unresolved issue. Either the modes 
are intrinsically overstable, or they are excited by nonlinear 
interactions with other motions; the possibilities are reviewed in 
these proceedings by Chitre. Whatever the process, however, it is 
essential to our understanding of the phenomenon, and to any 
quantitative estimate of the amplitudes, that the intrinsic growth 
rates be known. 

Growth rates of five-minute oscillations of realistic model solar 
envelopes have been estimated before. Ulrich (1970) studied 
high-degree modes, as did Ando and Osaki (1975, 1977) who used the 
Eddington approximation to model radiative transfer but ignored the 
modulation of the heat and momentum fluxes due to turbulence. They 
found instability throughout much of the k-ω plane where 
oscillations had been observed. Subsequently, Gough (1980) found 
instability of radial modes from calculations that took account of the 
modulation of the convective heat flux and Reynolds stresses by a 
mixing-length approach (Baker and Gough, 1979), but which treated 
radiative transfer in a crude way. However, Berthomieu et al. (1980), 
using a similar prescription, found nonradial ρ modes with 1=200 and 
600 to be stable. Antia et al. (1981, 1982) have shed light on that 
result: using a prescription for convective fluxes based on diffusion 
formulae, they too found high-degree nonradial modes to be stable when 
the turbulent Prandtl number is unity (which appears to be the value 
that most nearly corresponds to formulae used by Berthomieu et al.), 
but when smaller values, chosen to produce linearized modes of 
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convective instability that seemed to accord best with observation, 
were used, they found that convection actually contributed to the 
instability of the modes. 

The computations of Antia et_ al. (1982) were an attempt to model 
the oscillations realistically, for they employed the Eddington 
approximation to radiative transfer to estimate heat-flux perturbations 
and in addition took some account of the fluctuations in the convective 
fluxes. However, their treatment of convection was quite rudimentary. 
This paper is a step towards rectifying that situation by what we hope 
is an improvement to the treatment of the dynamics of the convection. 

2. TIME-DEPENDENT CONVECTION FOR NONRADIAL OSCILLATIONS 

We have adopted a simple prescription of convection based on the idea 
of diffusive mixing, yet which we hope embodies much of the dynamics of 
apparently more sophisticated approaches. It is in a sense an amalgam 
of the ideas embodied in the discussions of Unno (1967, 1977; see also 
Unno et al., 1979), Gough (1977) and Antia et al. (1982). 

In a spherically symmetrical nonpulsating star the convective heat 
flux J c , for example, is in the radial direction, and according to 
local mixing-length prescriptions its magnitude F c may be written Fc = 
K tß , where β is the magnitude of the superadiabatic temperature 
gradient β and Κ. (β) is a turbulent conductivity which depends on β 
and, of course, the local mean state of the fluid. We assume that this 
equation can be generalized to the vector equation F c = l̂. (β )β when 
spherical symmetry is broken; thus we presume that the turbulent 
conductivity tensor is isotropic. 

We assume this approximation to be valid for pulsating stars too, 
and set FC = F C 0 + Fqî , where the suffix 0 refers to the static state 
and the 'suffix 1 tcT the Lagrangian perturbation. We can now write 

£ci = Ktiê 0

 + Ktoêr (D 

Since is a scalar, it may be determined by identifying the vertical 
component of FC<\ with the expression obtained from a theory of 
convection irTradially pulsating stars. The turbulent viscous stress 
tensor can be calculated in the same spirit, though we have not carried 
that through in the calculations reported here. 

Our generating convection prescription, valid for radial 
pulsations, is a hybrid of the approaches of Unno (1967) and Gough 
(1977). We set 

F d Pi +

 CP1 +

 W1 +

 Θ1 . Kt1 *1 

— - T + r - + vr + l - = κΓ+βΓ ( 2 ) 

co ο po ο ο to ο 
where ρ and are density and specific heat at constant pressure, and 
W and θ the amplitudes of the vertical component of velocity and the 
temperature fluctuation in a dominant convective eddy, which are 
computed from their approximate equations of motion [Equations (4.1) 
and (4.2) from Gough (1977)]. Perturbing the equations of motion is 
straightforward except for the mixing-length 1 and the eddy anisotropy 
parameter Φ, which is the ratio of the trace of the Reynolds stress 
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tensor to its (r,r) component (where r denotes the radial direction). 
For these we adopt Unno's (1977) simple accounting for eddy creation 
and annihilation, yielding 

1 
1 

1+io ισ 

2r 
1 1 (3) 

ο 

2ΐσ(Φ -1) ο 
ΤΤ+ϊσΤΦ 

Î3r. 
(4) 

where σ is the ratio of the pulsation frequency ω to the convective 
growth rate, Η is the pressure scale height and r is the Lagrangian 
radius co-ordinate. These expressions take due account of the 
differential compression and dilation throughout the star; aside from 
the sign convention used for frequency, Equation (3) would reduce to 
Unno's equation if pulsations were homologous. 

3. ACOUSTIC OSCILLATIONS 

Aside from the treatment of convection, p-mode oscillations of a solar 
model were computed in the manner described by Antia et_ al. (1982) 
using a turbulent viscosity Vj- = W 0i 0/(l+o^) , where σ = ω10/τ\Μ0. In 
table I we present frequencies and stability coefficients for a 
selection of modes with degrees 1 = 1 and 1 = 100. More extensive 
results are illustrated on a k-ω diagram by Chitre (these proceedings). 
Nearly all the modes are unstable, with the maximum growth rates 
occurring somewhat below 4mHz. Included in the table are growth rates 
computed with the perturbation^^ suppressed. There is a substantial 
reduction in growth rate, suggesting in common with the previous 
discussion by Antia et_ jal. (1982) that the modulation of the convective 
heat flux can destabilize the oscillations. 

TABLE I Stability coefficients of some five-minute modes 

ω/2π 
1.74 
2.42 
3.52 
3.94 
4.35 
4.63 
4.77 

1=1 

n c 

0.07 
0.48 
1.17 
1.26 
1.00 
0.47 
-0.10 

0.01 
0.04 
0.29 
0.26 
-0.04 
-0.55 
-0.97 

ω/2π 
1.83 
2.68 
3.42 
3.87 
4.30 

4.72 

1 = 100 

nc 
0.18 
1.22 
1.96 
1.94 
1.55 

1.66 

0.02 
0.18 
0.47 
0.44 
0.03 

-1.18 

The stability coeffients η are the ratios of the growth rate to the 
frequency, with the convention that η > 0 implies overstability. The 
suffices c and r refer to calculations in which the fluctuations in the 
convective heat flux were included and ignored respectively. 
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4. DISCUSSION 

The results presented here provide additional evidence that solar 
five-minute oscillations might be overstable. It must be appreciated, 
however, that there are several obvious deficiencies in our 
calculations. Aside from the uncertainties inhering in the basic 
mixing-length prescription, which at present we are unable to assess, 
we have not yet incorporated fluctuations in the turbulent viscosity 
and we have ignored the pressure component in the Reynolds stress. 
Moreover, our formalism is local, and therefore fails to account for 
the dynamical communication across large eddies which leads, in 
particular, to artificial rapid spatial oscillations in the thermal 
component of the oscillation eigenfunctions (e.g. Baker and Gough, 
1979; Gonczi and Osaki, 1980). Those oscillations have not been 
adequately resolved in the greatest depths of the convection zone in 
most of the computations we have carried out; however, a highly 
resolved test computation of a particular case hardly changed the 
growth rate, confirming suspicions that there is considerable 
cancellation in their integrated effect. 

Another potentially serious source of error concerns the treatment 
of radiative transfer. Christensen-Dalsgaard and Frandsen (1983) have 
shown how to modify the Eddington approximation to provide oscillations 
in tolerable agreement with those obtained from more accurate 
treatments of the transfer equation. They also demonstrated that the 
common practice of ignoring the deviation of the mean radiative 
intensity from the Planck function at the top of the convection zone of 
the static model, which applies to our work, supplies an artificial 
source of mode excitation. We plan to report in the future on some of 
these matters. 
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