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Abstract

Let R be any ring with identity, M a unital right R -module and a > 0 an ordinal. Then M is a direct sum
of a semisimple module and a module having Krull dimension at most a if and only if for every submodule
N of M there exists a direct summand K of M such that K c N and N/K has Krull dimension at most a.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16D70; secondary 16D60, 16P70,
16P20.

It is well known that any finitely generated 2-module is a direct sum of a projective
(in fact, a free) module and a module of finite length. More generally, it is proved
in [7, Theorem 3.3] that if R is a right Noetherian ring with maximal Artinian right
ideal A, then every finitely generated right R-module is the direct sum of a projective
module and a module of finite length if and only if the ideal A = eR for some
idempotent e in R and the ring R/A is a (left and right) hereditary (left and right)
Noetherian semiprime ring. It was left open in [7] whether the assumption that R be
right Noetherian is necessary. In fact, it is not, as Chatters showed, by proving that
if R is a ring such that every cyclic right R-module is the direct sum of a projective
module and a Noetherian module, then R is a right Noetherian ring (see [3, Theorem
3.1])

Chatters [3, Theorem 4.1] also proved that if a is an ordinal and R is a ring such
that every cyclic right R-module is the direct sum of a projective module and a module
of Krull dimension at most a, then the right R-module R has Krull dimension at most
a + 1. There are other theorems of a similar type. For example, van Huynh and
Dan [5] have considered rings with the property that every cyclic right module is the
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[2] Classes of modules with many direct summands 9

direct sum of a projective module and an Artinian module, or the property that every
cyclic right module is the direct sum of a projective module and a semisimple module.
This led to the investigations in [8, 9].

Let 3£ be a class of modules. Then d3t is defined in [9] to be the class of modules
M such that for each submodule N of M, N is contained in a direct summand K of
M such that K/N belongs to SC'. It is proved in [9, Corollary 3.2] that when X is the
class of Noetherian modules, then a module M belongs to d3£ if and only if it can be
written as a direct sum of a semisimple module and a Noetherian module. This result
generalizes [3, Theorem 3.1].

In this note we will define a class d*2£ which is dual to d3£, namely a module
M belongs to the class d*3C if, for every submodule N of M, there exists a direct
summand K of M such that K is contained in N and the factor module N/K belongs
to 3C. Our purpose then is to study some properties of d*SC and characterize it in
special cases. There are several reasons why this is of interest. In the first place, the
results obtained in [8] and [9] are very natural. Secondly, the proofs of these results
do not seem to dualize, and therefore proofs for the duals have to be found, if possible.
Thirdly, the authors have already had some success in [1], where the dual of a theorem
of Goodearl, crucial in the investigations of [8] and [9], is proved.

Here it will be proved that if R is any ring and X the class of Artinian right
fl-modules, then a module M belongs to the class d*3E if and only if M is the direct
sum of a semisimple module and an Artinian module. This is a special case of a
result for the class SC of modules with Krull dimension at most a, for some ordinal
a > 0 (Theorem 3.5). This fact in turn is proved as a consequence of the fact that
if SC is the class of modules such that each homomorphic image has finite uniform
dimension, then an R-module M belongs to d*SE if and only if M is the direct sum of
a semisimple module and a module in the class X (Theorem 3.4). Moreover, if R is
a right FBN-ring and SC the class of right R-modules with finite uniform dimension,
then a module M belongs to d*3£ if and only if M is the direct sum of a semisimple
module and a module with finite uniform dimension (Theorem 4.6).

1. Preliminaries

Throughout this note, all rings considered have an identity and all modules are
unital right modules. For any ring R, we define a class SC of R-modules to be any
collection of R-modules such that X contains a zero module and any module which
is isomorphic to some module in X also belongs to X. Let M be an R-module and
let N be any submodule of M. We call M an X-module if M is a member of the
class SC. We call N an X-submodule of M if N is an $T-module. Following the
terminology in [9], a class SC is called s-closed if every submodule of an ^"-module
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10 I. Al-Khazzi and P. F. Smith [3]

is an X-module.
Let X and <3f be classes of modules over the same ring R. Then X © W is defined

to be the class of modules M such that M is the direct sum of an ^T-submodule
and a ^-submodule. It is clear that any ^"-module is an (X © 30-module, and
X ®W = W ®X.

Let X be any class of modules. The class dX consists of all modules M such
that, for every submodule N oi M there exists a direct summand K of M such that
N c K and the factor module K /N is an X -module. Properties of the class dX are
given in [8] and [9].

We define a class d*X dual to dX'. Indeed, d*X is defined to be the class of
R -modules M such that each submodule N of M contains a direct summand K of M
such that the factor module N/K is an ^"-module.

For any ring R, we denote the classes of zero modules, simple modules, semisimple
modules, injective modules and modules of finite uniform dimension by

respectively. It will always be clear from the context which ring R is being considered.
Any unexplained terminology can be found in [2].

2. General properties

Throughout this section, we shall consider classes of modules over any ring R.
We establish some facts which will be useful in the proofs of the theorems in the
next section and also give some general properties of the class d*X, where X is a
given class of right R-modules. The following elementary result gives an alternative
characterization of the class d*X.

LEMMA 2.1. Let X be any class of modules. Then a module M belongs to d*X
if and only if, for every submodule N ofM, there exist a direct summand KofM and
an X-submodule L of M such that N = K ® L.

PROOF. The sufficiency is clear. Conversely, suppose that M e d*X and N is a
submodule of M. By hypothesis, there exist submodules K and K' of M such that
M = K®K', K c AT and N/K e X. By the Modular Law, N = K © (N n K').
Note that N n K' = N/K e X. Thus M has the stated condition.

LEMMA 2.2. Let X and & be classes of modules such that X c <&. Then

(i) d*X c d*<&,
(ii) <*? = d*2f = d*J c d*X = d*(J ® X), and
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[4] Classes of modules with many direct summands 11

(iii) d*3£ is s-closed.

PROOF. Claim (i) is clear.
To prove (ii), note that by [2, Theorem 9.6], <€ = d*2? c d*J. Let M be a

d*./-module and let N be a submodule of M. There exist submodules K and K' of
M such that M = K © K', K C A7 and iV/tf is injective. Thus N f) K' is injective
and hence A7 D AT is a direct summand of K'. Thus A7 is a direct summand of M.
By [2, Theorem 9.6], M is a ^-module.

Now (i) gives d*^ c d*X c d*(j^ © #"). Let M e </'(./ © SC). Let A7

be any submodule of M. Then there exist submodules K and K' of M such that
M = K®K', K c A7 and # / £ is an ( ^ © «2T)-module. Now N = K®(NDK')
and N n K' has the form / © L for some injective submodule / and ^T-submodule
L, because N f) K' = N/K. Then / is a direct summand of K' and hence K © / is a
direct summand of M. Moreover, A7(A" © /) = L e .T. It follows that M e d*3£.
Therefore d*(J © %) c d*^T.

To prove (iii), let M be a d*^T-module. Let Af be a submodule of M and H be a
submodule of A7. By Lemma 2.1, / / = K © L for some direct summand K of M and
<fT-submodule Z, of M. But AT is a direct summand of N. Thus A7 is a d*&-module,
by Lemma 2.1. It follows that d*3£ is s-closed.

PROPOSITION 2.3. Lef $f be any class of modules. Then

(i) c€®d3£ = d%.
(ii) <«? © d*SC = d*3C.

PROOF, (i) Clearly, dSC c ^ © d3C. Now suppose that M e <€ © d^". Then
M = M! © M2, where Mi is a ̂ -module and M2 a d^*-module. Let A7 be a submodule
of M. Then

N + M2 = [(N + M2) n M^ © M2.

But (A7 + M2) n Mi is a direct summand of Mi. Therefore N + M2 is a direct summand
ofM.

Since A7 n M2 is a submodule of M2, it follows that M2 = K © K' for some
submodules K and K' such that A7 n M2 c K and K/(N n M2) is an JT-module.
Note that

N)n M2] n /i:'
= [K + (N n M2)] n /r = /«: n K' = o.

Clearly, (K + N) + K' = N + M2. Thus

A7 + M2 = {K + N) © K',
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12 I. Al-Khazzi and P. F. Smith [5]

and hence K + N is a direct summand of M. Now N c K + N, and (A +
K/(N n M2). Hence (A~ + N)/N is an ^"-module. It follows that M is a dSC-module.

(ii) It is clear that d*SC c <g © rf*,T. Now consider any (<if © <T.T)-module M.
The module M = Mi © M2 for some ^-module Mj and rf*^"-module M2. Let N be
a submodule of M. Then M} = (N n Mi) © M' for some submodule M' of Mi. Thus
M = (ATlMi)©M'ffiM2,andA' = (AmMi)©//,where// = A7D(M'©M2). Since
(M2 © M')/M' is a d*,r-module, it follows that (// + M')/M' = (K/M1) © (L/M')
for some submodules K and L containing M', such that K/M' is a direct summand
of (M2 © M')/M' and L/M' is an $T-module, by Lemma 2.1. Thus AT is a direct
summand of M. But AT = M' © (A" n / / ) , so that K C\ H is also a direct summand of
M. It is now clear that (N fl Mi) © (K D H) is a direct summand of M. Moreover,

N/[(N n MO © (K n //)] ^ ///(A n //) = (// + K)/K
= {H + M')/K S L/M' € .T.

It follows that M e rf*^T. Thus <*f ©

COROLLARY 2.4. Lef ^T fee any s-closed class of modules. Then <£® 3£ c d*^T.

PROOF. Because 3t is 5-closed, X c J*^T and hence, by Proposition 2.3(ii),
© 3t c <g © d*^r = j * , r .

Let /? be a ring. Let X be a class of /?-modules. For any /?-module M, we
define the 3£-socle Soc^r(M) to be the sum of all JiT-submodules of M. Clearly
M = Soc^-(M) if M € ^T. If SC = y then Soc^(M) is the usual socle of
M and is denoted simply by Soc M. Now we investigate the internal structure of
d^-modules.

PROPOSITION 2.5. Let SC be any class of modules. Let M be any d*&-module.
Then the module M/Socag-(M) is semisimple.

PROOF. Let S = Soc^r(M). Any submodule of M/S has the form N/S for some
submodule N of M containing S. There exists submodules K and K' of M such that
M = K®K', K c NandN/K e 3£. Hence A' = A"©(Nn AT') andNnK' e X.
Thus N n A"' c 5, and we deduce that M/5 = (N/S) © [(A' + S)/S]. That is, AYS
is a direct summand of M/5. By [2, Theorem 9.6], M/5 is semisimple.

COROLLARY 2.6. Lef X be any class of modules such that y c $r. Let M be
any d*SC-module. Then Soc^-(M) is an essential submodule of M.
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[6] Classes of modules with many direct summands 13

PROOF. Let N be any submodule of M such that N n Soc^-(M) = 0. Then
N embeds in M/Soc^r(M). By Proposition 2.5, N e *€, so that, by hypothesis,
N c Soc^-(M). Hence N = 0. Thus Soc ̂ r(M) is an essential submodule of M.

LEMMA 2.7. Let SC be any class of modules. Let M be a d*3£-module and let
N be any submodule of M. Then N contains a non-zero X-submodule or N is a
semisimple direct summand of M.

PROOF. Suppose that N does not contain a non-zero ^-submodule. Let P be any
submodule of N. By Lemma 2.1, P = K © L for some direct summand K of M and
•^"-submodule L of M. But L = 0, and hence, P = K. By [2, Theorem 9.6], N is a
semisimple direct summand of M.

PROPOSITION 2.8. Let 3£ be any s-closed class of modules and let M be any d*3£-
module. Then there exist a semisimple submodule Mi and a submodule M2 of M
such that Af = M! © M2 and every non-zero submodule of M2 contains a non-zero
^-submodule.

PROOF. By Zorn's Lemma, M contains a submodule Mi maximal with respect
to the property that it does not contain a non-zero «^T-submodule. By Lemma 2.7,
Mx is a semisimple direct summand of M. There exists a submodule M2 such that
M = Mi © M2. Let N be a non-zero submodule of M2. Then Mt © N contains a
non-zero ^"-submodule K, by the choice of M\. Note that K n Mi € X and hence
K n Mi = 0. Thus A" embeds in N and hence N contains a non-zero ^T-submodule.

3. The main theorem

Let R be any ring. Let M be a right R-module. By a subquotient of M we shall
mean a right /^-module N/K, where AT c Af are submodules of M. Recall that
ty denotes the class of right R-modules with finite uniform dimension. Adopting
the notation of [8] and [9], we denote by h<% the class of modules M such that
every homomorphic image is a ^-module. We next give an easy characterization of

LEMMA 3.1. Let R be any ring. Then an R-module M is an (hW)-module if and
only if every semisimple subquotient of M is finitely generated.

PROOF. The necessity is clear. Conversely, suppose that M is not an (hW)-module.
Then there exists a submodule K of M such that M/K & %. There exist elements
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14 I. Al-Khazzi and P. F. Smith [7]

xn e M\K (n > 1) such that the sum [(*,/? + K)/K] + [(x2R + K)/K] + • • • is
direct. For each n > 1, K is contained in a maximal submodule Pnof(xnR + K). Let
N = AT + xxR + x2R H and let /> = Px + P2 + P3 H . Then P is a submodule
of AT and N/P = 0 n 2 l (xn/? + K)/Pn. Therefore N/P is a non-finitely generated
semisimple subquotient of M.

COROLLARY 3.2. Lef R be a ring and M an R-module. Let N be a submodule of
M. Then M is an (hW)-module if and only ifN and M/N are both (h^)-modules.

PROOF. The necessity is clear (for example, by Lemma 3.1). Conversely suppose
that N and M/N are both (/j^)-modules. Let P C Q b e submodules of M such that
Q/P is semisimple. We shall prove that Q/P is finitely generated. Note that

Q/[P + ( g n AO] = (Q + N)/{P + N),

so that Q/[P + (Q fl AO] is finitely generated. Moreover,

[P + (Q n N)]/p = (Qn N)/(P n AO,

so that [P + (QnN)]/Pis finitely generated. It follows that Q/P is finitely generated.
By Lemma 3.1, M e hW.

Let R be any ring and let SC be any class of modules over R. Then aS£ will
denote the class of modules such that every proper submodule is an JT-module. It is
clear that aSC c d*3£', for any class 3£. We also define, for any positive integer n,
5£(n) = SC®SC®---®3C{n summands). We define

LEMMA 3.3. Let X be any class of modules and let & = h%. Then
(i) ( ^

(ii) <&
(iii) ^ n d*<& = <&.

PROOF, (i) Let M e *% n d*3C'. Then M = Mi 0 • • • © Mn is a finite direct sum
of indecomposable submodules M, (1 < / < n). By Lemma 2.2(iii), Af, e d*3£ and
hence M, e a3£ for each 1 < / < n. Thus M e ( d f ) M .

(ii) Clearly ^ = a&, by Lemma 3.1. Moreover, <& = ^ ( w ) . This proves (ii).
(iii) This follows directly from parts (i) and (ii).
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[8] Classes of modules with many direct summands 15

It is proved in [8, Theorem 3.1] that

Now we prove the following analogue of this fact.

THEOREM 3.4. For any ring R, d*{hW) = tf® {h<%).

PROOF. By Corollary 2.4, "af © (hW) c d*(hW). Conversely, let M e d*{hW).
Then there exist submodules K, K' of M such that M = K © K', K c Soc M and
(Soc M)/K e / i ^ . Note that £ € # . Moreover, Soc K' = (Soc M)/«", so that
Soc K' is finitely generated. By Lemma 2.2(iii), we can suppose, without loss of
generality, that Soc M is finitely generated, and prove that M e h%.

Let P c g b y submodules of M such that Q/P € c€. Lemma 2.2(iii) allows us to
assume M = Q. There exist submodules L, U of M such that M = L © L', L c P
and P/L e A'SC. Note that P = L © (P n L'), and hence (P n L') = P/L e <2r.
By Zorn's Lemma, there exists a submodule L" of L' maximal with respect to the
property L" n (P (1L') = 0. Note that L" n P = 0 gives L" is semisimple, and hence
finitely generated, because Soc M is finitely generated. The submodule L' contains
the essential submodule L" © (P D L') which has finite uniform dimension. Therefore
L' 6 <%. Now Lemmas 2.2(iii) and 3.3(iii) together give L e <% n d*(/i^) = / j ^ .
However, A//L = L', and hence M/P is finitely generated. Therefore by Lemma 3.1,
M

Let P. be any ring. For any ordinal a > 0, let J^a denote the class of modules
with Krull dimension at most a. Note that J^o is the class of Artinian modules. In
[9, Corollary 3.2] it is proved that dJf = *€ © JV, for any ring R, where J/ denotes
the class of Noetherian modules. We now prove the dual of this result.

THEOREM 3.5. For any ring R and ordinal a > 0, d*Xa = <& © JTa.

PROOF. By Corollary 2.4, # © Xa £ d*Xa. Conversely, suppose that M €
d*Jfa. Because J(fa C / i ^ (see, for example, [4, Lemma 1.1 and Proposition 1.4]),
Lemma 2.2(i) and Theorem 3.4 give that M = Mx © M2 for some ^-module M\,
and ^-module M2. By Lemma 2.2(iii), M2 € d*Xa, and, by Lemma 3.3(i), M2 e
(aJfra)

(l0). But, clearly aJtTa = Xa (see [4, Lemma 1.1]). Thus M2 e Xa. It
follows that M G ̂  © j r a .

In particular, Theorem 3.5 asserts that d*srf = ^ © ^/, for any ring P., where srf
is the class of Artinian P-modules.
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16 I. Al-Khazzi and P. F. Smith [9]

4. FBN-rings

Let R be a ring. We know from [8, Theorem 3.1] that

Clearly d*{hW) c d*^. However, if R = K[XU X2,...] denotes the polynomial
ring over a field K in a countably infinite number of commuting indeterminates
Xu X2, • •., then RR is uniform, so that RR e d*<%, but RR & tf ®h^ = d*(h<fr),
because RR has zero socle and the ring R has a homomorphic image with non-finitely
generated socle. Thus d*(hW) # d*W.

This raises the question: given a ring R, what is d*9S for Rl We shall show that
d*<% = <g © <2r for the class of right FBN-rings.

Let R be any ring. Let 3E and ty be classes of R-modules. Then SEW is defined
to be the class of modules M which contains an i£"-submodule N such that M/N is a
^-module. For any ring R, we denote the class of finitely generated modules by <S.

PROPOSITION 4.1. For any ring R, d*c2/ n <€<£ c <jf e

PROOF. Let M e d*^ n ^W. Let 5 denote the socle Soc M of M. There exists
a "^-submodule N of M such that Af/Af is finitely generated. Therefore M/S is
finitely generated. Hence there exists a finitely generated submodule L of M such
that M = L + S. Since 5 is semisimple, we know that S = (L (~) S) ® S\ for some
submodule Si of S. Therefore, Si is semisimple and M = L © Si.

Suppose that L is not a ^-module. Then there exists a submodule N of L such
that TV is an infinite direct sum of non-zero submodules of L. Now by Lemma 2.2(iii),
L e d*W, and, by Lemma 2.1, there exist a direct summand K of L and a '&'-
submodule /* such that N = K ® P. But L finitely generated implies K is finitely
generated. This fact combined with the fact that P has finite uniform dimension
shows that N is not an infinite direct sum of non-zero submodules, a contradiction.
Therefore L is a ^-module. Thus M e <«f © ^ .

COROLLARY 4.2. Lef /? fee any ring and M any d*^-module. Then any finitely
generated submodule of M has finite uniform dimension.

PROOF. By Lemma 2.2(iii) and Proposition 4.1.

LEMMA 4.3. Let R be any ring. Let M be a d*^-module with zero socle. Then M
has finite uniform dimension or there exist a countable family of independent cyclic
uniform submodules iV, (/ > 1), proper non-zero submodules K, of Nt (i > 1) and
independent submodules L, L' of M such that
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[10] Classes of modules with many direct summands 17

(a) L ffi L' = Nx ffi N2 ffi N3 ffi • • •,
(b) L c Kx © K2 © K3 © • • •, W
(c) L' contains a finitely generated essential submodule.

PROOF. Suppose M & %. Let N = Nt © N2 ffi N3 © • • • be an infinite direct sum
of non-zero cyclic submodules of M. By Corollary 4.2 we can suppose without loss
of generality that Nt is uniform for each i > 1. For each / > 1, Nt has zero socle
and hence Nt contains a proper non-zero (that is, essential) submodule Kt (see [2,
Proposition 9.7]). Let K denote the submodule K\ © K2 ffi K3 © • • • of N and note that
K is essential in N (see [2, Proposition 5.20]). By hypothesis and Lemma 2.2(iii),
there exist submodules L and L' of N such that N = L ffi L' with L c. K and ^T/L
a ^-module. Note that tf = L ffi (K n L'), A : n L ' = /iT/L and hence /i: fl L' is a
•^-module. But K essential in N implies K D L' is essential in Z/. This implies L' is
a ^-module. Therefore L' contains a finitely generated essential submodule.

COROLLARY 4.4. Let R be any ring. Then any non-singular d*^-module with
zero socle has finite uniform dimension.

PROOF. Suppose that M is a non-singular d*ty -module with zero socle and M g <%.
By Lemma 4.3 there exist submodules iV, (/ > 1), K, (i > 1), L and L' of M with the
properties listed in the lemma. Let H be a finitely generated essential submodule of
L'. Because H is finitely generated, there exists t > 1 such that H c. Nt® •• • (B N,.

Let x € iV,+i, * £ K,+i. Then ^ = j — y' for some j e t , / e L'. Note that
>> € K so that y = k\ + • • • + kn for some w > 1, it,- € Jf (1 < / < n). There
exists an essential right ideal E of R such that y'E c / / c N, © • • • © N,. Now

y' = y-x = ki + - • -\-kl + (kt+i-x)+kt+2-\ \-kn. However./E c Nt@---®Nt

implies that (kl+i — x)E = 0. Recall that N,+i is non-singular. Thus k1+i — x = 0.
Hence x = &,+i € K,+i, a contradiction. It follows that M is a ^-module.

For any ring R, let & denote the class of singular modules.

PROPOSITION 4.5. For any ring R,<tf®<& c. d*^ c & © ^ © <%.

PROOF. By Corollary 2 . 4 , ^ © ^ c rf*^. Now suppose that Mis. a 6?*^-module.
Let S be the socle of M. Then there exist submodules K and AT' of M such that
M = K ffi £ ' , AT C S and Soc £ ' = S D K' is a ^-module. It follows that K
is a ^-module and A"' has finitely generated socle SDK'. Let Z = Z ( # ' ) , the
singular submodule of AT'. By Lemma 2.2(iii), K' is a d*^-module and hence there
exist submodules L and L' of K' such that /T = L ffi L', L c Z and Z fl L' is a
^-module. Thus L is singular and the singular submodule Z' of L' is a ^-module.
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18 I. Al-Khazzi and P. F. Smith [11]

We claim that L' is a ^-module. Suppose not. Then there exists an infinite direct
sum P = Pi © P2 © P3 © • • • of non-zero submodules of L'.

Because the socle of K' is a ^-module, and Z' is a ^-module we can suppose
without loss of generality that P, is non-singular with zero socle for all < > 1. Thus P
is a non-singular d**^-module with zero socle. By Corollary 4.4, P is a ^-module,
a contradiction. Thus L' is a ^-module. It follows that

M = L@K®L' e ST © <af © <2r.

Using Proposition 4.5 we shall prove that for any commutative Noetherian ring
R, d*<% =c£' © ^ ' . In fact we can do rather better. Recall that a ring R is a right
FBN-ring provided R is right Noetherian and, for every prime homomorphic image S
of R, every essential right ideal of 5 contains a non-zero two-sided ideal. Examples of
right FBN-rings are commutative Noetherian rings and right Noetherian rings which
satisfy a polynomial identity (that is, right Noetherian Pi-rings).

Let R be a right Noetherian ring and U a uniform right R-module. Recall that

P = {r € R : Ar = 0 for some non-zero submodule A of U]

is a prime ideal of R and P = ann( W), the annihilator of some non-zero submodule
W of U. We call P the assassinator ofU and write P — ass(f7).

THEOREM 4.6. Let Rbea right FBN-ring. Then d*% = <€ © W.

PROOF. By Corollary 2.4, ^ © ^ c d*<%. Suppose that d*^ + <€ ®<% for the
ring R. Because R is right Noetherian, we can suppose that d*^ = ^ © W for any
proper homomorphic image of R.

Let M be a d*^-module such that M is not a C^ffi<20-module. By Proposition 4.5,
M e 2? ®c€ &*%. By Lemma 2.2(iii), we can suppose without loss of generality
that M is singular. By Lemma 4.3, M contains submodules iV, (i > 1), Kt (i > 1),
L and L' with the properties stated in the lemma. For each / > 1, let P, = ass(N,).
Clearly we can suppose without loss of generality that Nt Pi = 0. Moreover, because
Nj is singular and R is a right FBN-ring, P, is an essential right ideal of R for each
i > 1 (see[6, 6.10.4]).

There exists a finitely generated essential submodule H of L'. Clearly there exists
a positive integer t such that H c Nx ©. . •©#,. Let* e L'. Then* = *H hxn

forsomew > 1 and*, € N, (1 < i < n). Note that x( Px n- • -HP,) c N,+1©- • -®Nn,
and hence JC(PJ n • • • n P,) n H — 0. Thus x(P, n • • • n Pt) = 0. It follows that
L'(Pi n • • • n p,) = o.

Let j > t + I. Let x e Nj, x & Kj. Now x = v - v' for some v e L, v' 6 L'.
Note that y e Kx © K2 © /C3 © • • •, so that y = kx + • • • + ks for some s > 1 and
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kt e Ki (1 < i < s). Note that / e L', so that / ( P , D • • • n P,) = 0, and hence
(kj - x)(P{ n • • • n P,) = 0. It follows that P, D • • • n P, c Py, because ks - x ± 0.
Thus C? = A n • • • D Pr c P, for all j > 1.

Let A? — Nl®N2®N3@- • •. Note that NQ — 0 and g is an essential right ideal of
fl. In particular, Q ^ 0. By Lemma 2.2(iii) the (R/Q)-module N is a d*1^-module
with zero socle, and by assumption, N G ^ a contradiction. This completes the
proof.
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