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The spatial structure and time evolution of tornado-like vortices in a three-dimensional
cavity are studied by topological analysis and numerical simulation. The topology theory
of the unsteady vortex in the rectangular coordinate system (Zhang, Zhang & Shu, J.
Fluid Mech., vol. 639, 2009, pp. 343–372) is generalized to the curvilinear coordinate
system. Two functions λ(q1, t) and q(q1, t) are obtained to determine the topology
structure of the sectional streamline pattern in the cross-section perpendicular to the
vortex axis and the meridional plane, respectively. The spiral direction of the sectional
streamlines in the cross-section perpendicular to the vortex axis depends on the sign
of λ(q1, t). The types of critical points in the meridional plane depend on the sign
of q(q1, t). The relation between the critical points of the streamline pattern in the
meridional plane and that in the cross-section perpendicular to the vortex axis is set up.
The flow in a three-dimensional rectangular cavity is numerically simulated by solving
the three-dimensional Navier–Stokes equations using high-order numerical methods. The
spatial structures and the time evolutions of the tornado-like vortices in the cavity are
analysed with our topology theory. Both the bubble type and spiral type of vortex
breakdown are observed. They have a close relationship with the vortex structure in the
cross-section perpendicular to the vortex axis. The bubble-type breakdown has a conical
core and the core is non-axisymmetric in the sense of topology. A criterion for the bubble
type and the spiral type based on the spatial structure characteristic of the two breakdown
types is provided.
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1. Introduction

The cavity is a typical configuration that is widely used in engineering applications.
The high-speed flow past the open cavity will generate many complex vortices. The
resulting intense flow will cause self-sustained pressure oscillations that damage the
nearby components (Rossiter 1964; Dix & Bauer 2000; Morton 2007), and can also
affect the fuel mixing and flame holding in the engine (Yeom, Seo & Sung 2013). Clear
recognition of the flow structures underlying cavity flow oscillations will facilitate the
development of effective flow control techniques.

The type of cavity flow is mainly related to two parameters. One is the
length (L)-to-depth (D) ratio of the cavity, and the other is the Mach number of the
free stream (Lawson & Barakos 2011). At very low incoming velocity, three-dimensional
instability modes of low Reynolds number open cavity flows are discussed by
Meseguer-Garrido et al. (2014), Citro et al. (2015) and Picella et al. (2018). When the
cavity is deep (L/D < 6 ∼ 8 for subsonic or L/D < 10 for supersonic), the flow is
regarded as ‘open’. The shear layer at the cavity mouth bridges the cavity. For shallow
cavities (L/D > 13), the flow is considered to be ‘closed’. For this type, the shear layer
expands over the cavity leading edge and impinges on the cavity floor (Stallings & Wilcox
1987; Plentovich, Stallings & Tracy 1993). Between the ‘open’ and the ‘closed’ type is the
transitional flow. The width (W) of the cavity also affects the characteristics of the cavity
flow. The flow of the deep cavity is usually the ‘open’ type when W/D is in the range
of 1 to 8 (Plentovich et al. 1993). Due to the rich physical phenomena and engineering
applications, there is plenty of literature on the–topic of the ‘open’-type flow (Rowley &
Williams 2006; Gloerfelt, Bogey & Bailly 2007; Lawson & Barakos 2011). In this type,
the flow oscillations are driven by the mechanism of flow/acoustic resonance and form a
self-sustained feedback loop (Rossiter 1964). The frequencies of these resonances are well
predicted by a semi-empirical formula proposed by Rossiter (1964), which is extended to
the case of high Mach numbers by Heller & Bliss (1975). While most research mainly
focused on the spectral features of the pressure signals, less attention was paid to the
detailed vortical structure characteristics in the cavity (Beresh, Wagner & Casper 2016).

Through experimental measurements, a few papers considered the flow topology in a
three-dimensional cavity. Crook, Lau & Kelso (2013) conducted experiments on low-speed
incompressible cavity flow in air and water. They provided a comprehensive description
of the vortical structures in a cavity based on the velocity field obtained by particle image
velocimetry. According to the study by Crook et al. (2013), the front and rear, streamwise,
small rear corner and recirculation vortices are symmetric about the cavity central plane,
while the tornado-like vortex appears to be the primary indication of asymmetry within
the cavity flow. The tornado-like vortex presents a stable focus in the velocity field of
the bottom wall surface. The tornado-like vortex is so called because of the appearance of
similarity to tornadoes generated under special meteorological conditions (Rotunno 2013).
A single tornado-like vortex is observed located near the cavity centreline at the front of
the cavity, and the evidence of a second weak tornado-like vortex of opposite rotational
direction can also be observed in the section not far from the bottom wall (Crook et al.
2013).

For high-speed three-dimensional cavity flow with sidewalls, velocimetry data are
very rare due to the high requirements of experimental equipment and the difficulty of
measurement (Beresh et al. 2016). Different from the wall-free case, where the camera
can be placed on the side to get the whole cross-sectional flow field directly, it is difficult
to obtain velocity data near the front wall, back wall and the bottom of the cavity because
of the large angle deviation from the cameras. The oil-flow visualization technique or
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Tornado-like vortices in 3-D rectangular cavity flows

numerical simulation is helpful to obtain the velocity field on the wall surface of the
cavity. Atvars et al. (2009) performed numerical and experimental studies on the cavity
flow at Mach number 0.85. The flow visualization of the bottom wall surface shows
that there are two tornado-like vortices upstream of the cavity. Dolling, Perng & Leu
(1997) carried out hypersonic experiments of cavity flow with Mach number 5 using
the kerosene-diesel-lampblack oil-flow method. The flow patterns on the wall surface
show that there is a pair of tornado-like vortices on the front floor. These two tornado
vortices occupy almost 50 % of the cavity floor when a store is placed in the cavity.
The fluorescence-oil-flow visualization technique uses light with a specific wavelength
and energy to irradiate the oil pigment, which can better reveal the details of wall flow
structures (Woodiga & Liu 2009; Chen et al. 2017). Using this visualization technique,
Yang et al. (2018) studied the streamline pattern on the cavity surface for four different
Mach numbers 0.6, 0.9, 1.5 and 2.0. A pair of stable foci that represents the tornado-like
vortices can be observed in these four cases. In these high-speed three-dimensional cavity
flows (Dolling et al. 1997; Atvars et al. 2009; Yang et al. 2018), the rotational direction of
the tornado-like vortices is opposite to that of the low-speed incompressible case. However,
although the primary characteristics of the tornado-like vortices on the bottom wall surface
are obtained, the time-averaged streamlines may mask the evolution characteristics of the
tornado-like vortices. Moreover, a single cross-sectional plane of the streamline pattern
near the bottom wall surface is insufficient to reveal the spatial structure of the whole
vortex, leaving the structural properties of tornado-like vortices in high-speed cavity flows
still unknown.

The research on the structure of the tornado-like vortex is to some extent driven
by tornado phenomenology and climatology (Rotunno 2013). Due to the measurement
difficulty of the real tornado, the tornado-like vortex is produced by a special experimental
facility in the laboratory to investigate its structure and movement (Rotunno 2013; Refan
& Hangan 2016, 2018; Ashrafi et al. 2021). The fluids converge towards the central axis
along the bottom wall surface and turn upward, resulting in the generation of a strong
axial flow, which is a typical swirling flow. The vortices in swirling flow have been
studied extensively under the vortex breakdown phenomenon (Sarpkaya 1971a,b; Hall
1972; Leibovich 1978, 1984; Lugt 1989). There are two major types of vortex breakdown,
one is the spiral type (S-type), and another is called the bubble type (B-type) (Leibovich
1978, 1984). For the S-type, the vortex axis streamlines quickly deviate from the original
direction with the development of the swirling flow. For the B-type, there is a conical core
in the breakdown region, which is considered to be axisymmetric (Leibovich 1984). The
S-type and B-type can be observed simultaneously in some flows, e.g. on the lee sides
of a delta wing (Lambourne & Bryer 1962). The theories that include the hydrodynamic
instabilities, analogy to boundary layer separation (Hall 1961, 1972) and the concept of
a critical state (Benjamin 1962; Bossel 1969) were established to estimate the position
of the vortex losing its stability (Lessen, Singh & Paillet 1974; Nolan 2012), which lacks
information on the detailed topology structures of the swirling vortex nevertheless.

To study the flow structure in the breakdown region, critical-point concepts have been
applied in this area (Délery 1994, 2001), initially introduced by Legendre (1956, 1977)
for the original purpose of revealing the separation in three-dimensional flow. Perry &
Chong (1987) provided a framework and methodology using the critical-point concepts
to describe the flow patterns and gave a distribution of the critical points and their type.
Chong, Perry & Cantwell (1990) further extend the theory to general three-dimensional
flow fields. Based on the physical perspective of the vortex axis, Zhang (1995) analysed the
topological structure of an ideal steady vortex using the critical-point theory of ordinary
differential equations. He gave a key parameter to determine the vortex structure in the
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cross-section perpendicular to the vortex axis and found an essential difference in the
streamline pattern between the supersonic vortex and the subsonic vortex. The theory was
extended to the unsteady state by Zhang, Zhang & Shu (2009) to study the topological
structure of the unsteady vortex breakdown in the interaction between a normal shock
wave and a longitudinal vortex. These authors found a quadru-helix structure in the tail of
the vortex breakdown. Further, Zhang (2018) found that there are tornado-like vortices in
the separation surface of the three-dimensional flow over a prolate spheroid.

However, vast numerical simulation and experimental results indicate that the flow
within the cavity with high-speed inflow is highly unsteady (Gloerfelt et al. 2007; Lawson
& Barakos 2011). As a result, the tornado-like vortices in the cavity flow are different
from the ideal spiral vortex and may have different spatial structures. The purpose of this
paper is to study both the spatial structure and time evolution of tornado-like vortices
in high-speed cavity flow. Based on the physical perspective of the vortex axis and the
physical assumption of the swirling flow, the spatial structure of a tornado-like vortex
can be revealed. We perform the numerical simulations of the cavity flow for Mach
numbers 0.9 and 1.5, which are the typical Mach numbers in the range of high subsonic
to supersonic speeds with important application backgrounds (Beresh et al. 2015a,b). The
geometry ratio of the cavity is L : W : D = 6 : 2 : 1, which belongs to the open cavity flow
(Stallings & Wilcox 1987; Plentovich et al. 1993; Lawson & Barakos 2011). We investigate
the structural characteristics of the tornado-like vortices in the cavity using the critical
point theory.

This paper is organized as follows. In § 2, we generalize the topological theory in
the rectangular coordinate system to the curvilinear coordinate system. The sectional
streamline pattern in the cross-section perpendicular to the vortex axis and the meridional
plane, and the relations between the critical point in the meridional plane and the
streamline pattern in the cross-sectional plane perpendicular to the vortex axis are
analysed. In § 3, we present the numerical method and computational conditions for
solving the Navier–Stokes equations in three-dimensional cavity flow and the validation
of numerical results. In § 4, based on the topological analysis and numerical simulation,
the evolution and the spatial of the tornado-like vortices in the cavity flow are analysed.
Section 5 contains our conclusion.

2. Topological analysis of spiral vortex

2.1. In the cross-section perpendicular to the vortex axis
In cavity flow, the spiral feature of the tornado-like vortex is very complex. According
to the study by Crook et al. (2013), its spiral features vary along its axis. In this
section, the topology method (Zhang 1995; Zhang et al. 2009) is used to analyse the
spiral characteristic of the tornado-like vortex in the cavity. In the analytical studies of
Zhang (1995) and Zhang et al. (2009), an effective formula is provided to determine the
streamline pattern of a swirling flow on the cross-section perpendicular to the vortex axis.
The formula is obtained based on the assumption that the vortex axis is a straight line.
However, the vortex axis is usually in a curve shape in real flows. Here, we first generalize
the topology theory to the case of the curvilinear vortex axis. The deduction is based on
an orthogonal curvilinear coordinate system (q1, q2, q3), as shown in figure 1. Here, u1,
u2 and u3 are the velocity components corresponding to the directions of q1, q2 and q3,
respectively. Without loss of generality, we set the vortex axis in the axis q1 direction.
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q3

q2

q1

u3

u1

u2

Figure 1. Schematic diagram of curvilinear coordinate system.

The continuity equation of the flow in this curvilinear coordinate system is
∂ρ

∂t
+ 1

H1H2H3

(
∂(ρH2H3u1)

∂q1
+ ∂(ρH3H1u2)

∂q2
+ ∂(ρH1H2u3)

∂q3

)
= 0, (2.1)

where H1, H2 and H3 are the Lame coefficients, ρ is the density of the fluids and t
represents the time. Their expressions are

Hi =
√(

∂x
∂qi

)2

+
(

∂y
∂qi

)2

+
(

∂z
∂qi

)2

, i = 1, 2, 3, (2.2)

where x, y and z are the axes of the normal orthogonal coordinate system. The momentum
equation in the direction of q1 is

Du1

Dt
+ u1u2

H1H2

∂H1

∂q2
+ u1u3

H1H3

∂H1

∂q3
− u2

2
H1H2

∂H2

∂q1
− u2

3
H3H1

∂H3

∂q1
= − 1

H1ρ

∂p
∂q1

+ τμ

Re
.

(2.3)

Here, D/Dt is the material derivative and p is the pressure. The last term τμ/Re is related
to the viscosity, τμ is a function of dynamic viscous coefficient μ and velocities, Re is the
Reynolds number. For inviscid flow or high Reynolds number flow (Re � 1), this term is
infinitesimal and can be neglected.

Because the vortex axis is a streamline, the boundary condition on the vortex axis is

u2(q1) = u3(q1) = 0. (2.4)

Along the vortex axis of q1, (2.3) can be simplified as:
∂u1

∂t
+ u1

H1

∂u1

∂q1
= − 1

H1ρ

∂p
∂q1

. (2.5)

The velocity in the near region of the vortex axis can be expressed by a Taylor expansion

u1(q1, q2, q3) = u1
1 + ∂u1

∂q1
q1 + ∂u1

∂q2
q2 + ∂u1

∂q3
q3 + O(q2

1, q2
2, q2

3),

u2(q2, q3) = ∂u2

∂q2
q2 + ∂u2

∂q3
q3 + O(q2

2, q2
3),

u3(q2, q3) = ∂u3

∂q2
q2 + ∂u3

∂q3
q3 + O(q2

2, q2
3).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Here, u1
1 is velocity component along the axis q1 at the origin of the coordinate system.

The variables u1
2, u1

3, ∂u2/∂q1 and ∂u3/∂q1 vanish in (2.6) because u2 and u3 are constant
and equal to zero along the axis of q1 according to (2.4).
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The streamlines of the vortex are defined by

dX
dt

= U, (2.7)

where X = (q1, q2, q3) is the space position, and U = (u1, u2, u3) is the vector of the
velocity. The local velocity field around a point X 0 can be expressed to the first order as

U(X + δX ) = U(X ) + DδX + O(‖δX‖2), (2.8)

where D = ∇U is the velocity gradient tensor. According to the vortex definition proposed
by Chong et al. (1990), matrix D has complex eigenvalues in the vortex core region. Thus,
for the swirling flow, matrix D can be transformed into a canonical form matrix A′ (Chong
et al. 1990; Zhou et al. 1999)

D = (vr, vcr, vci) ·
⎛
⎝λr

λcr λci
−λci λcr

⎞
⎠ · (vr, vcr, vci)

−1

= (vr, vcr, vci) · A′ · (vr, vcr, vci)
−1, (2.9)

where A′ has a real eigenvalue λr and a conjugate pair of complex eigenvalues λcr ± λci · i.
The corresponding eigenvectors of these three eigenvalues are vr, vcr and vci. As discussed
by Zhou et al. (1999), the local flow is either stretched or compressed along the axis vr.
The particular sectional streamlines of interest lie in the cross-section spanned by the
eigenvectors vcr and vci, on which the flow is swirling. As shown in figure 1, the vortex
axis is denoted by the q1-axis. Then, in the cross-section perpendicular to the vortex axis
of q1, the sectional streamline can be described by

dq3

dq2
= u3

u2
. (2.10)

By substituting (2.6) into the above formula and neglecting the higher-order terms, we can
get

dq3

dq2
= u3

u2
=

∂u3

∂q2
q2 + ∂u3

∂q3
q3

∂u2

∂q2
q2 + ∂u2

∂q3
q3

. (2.11)

According to the critical-point theory of ordinary differential equations (Jordan & Smith
1977), the sectional streamline pattern in the neighbourhood of the vortex axis is related
to the discriminant of the eigenvalue equation of the rate-of-deformation tensor matrix
F = ∂(u2, u3)/∂(q2, q3) in the cross-sectional plane. The discriminant depends on the
opposite of the trace and determinant of matrix F as follows:

R = −
(

∂u2

∂q2
+ ∂u3

∂q3

)
, q = ∂u2

∂q2

∂u3

∂q3
− ∂u3

∂q2

∂u2

∂q3
, (2.12)

where R and q are the coefficients of the first and zero orders of the eigenvalue equation
of matrix F . The critical points in a two-dimensional space include the focus, node and
saddle. The classification of the critical points related to these two variables R and q
is replotted following Perry & Chong (1987) and Délery (2001), as shown in figure 2.
For a swirling flow, the streamline pattern in the cross-sectional plane perpendicular to
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R

q

q = R2/4

Node

Saddle

Focus

Figure 2. The classification of critical points.

the vortex axis is related to the region above the parabolic curve q = R2/4, as shown
in figure 2. In the first quadrant, the streamline pattern appears as a stable focus. In the
second quadrant, the streamline pattern appears as an unstable focus. Therefore, the spiral
direction is determined by the positive and negative signs of function

λ(q1, t) = R = −
(

∂u2

∂q2
+ ∂u3

∂q3

)
. (2.13)

The details can be found in Chong et al. (1990) and Zhang et al. (2009). If λ > 0, the
sectional streamlines spiral inward in the cross-section perpendicular to the vortex axis.
If λ < 0, the sectional streamlines in this cross-section spiral outward. If λ changes sign
along the vortex axis, one more limit cycle may appear in the sectional streamline pattern
(Jordan & Smith 1977; Zhang et al. 2009). By substituting the continuity equation (2.1)
and the boundary condition (2.4), the function λ is

λ(q1, t) = H2

ρ

∂ρ

∂t
+ 1

ρH1H3

∂(ρH2H3u1)

∂q1
+

(
H2

H3
− 1

)
∂u3

∂q3
. (2.14)

For steady flow, the first term on the right side of (2.14) vanishes, and the function λ is

λ(q1) = H2

H1

u1

ρ

∂ρ

∂q1
+ H2

H1

∂u1

∂q1
+ u1

H1H3

∂(H2H3)

∂q1
+

(
H2

H3
− 1

)
∂u3

∂q3
. (2.15)

If the flow is isentropic, ∂p/∂ρ = a2. Here, a is the local sound speed. By substituting
the Euler equation (2.5), we can obtain the function λ along the vortex axis of q1

λ(q1) = H2

H1

1
ρu1

(M2
1 − 1)

∂p
∂q1

+ u1

H1H3

∂(H2H3)

∂q1
+

(
H2

H3
− 1

)
∂u3

∂q3
, (2.16)

where M1 is the local Mach number on the vortex axis.
If the vortex axis is a straight line, the orthogonal curvilinear coordinate system

(q1, q2, q3) degenerates into the normal orthogonal coordinate system (x, y, z), then we
have H1 = H2 = H3 = 1. In this case, the function λ(q1) will degenerate into the form
1/(ρu1)(M2

1 − 1)∂p/∂q1 (Zhang 1995; Zhang et al. 2009), which shows that there is an
essential difference between a subsonic vortex and a supersonic vortex.
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(a) (b) (c)

Figure 3. Schematic diagram of the streamline pattern in the meridional plane.

2.2. In the meridional plane
In the meridional plane passing through the vortex axis of q1, without loss of generality, the
q1 − q3 plane is set as the meridional plane, and the sectional streamline can be expressed
by

dq3

dq1
= u3

u1
. (2.17)

When u1
1 = 0, the corresponding position is a critical point. In the vicinity of the critical

point, by applying (2.6) and neglecting the higher-order terms, we can get

dq3

dq1
=

∂u3

∂q3
q3

∂u1

∂q1
q1 + ∂u1

∂q3
q3

. (2.18)

Similarly, the sectional streamline pattern in the vicinity of the critical point depends on
the following two variables:

R = −
(

∂u1

∂q1
+ ∂u3

∂q3

)
, q(q1, t) = ∂u1

∂q1

∂u3

∂q3
. (2.19)

Through simple derivation, we have R2 − 4q = (∂u1/∂q1 − ∂u3/∂q3)
2 ≥ 0. Thus, the

streamline pattern in the meridional plane is related to the region below the parabolic curve
q = R2/4, as shown in figure 2. The critical point is a node or saddle, depending on the
sign of q(q1, t). If q(q1, t) > 0, the critical point is a node. If q(q1, t) < 0, the critical point
is a saddle. The possible streamline pattern is shown in figure 3 (Zhang 2005; Zhang et al.
2009).

2.3. Relations of streamline pattern between the meridional and perpendicular planes
Now we analyse the relations between the critical point in the meridional plane and the
streamline pattern in the cross-sectional plane perpendicular to the vortex axis. For the
first type of saddle, as shown in figure 3(a), the axial velocity u1 is zero. The axial
velocity changes from positive to negative when it passes through this type of saddle,
and thus we have ∂u1/∂q1 < 0. Since q = ∂u1/∂q1 × ∂u3/∂q3 < 0 holds at the saddle, it
must have ∂u3/∂q3 > 0. Based on the symmetry of the ideal swirling flow as assumed at
the beginning of this section, the meridional plane can also be set at the q1 − q2 plane.
Thus, we also have ∂u2/∂q2 > 0. Putting these into (2.13), we have λ < 0. According
to the discussion in § 2.1, the streamlines spiral outward in the cross-sectional plane
perpendicular to the axis at this type of saddle.
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For the second type of saddle, as shown in figure 3(b), the change of the velocity
component u1 along the vortex axis is opposite to that of the first type. Similarly,
based on q = ∂u1/∂q1 × ∂u3/∂q3 < 0 and the symmetry, we can get ∂u3/∂q3 < 0 and
∂u2/∂q2 < 0. Putting these into (2.13), we have λ > 0. Therefore, the streamlines spiral
inward in the cross-sectional plane perpendicular to the axis at this type of saddle.

If the critical point is a node, as shown in figure 3(c), u1 changes from negative
to positive as the axis passes through it, and thus we have ∂u1/∂q1 > 0. Since q =
∂u1/∂q1 × ∂u3/∂q3 > 0 holds at the node, it must have ∂u3/∂q3 > 0. If the flow is steady,
∂ρ/∂t = 0. The continuity equation (2.1) can be written as

∂(ρH2H3u1)

∂q1
+ ∂(ρH3H1u2)

∂q2
+ ∂(ρH1H2u3)

∂q3
= 0. (2.20)

At a critical point, u1 = 0, combined with the axial velocity condition in (2.4), the above
equation can be simplified as

H2H3
∂u1

∂q1
+ H3H1

∂u2

∂q2
+ H1H2

∂u3

∂q3
= 0. (2.21)

Combined with this equation, (2.13) can be written as

λ(q1) = H2

H1

∂u1

∂q1
+

(
H2

H3
− 1

)
∂u3

∂q3
. (2.22)

As discussed above, the first term of the right-hand side of the above equation is positive.
To determine the sign of the function λ, we now estimate the coefficient of the second

term of the right-hand side in (2.22). Without loss of generality, the origin of the coordinate
system is set at the critical point. Let θ2,Y denote the angle between the curvilinear axis q2
and perpendicular projection in the X–Z plane, as shown in figure 4. Similarly, we have the
notation θ2,X , θ2,Z , θ3,X , θ3,Y , θ3,Z . For a small �q2, we have �y = �q2 × sin θ2,Y . Thus,
the partial derivative can be approximately calculated by ∂y/∂q2 = sin θ2,Y . Similarly, we
could calculate all the partial derivatives in (2.2). Putting all these results into (2.2), we
can get

H2

H3
− 1 =

√
sin2 θ2,X + sin2 θ2,Y + sin2 θ2,Z

sin2 θ3,X + sin2 θ3,Y + sin2 θ3,Z
− 1. (2.23)

If the curvature of the vortex axis is small, the variables θ2,X , π/2 − θ2,Y , θ2,Z , θ3,X , θ3,Y ,
π/2 − θ3,Z are small. Let ε denote the smallest of these variables. If we have ε ∼ o(1),
(2.23) can be expanded on ε by a Taylor expansion, to give

H2

H3
− 1 ∼ O(ε2) ∼ o(ε) � 1. (2.24)

That is, the coefficient of the second term of the right-hand side in (2.22) is smaller than
ε. Thus, the sign of function λ depends on the first term and is positive in this case. If
the two coordinate systems coincide, (2.22) degenerates as λ = ∂u1/∂q1 > 0. Therefore,
according to the discussion above, the streamlines spiral inward in the cross-sectional plane
perpendicular to the axis at this type of node.

Now we analyse the relationship between the property of the function λ(q1, t) and the
B-type or S-type breakdown. For the S-type, the vortex axis streamlines quickly deviate
from the original direction (Zhang 1995). For the B-type, there are two critical points
in the streamline pattern of the meridional plane, as shown in figure 3(c). As a result,
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q1

θ2,Y

q3

q2
Y

Z

X

Figure 4. Schematic diagram of the two coordinate systems.

the property of the function λ(q1, t), especially the sign changes along the vortex axis,
are different. Based on the discussion above in this section, a criterion of the function
λ(q1, t) for the B-type or S-type breakdowns is as follows: in the initial and breakdown
region of a swirling vortex, for the B-type, there is q1

1 < q2
1 < q3

1 < q4
1 (q1

1, q2
1, q3

1 and q4
1

are four points along the vortex axis), such that λ(q1
1, t) > 0, λ(q2

1, t) < 0, λ(q3
1, t) > 0

and λ(q4
1, t) < 0, that is, the function λ(q1, t) has and only has three zero points and its

initial value is greater than zero; for the S-type, there is q1
1 < q2

1, such that λ(q1
1, t) > 0,

λ(q2
1, t) < 0, and for any q3

1 > q2
1, it has λ(q3

1, t) < 0, that is, the function λ(q1, t) has and
only has one zero point and its initial value is greater than zero.

From (2.21), we can simply get another inference. Since ∂u1/∂q1 > 0 and ∂u3/∂q3 > 0
hold at the node in the meridional plane of q1 − q3, substituting these into (2.21), we have
∂u2/∂q2 < 0. This leads to q̃ = ∂u1/∂q1 × ∂u2/∂q2 < 0. Similar to the analysis in § 2.2,
the critical-point type in the meridional plane of q1 − q2 is a saddle. The corollary is, if the
type of critical point in the meridional plane is a node, then, in another meridional plane
perpendicular to this meridional plane, the critical point is a saddle. That is, the streamline
pattern is non-axisymmetric about the vortex axis at this critical point. This inference is
not strange, because if the streamline pattern is axisymmetric at the node, the ‘source’ of
the fluids in all directions in the vicinity of the critical point is the critical point itself,
which is contradictory with the fact that the fluids cannot spontaneously materialize.

3. Numerical simulation

3.1. Governing equations
The three-dimensional unsteady compressible Navier–Stokes equations without external
forces are solved numerically. By introducing the tensor notations, the conservative form
of the non-dimensional Navier–Stokes equations can be written as follows:

∂tρ + ∂j(ρuj) = 0, (3.1)

∂t(ρuj) + ∂i(ρuiuj + pδij) = 1
Re

∂iσij, (3.2)

∂tE + ∂i (ui(E + p)) = 1
Re

∂i(σijuj − q̇i), (3.3)

where ui = (u, v, w), ρ, p and E are the velocity components, the density, the pressure and
the total energy, respectively. δij is a Kronecker operator.
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Tornado-like vortices in 3-D rectangular cavity flows

The total energy E is expressed by

E = p
γ − 1

+ 1
2
ρuiui. (3.4)

Here, σij is the viscous stress term, under the assumption of Newtonian fluid it can be
written as

σij = μ(uij + uji) − 2
3μ∂kukδij. (3.5)

Also, q is the heat flux ratio and is a function of the temperature Tm

q̇i = − 1
(γ − 1)Ma2

(
μl

Prl
+ μt

Prt

)
∂iTm, (3.6)

where Prl = 0.7 and Prt = 0.9 are the laminar and turbulent Prandtl numbers,
respectively.

The dynamic viscous coefficient μ = μl + μt, where μl and μt are the laminar
and turbulent dynamic viscous coefficient, respectively. The laminar dynamic viscous
coefficient μl is calculated by Sutherland’s formula

μl = T3/2
m

1 + C
Tm + C

, C = 110.4 K
T∗∞

. (3.7)

The turbulent dynamic viscous coefficient μt is calculated by the Spalart–Allmaras
(SA) turbulence model (Spalart & Allmaras 1994) and delayed-detached-eddy simulation
(DDES) method (Shur et al. 2008).

The fluid is assumed to be an ideal gas, and thus satisfies

p = ρTm

γ Ma2 . (3.8)

Finally, the Mach number Ma and the Reynolds number Re are constants related to specific
computational cases. The ratio of specific heat is set as γ = 1.4.

3.2. Numerical method and flow configuration
In this paper, the cavity size is set according to the experimental model designed by
the High Speed Aerodynamics Research Institute of China Aerodynamics Research and
Development Center (CARDC) (Yang et al. 2018). The length, width and depth of the
cavity are L = 200 mm, W = 66.67 mm and D = 33.33 mm, respectively (L : W : D =
6 : 2 : 1). A schematic diagram of the cavity configuration is shown in figure 5. The
origin of the coordinate system is located at the corner of the leading edge of the cavity.
The X-axis, Y-axis and Z-axis are the transverse, longitudinal and spanwise directions,
respectively. The ranges of the computational domain are −16D ≤ x ≤ 20D, −1D ≤ y ≤
12D and −3 − D ≤ z ≤ 5D. The wall is assumed to be adiabatic.

All variables are non-dimensionalized by the reference density ρ∞, the reference
temperature T∞ = 288.15 K, the cavity depth D and the sound speed a∞, respectively.
Here, the subscript ∞ represents the flow parameters at infinity. Table 1 shows the
computational parameters for the two cases.

The governing equations are solved numerically using a finite volume solver with the
SA-DDES method (Shur et al. 2008). The spatial convective flux is interpolated by a
third-order weighted essentially non-oscillatory (WENO) method (Zhang, Jiang & Shu
2008). The implicit lower–upper symmetric Gauss–Seidel (LU-SGS) method (Jameson &
Yoon 1987) is adopted for time discretization.
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Figure 5. Schematic diagram of the cavity configuration.

Case Ma Pressure (Pa) Temperature (K) Re

1 0.9 67938.3 247.85 3.41 × 106

2 1.5 38080.2 198.62 4.28 × 106

Table 1. The computational parameters for different cases (Reynold number Re is based on the length of the
cavity).

3.3. Validation
We undertook a grid convergence analysis for the Mach number 0.9 case with three
meshes. A Cartesian stretched grid that is dense near the wall and sparse in the far-field
region is used, as shown in figure 6. To resolve the boundary layer and the shear layer,
the minimum grid spacing of the coarse, middle and fine grids near the wall is set as
2.0 × 10−4D and 1.0 × 10−4D and 5.0 × 10−5D, respectively. The non-dimensional wall
distance (Pope 2000) for each mesh is approximately y+ ≈ 5.2, 2.8, 1.3, respectively. The
vertical grids above the cavity mouth are adjusted to capture the development of the shear
layer. The number of grids is increased in all three directions X, Y and Z. The total numbers
of grid points of each mesh are 8 million, 11 million and 28 million, respectively. Figure 7
shows the time-averaged density and pressure of the central plane on the cavity floor.
There are few differences in the density and the pressure between the middle grid case and
the fine grid case. Therefore, the numerical results are approximately grid independent.
Hereafter, the middle grid is used to compute the cavity flow. For the Mach number 1.5
case, since the Reynolds number is greater than the Mach number 0.9 case, the minimum
grid spacing near the solid wall is adjusted to 6.0 × 10−6D (y+ ≈ 0.2) based on the
middle mesh to ensure simulation accuracy. The number of grid points is approximately
17 million.

Figure 8 shows the overall sound pressure level (OASPL) of the numerical results
at different locations of the central plane in the cavity and their comparison with the
experimental results (Yang et al. 2018). For Mach numbers 0.9 and 1.5, the maximum
differences of the OASPL between the computation and experiment are 1.62 and 2.59 dB
respectively, and the averaged errors of the OASPL for different locations in the cavity are
0.74 and 1.22 dB, respectively. The present computational results are in good agreement
with the experimental results.

Figure 9 shows the spectra of the pressure perturbation signals of the present numerical
results and experimental results (Yang et al. 2018) at the front and back walls of the
cavity for the two cases. The spectra represent the intensity of different frequencies of
the oscillations in the cavity and are converted from the power spectral density (PSD) as
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Figure 6. A part of grid on the spanwise central plane.
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1.2

1 2 3

X
4 5 6

Figure 7. Time-averaged density and pressure of the central plane on the cavity floor, the solid line (—–)
refers to the middle grid case, the dashed dot dot line (– ·· –, red) refers to the coarse grid case, the dashed line
(– –, green) refers to the fine grid case.

follows:

SPL = 10 log10
PSD
P2

ref
, (3.9)

where Pref = 2 × 10−5 Pa is the reference pressure that represents the hearing threshold
value of sound of 1 kHz. The PSD is computed using the Yule–Walker autoregressive
method (Brockwell & Davis 1991). It can be noted that the frequencies of the most
energetic peaks in the spectra agree well with the experimental results.

Figure 10 contains the time-averaged streamlines on the wall of the cavity based on
the numerical results and their comparison with the experimental photographs (Zhou
et al. 2018). The experimental figures are plotted using the coloured fluorescence-oil-flow
technique, which allows us to reveal the detailed topological flow structures on the wall
surface (Woodiga & Liu 2009; Chen et al. 2017). All the walls of the cavity are unfolded
like a box for convenient comparison. It can be noted that the flow characteristics of the
numerical results, such as the separation lines, the reattached lines and critical points
engraved on each solid wall by the vortices motion, are qualitatively consistent with the
experimental results.

955 A9-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1045


Y. Luo, H. Tian, C. Wu, H. Li, Y. Wang and S. Zhang

1.0

COM

EXP

X/L
0.80.60.40.20

140

150

160

O
A

S
P

L
 (

d
B

) 170

180

140

150

160

170

180

1.0

X/L
0.80.60.40.20

(b)(a)

Figure 8. Comparison between the experiments (Yang et al. 2018) and the present numerical results of the
OASPL at different locations in the cavity; (a) Ma = 0.9 and (b) Ma = 1.5.
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Figure 9. The spectra of the pressure perturbation signals at the front (suffix ‘-F’, (x, y, z) = (0, −0.88, 1))
and back (suffix ‘-B’, (x, y, z) = (6, −0.88, 1)) walls of the cavity for the two cases. Experimental results
(Yang et al. 2018): dash-dot line (- · - · ); the present numerical results: solid line (—–); (a) Ma = 0.9 and
(b) Ma = 1.5.

4. Evolution of tornado-like vortex

As shown in figures 10(a) and 10(b), there is a pair of stable foci upstream of the
bottom of the cavity, and their rotational directions are opposite. The similar streamline
patterns of the tornado-like vortices of the present two cases can also be observed
in the hypersonic experiments conducted by Dolling et al. (1997). In the low-speed
incompressible experiments performed by Crook et al. (2013), the rotation directions of
tornado-like vortices are opposite to the present two cases, which may be caused by the
different impingement strength between the shear layer and back wall, resulting in different
strengths of the reverse flow along the bottom wall and sidewalls. Although there is a
slight difference between the experimental results and the numerical results, as shown in
figure 10, it can be observed in experiments that the focus pair of tornado-like vortices is
asymmetric about the central plane. This asymmetrical feature can also be observed in the
experimental result of Dolling et al. (1997). In the low-speed incompressible flow (Crook
et al. 2013), the asymmetrical feature of the tornado-like vortices is more obvious. In this
section, we try to reveal the evolution and spatial structures of the tornado-like vortices.
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Inflow Inflow

Side wall

Cp: –0.4 –0.125 0.15 0.425 0.7Cp: –0.2 –0.025 0.15 0.325 0.5

Side wall

(b)(a)

(c) (d )

Figure 10. Comparison of numerical time-averaged streamlines of the solid wall of the cavity with the
coloured fluorescence-oil-flow photograph: (a, b) show the numerical time-averaged streamlines with pressure
coefficient contours; (c, d) show the experimental results (Zhou et al. 2018); (a) Ma = 0.9, (b) Ma = 1.5,
(c) Ma = 0.9 and (d) Ma = 1.5.

4.1. The case Ma = 0.9

4.1.1. Movement of the vortices
Figure 11 shows the instantaneous three-dimensional streamlines of the tornado-like
vortices at different instants in two cycles of oscillation. For the present Mach number
0.9 case, the dominant mode is the second Rossiter mode (Rossiter 1964) and its
non-dimensional frequency is St2 = 0.65 (Yang et al. 2018). It can be observed that the
patterns of the two tornado-like vortices are changed at different instants. The wakes
of the two vortices are affected by the intense flow near the cavity mouth. At t = 0 in
figure 11(a), the strength of the tornado-like vortex on the right side along the streamwise
direction is strong. The fluids entrained by the left tornado-like vortex are drawn into
the right tornado-like vortex. A similar structure can also be observed at t = 1.96T2 in
figure 11( f ). At t = 0.65T2 in figure 11(c) and t = 0.98T2 in figure 11(d), parts of the
wakes of the two vortices converges together. At t = 1.31T2 in figure 11(e), the two vortices
appear to be independent of each other. Figure 12 shows the side view of the tornado
vortices and the vorticity magnitude contours in the plane z = 0.5. With the shear layer
impinging on the back wall, various vortices are generated in the cavity. The movement of
the fluids is complex in the streamwise and spanwise directions. As a result, the tails of the
tornado-like vortices change frequently. The state of tornado-like vortices breakdown is
visible in figure 11. The S-type vortex breakdown appears, which is shown in figure 11(c).

In contrast to the vortex wakes, the locations of the two tornado-like vortices change
slowly. Figure 13 shows the locations of the vortex cores near the bottom wall surface
in the streamwise and spanwise directions at different instants. In figure 13(a), it can be
noted that the two vortices move away slowly from each other in the streamwise direction.
The left vortex moves upstream while the right vortex moves downstream. At t = 1.96T2,
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Figure 11. For the case Ma = 0.9, the instantaneous three-dimensional streamlines of the tornado vortices at
different instants. Here, T2 is the cycle length of the dominant oscillation mode; (a) t = 0, (b) t = 0.33T2,
(c) t = 0.65T2, (d) t = 0.98T2, (e) t = 1.31T2 and ( f ) t = 1.96T2.

the distance of the cores of two vortices in the streamwise direction is approximately
0.13 − D. In the spanwise direction, as shown in figure 13(b), the two vortices move slowly
towards the right side, and the distance of the vortex core remains approximately constant.
From t = 0 to t = 1.96T2, the moving distances in the spanwise direction of the left
and right vortices are 0.06D and 0.13 − D, respectively. Theoretically, the long-temporal
features of the two tornado-like vortices should be symmetrical since the cavity and the
inflow conditions are symmetric. The movement of the vortex should not be in only
one direction. Thus, the result in figure 13 suggests that the moving period of the two
tornado-like vortices is longer than that of the dominant oscillation mode of the cavity
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Figure 12. For the case Ma = 0.9, the vorticity magnitude contours in the quarter-plane and the side view of
the tornado vortices in figure 11 at different instants; (a) t = 0, (b) t = 0.33T2, (c) t = 0.65T2, (d) t = 0.98T2,
(e) t = 1.31T2 and ( f ) t = 1.96T2.

3.0(a) (b)
Left

Right

2.5

2.0X/D

1.5

1.0

2.0

1.5

1.0Z/D

0.5

00 0.5 1.0 1.5 2.0 0.5 1.0

t/T2t/T2

1.5 2.0

Figure 13. For the case Ma = 0.9, the locations of the core of the two tornado-like vortices near the bottom
wall (y = −0.999) at different instants. (a) Streamwise direction and (b) spanwise direction.

flow, that is, it presents the characteristics of low frequency. In the experiments conducted
by Ashton et al. (2019) and Karami et al. (2019), a tornado-like vortex was produced
using a closed-loop wind facility, which exhibits a wandering phenomenon with random
movement of the vortex core around the mean centre. Ashton et al. (2019) showed that
this random behaviour will cause an adverse effect on the estimation of the core radius
and maximum tangential velocity. However, this wandering motion cannot be observed in
the present case. The reason for this difference may be that the tornado-like vortex in the
experiment of Ashton et al. (2019) is directly generated by the inflow from the fans at the
bottom of the experimental facility, while the tornado-like vortices in the present case are
generated by the high-speed fluids impinging on the back wall.
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Figure 14. The sectional streamline pattern (y = −0.999) and the local swirl ratio of the right tornado-like
vortex in figure 11( f ).

The swirl ratio S = (r0/2h)(vtan/vrad) is an important parameter in the study of the
tornado-like vortex (Church et al. 1979; Natarajan & Hangan 2012; Ashrafi et al. 2021).
Here, vtan and vrad are tangential and radial velocities at r0; r0 and h are the radius and
depth of the convergence region. To estimate the swirl ratio by analogy with the formula
S, the variable h is set as the depth of the cavity 1D (in fact, h < 1D, thus the following
estimates will be smaller than the actual values). The variable r0 is the distance of the
local location to the vortex axis. The local swirl ratio of the right tornado-like vortex
in figure 11( f ) is shown in figure 14. It can be noted that the high swirl ratio (S > 1)
appears in some regions. However, the local swirl ratio may not represent the global swirl
ratio for the tornado-like vortices. In laboratory tornado experiments or corresponding
numerical simulations, the tornado is produced in the centre of the experimental facility or
computational domain (Natarajan & Hangan 2012; Ashrafi et al. 2021). Thus, the circular
area can be regarded as the convergence region. But in the present case, the tornado-like
vortices in the cavity are affected by the near wall and other surrounding flow structures.
As a result, the convergence region is difficult to define exactly. How to accurately evaluate
the swirl ratio of tornado-like vortices in this case still requires further study.

The shear layer is the original source of various flow structures in the cavity. The
evolution characteristics of the shear layer can be used to classify the cavity flow types
(Lawson & Barakos 2011). The growth rate of the shear layer at the cavity mouth is usually
measured by the vorticity thickness (Rowley, Colonius & Basu 2002; Crook et al. 2013;
Beresh et al. 2016), which can characterize the instability features of the shear layer and is
defined as

δω(x) = U∞
(∂u(x)/∂y)max

, (4.1)

where U∞ and u are the velocity of the free stream and the streamwise velocity,
respectively. The shear layer vorticity thickness along the streamwise direction in the
central plane at different instants in one dominant oscillation cycle is shown in figure 15. It
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Figure 15. For the case Ma = 0.9, the shear layer vorticity thickness along the streamwise direction in the
central plane at different instants in one dominant oscillation cycle (the time interval from t1 to t16 = 0.98T2 is
uniform, and the grey rectangle represents the streamwise range of the tornado-like vortices).

can be noted that, in the initial stage of the shear layer development, the growth of the shear
layer presents two approximately linear segments. The vorticity thickness growth rates of
each segment are approximately 0.19 and 0.08. The growth is fast in the first segment and
then becomes flat, which is consistent with the results by Gloerfelt et al. (2007). In the first
segment, the growth of the shear layer is attributed to the Kelvin–Helmholtz instability of
the fluids. While in the second segment, the growth is determined only by the viscous
spreading and entrainment of the surrounding fluid, resulting in a slower growth rate
(Gloerfelt et al. 2007). As the shear layer rolls up (see figure 12), its growth rate changes
obviously. The vorticity thickness of the shear layer experiences a reduction process. The
rising flow caused by the tornado-like vortices is located at approximately 1.8D–2.0D in
the streamwise direction, as shown in figure 15. This region corresponds to the increase
in the vorticity thickness of the shear layer. According to the study of Crook et al. (2013),
the tornado-like vortices entrain fluid from both the recirculating zone and the front vortex
and extend upwards towards the shear layer, expelling the fluid at the top of the cavity
near the shear layer. This means the tornado-like vortices are surrounded by other flow
structures. Thus, the rising flow in this region also contains the upwash effects of other
flow structures in the cavity.

4.1.2. Spatial structure of the right tornado-like vortex
To analyse the spatial structures of the tornado-like vortex, we plot the sectional
streamlines for one of the tornado-like vortices, which is shown in figure 16 for
the sectional streamline pattern of the right vortex in figure 11(b) at different X–Z
cross-sectional planes. Based on the discussion in § 2.1, the sign of λ determines the
streamline pattern in the cross-sectional plane perpendicular to the vortex axis. At the
cross-section y = −0.999 that is near the bottom wall surface, λ = 1.94 > 0, the sectional
streamlines in the vicinity of the vortex core spiral inward, as shown in figure 16(a). At
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Figure 16. For the case Ma = 0.9, the sectional streamline pattern of the right tornado-like vortex in
figure 11(b); (a) y = −0.999, λ = 1.94, (b) y = −0.95, λ = −0.27, (c) y = −0.89, λ = 0.09, (d) y = −0.78,
λ = −0.15, (e) y = −0.72, λ = −0.40 and ( f ) y = −0.6, λ = −0.66.

the cross-section y = −0.95, λ = −0.27 < 0, the sectional streamlines in the vicinity of
the vortex core spiral outward, as shown in figure 16(b). From y = −0.999 to y = −0.95,
λ changes its sign from positive to negative. We can observe a limit cycle in the sectional
streamline pattern of y = −0.95. The sectional streamlines spiral inward outside of the
limit cycle, which is opposite to the sectional streamlines inside the limit cycle. At the
cross-section y = −0.89, λ = 0.09 > 0, the sectional streamlines spiral inward near the
vortex core, as shown in figure 16(c). From y = −0.95 to y = −0.89, the sign of λ changes
from negative to positive, and one more limit cycle appears in the sectional streamlines.
The spiral direction of the sectional streamlines is opposite successively at the three
regions separated by the limit cycles. At the cross-sectional of y = −0.78, y = −0.72 and
y = −0.6, λ < 0, the sectional streamlines spiral outward and a new limit cycle appears,
as shown in figures 16(d)–16( f ). As the vortex rolls up, the flow gradually dispersed.

Figure 17 shows the time evolution of the sectional streamline pattern in figure 16(c).
The position of the cross-section is the same as that in figure 16(c). From the viewpoint
of the topology, figure 17(a–c) has the same structure. In this period, there are two limit
cycles. The structural change of the streamline pattern from figure 17(a) to figure 17(c)
represents the development of the tornado-like vortex. In this process, the outer limit
cycle gradually shrinks inward and the inner limit cycle gradually expands outward. At
t = 0.52T2 in figure 17(d), there is no limit cycle, and the sectional streamlines spiral
inward.

According to the analysis in § 2.3, the multiple sign changes of the function λ are
closely related to the critical point in the meridional plane. Figure 18 is the local sectional
streamline pattern in the meridional plane of the right tornado-like vortex in figure 11(b).
As discussed in §§ 2.2 and 2.3, the type of the critical point is determined by the sign of
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Figure 17. For the case Ma = 0.9, the sectional streamline pattern of the cross-sectional position in figure 16(c)
(y = −0.89, t = 0.33T2) at different instants; (a) t = 0, λ = 0.02, (b) t = 0.20T2, λ = 0.10, (c) t = 0.46T2,
λ = 0.12 and (d) t = 0.52T2, λ = 0.13.
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Figure 18. For the case Ma = 0.9, the local sectional streamline patterns of the right tornado-like vortex in
figure 11(b) in the meridional plane Z–Y .
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Perpendicular
plane

Y −0.999 −0.98 −0.95 −0.91 −0.89 −0.80 −0.78 −0.72 −0.6

λ 1.94 −0.33 −0.27 −0.02 0.09 −0.05 −0.15 −0.40 −0.66
Sign(λ) + − − − + − − − −

Spiral direction in out out out in out out out out
Sign(λ) change — — yes — yes yes
New limit cycle — — yes — yes yes

Meridional
plane

Sign(q) — — − — + — — — —

Critical-point type — — saddle — node — — — —

Table 2. For the case Ma = 0.9, the critical-point type in the meridional plane and the streamline spiral
direction in the cross-section perpendicular to the vortex axis.

q, and there is a deterministic relation between the critical point in the meridional plane
and the streamline pattern in the cross-sectional plane perpendicular to the vortex axis.
For this tornado-like vortex, there are two critical points along the direction that the vortex
rolls up. The saddle is located at y = −0.95 and q = −0.08 < 0, λ = −0.27 < 0. The
streamline pattern in the cross-sectional plane perpendicular to the axis at this saddle is
shown in figure 16(b). The node is located at y = −0.89 and q = 0.02 > 0, λ = 0.09 > 0.
The streamline pattern in the cross-sectional plane perpendicular to the axis at this node
is shown in figure 16(c). That is, the streamlines spiral outward and spiral inward in
the cross-sectional plane perpendicular to the axis at this type of saddle and the node,
respectively.

The above results are listed in table 2. The relations between the sign of the function λ
and the spiral direction of the streamline pattern in the cross-sectional plane perpendicular
to the vortex axis and the relations between the sign of the function q and the type of
the critical point in the meridional plane are exhibited clearly. The results also show
the deterministic relation between the critical-point type in the meridional plane and
the streamline pattern in the cross-sectional plane perpendicular to the vortex axis. In
summary, if λ > 0, the sectional streamlines spiral inward near the vortex core. If λ < 0,
the sectional streamlines spiral outward near the vortex core. If the sign of λ changes from
negative to positive or from positive to negative, a limit cycle appears. Once a critical point
appears in the streamline pattern of the meridional plane, its type is the saddle when q < 0
and node when q < 0. Besides, we have λ < 0 for the saddle and λ > 0 for the node. This
is also consistent with the analytical analysis in § 2. Meanwhile, it can be noted from table 2
that the sign of function λ changes three times, which is consistent with the criterion for
the property of the function λ corresponding to the B-type breakdown proposed in § 2.3.

In figure 18, the sign of velocity along the vortex axis changes from positive to negative
and then to positive. A reversal flow region appears between the saddle and the node,
which indicates that the saddle is the onset point of vortex breakdown. The vortex axis
passes through a saddle and an adjacent node. The breakdown type of this case is called
the ‘bubble’ type or B-type because its sectional streamline pattern looks similar to
a bubble (Leibovich 1984; Zhang 2005). A similar vortex breakdown structure of the
streamline pattern in the meridional plane can be observed in the Mach number 2 case
of shock-induced vortex breakdown obtained by Zhang et al. (2009).

To analyse the structure of the ‘bubble’, we plot the three-dimensional streamlines with
the sectional streamline pattern near the bottom wall and the section at y = −0.89, as
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XZ

Y

XZ

Figure 19. For the case Ma = 0.9, the streamlines of the right tornado-like vortex in figure 11(b).
(a) The sectional streamline pattern near the bottom wall surface and at cross-section y = −0.89 and the
three-dimensional streamlines. (b) The flow visualization of the three-dimensional ‘bubble’ structure. (c) The
locally zoomed region of the bottom of the ‘bubble’. (d) The locally zoomed region of the top of the ‘bubble.’

shown in figure 19(a). It can be noted that the fluids are rolled up from the bottom wall
surface and then form the ‘bubble’ structure. Figure 19(b) shows the three-dimensional
structure of the ‘bubble.’ The ‘bubble’ shape is visually similar to that of the experiment
on the swirling flows in a diverging cylindrical tube conducted by Sarpkaya (1971a,b).
Figure 19(c) shows the locally zoomed region of the bottom of the ‘bubble.’ The fluids
below this ‘bubble’ spiral upward and the fluids inside the ‘bubble’ spiral downward.
The two parts of fluids spiral up together along the outside of the ‘bubble.’ The position
where the upper and lower fluids combine is the critical point of the saddle, as shown
in figure 18(a). As a result, figure 19(c) represents the three-dimensional structure of
the saddle. Its structural characteristics are consistent with the schematic diagram in
figure 3(a). Figure 19(d) shows the locally zoomed region of the top of the ‘bubble.’ It
can be noted that the outer fluids spiral inward and upward. The inner fluids spiral inward
and downward. The two parts of the fluids move in opposite directions in the vortex axis
direction. The position where the outer and inner fluids combine is the critical point of the
node, as shown in figure 18(b). Thus, figure 19(d) shows the three-dimensional structure of
the node. Its structural characteristics are partly consistent with the schematic diagram in
figure 3(c). The structure between the upper and lower critical points constitutes the core
of the ‘bubble.’
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Figure 20. For the case Ma = 0.9, the local sectional streamline patterns of the right tornado-like vortex in
figure 11(b) in the meridional plane X–Y . (a) The local region near the bottom of the ‘bubble’, (b) the local
region near the top of the ‘bubble.’

To further analyse the structure of the upper and lower critical points of the ‘bubble’, we
obtain another meridional plane of X–Y of the ‘bubble’ structure. This meridional plane
is perpendicular to the meridional plane, as shown in figure 18. The result is shown in
figure 20. Figure 20(a,b) shows the local region near the bottom and top of the ‘bubble’,
respectively. At the critical point of the onset position of the ‘bubble’ structure, the type of
the critical point at this meridional plane is still a saddle. However, at the critical point of
the end of the core of the ‘bubble’ structure, the type of the critical point at this meridional
plane is a saddle, which is consistent with the corollary in § 2.3.

In the experiment, the flow visualization of this structure is usually obtained using dyed
fluid filaments. The flow visualization results show that the ‘bubble’ structure contains a
conical core (Sarpkaya 1971a,b). The conical core of this type of vortex is considered to
be axisymmetric based on experimental observation (Leibovich 1984). In our theoretical
corollary (see § 2.3) and numerical result, when a node appears in the streamline pattern
of the meridional plane of this structure, the conical core is non-axisymmetric in the sense
of topology.

4.1.3. Spatial structure of the left tornado-like vortex
The flow visualization of the left tornado-like vortex in figure 11(c) is shown in
figure 21(a). It can be noted that the structure of this tornado-like vortex is different from
that of the vortex with the ‘bubble’ structure mentioned before. There is no conical core
in the vortex centre. After rolling up from the bottom wall surface of the cavity, the fluids
gradually spiral away. Figure 21(b) shows the value of the function λ along the vortex
axis. It can be observed that the sign of λ changes only once. By contrast, the sign of
function λ along the vortex axis changes multiple times in the right tornado-like vortex
with the ‘bubble’ structure, as shown in figure 19. This is consistent with the criterion
for the property of the function λ corresponding to the S-type breakdown proposed
in § 2.3. The limit cycle corresponding to the sign changes of function λ is displayed
in the sectional streamline patterns in figure 21(a). The typical sectional streamline
patterns corresponding to the function λ are shown in figure 22. At the cross-section
y = −0.999, λ = 5.01 > 0, the sectional streamlines in the vicinity of the vortex core
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Figure 21. For the case Ma = 0.9, (a) the three sectional streamline patterns (near the bottom wall surface,
y = −0.94, and y = −0.90) and the three-dimensional streamlines of the left tornado-like vortex in figure 11(c),
(b) the value of function λ along the vortex axis in figure (a).

spiral inward. At the cross-sections y = −0.94, y = −0.90 and y = −0.85, the value of
function λ < 0, the sectional streamlines in the vicinity of the vortex core spiral outward.
From y = −0.999 to y = −0.94, the sign of function λ changes from positive to negative.
A limit cycle can be observed in the sectional streamline pattern at y = −0.94, as shown in
figure 22(b). This limit cycle gradually spreads out and extends in the sectional streamline
pattern at y = −0.90, as shown in figure 22(c). This is also consistent with the analysis
in § 2.1.

Figure 23 shows the sectional streamline pattern of the left tornado-like vortex in
figure 11. Because of the similarity of the streamline patterns for different instants, we
only list two typical results. After the streamlines roll up from the bottom, no critical
point appears in the cross-sectional streamline pattern. This characteristic of the sectional
flow pattern is different from the tornado-like vortex with a conical core mentioned above.
Figure 24(a) shows the overall view of the left tornado-like vortex in figure 11(c). It can
be observed that, as the vortex spirals upward, the streamlines in the wakes region spread
around, presenting the characteristic of the S-type breakdown. Figure 24(b) shows the
curvature of the vortex axis. At the location near y = −0.54, the curvature is suddenly
increased and the extreme value appears. This region corresponds to the wakes spreading
around.

4.2. The case Ma = 1.5

4.2.1. Movement of the vortices
For the Mach number 1.5 case, the instantaneous three-dimensional streamlines of the
tornado-like vortices at different instants in two cycles of oscillation are shown in figure 25.
For the present case, the dominant mode is also the second Rossiter mode (Rossiter 1964)
and its non-dimensional frequency is St2 = 0.60 (Yang et al. 2018). As can be seen in
figure 25, the wakes of the tornado-like vortices of the present case are more complex than
the Mach number 0.9 case. At t = 0 in figure 25(a), the strength of the left tornado-like
vortex is weaker than the right one. The location of the two vortices presents asymmetrical
features in the spanwise direction. At t = 0.2T2 in figure 25(b), a new weak vortex is
generated near the right tornado-like vortex. This weak vortex gradually evolved into a new
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Figure 22. For the case Ma = 0.9, the sectional streamline pattern of the left tornado-like vortex in
figure 11(b); (a) y = −0.999, λ = 5.01, (b) y = −0.94, λ = −0.02, (c) y = −0.90, λ = −0.67 and
(d) y = −0.85, λ = −0.82.
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Figure 23. For the case Ma = 0.9, the sectional streamline pattern of the left tornado-like vortex at different
instants; (a) t = 0, x = 1.92 and (b) t = 0.65T2, x = 1.88.
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Figure 24. For the case Ma = 0.9, (a) the overall view of the left tornado-like vortex in figure 11(c), (b) the
curvature of the vortex axis in (a).

tornado-like vortex. As can be observed in figure 25(c), at t = 0.6T2, the right tornado-like
vortex interacts with the new vortex. The wakes of the right vortex are drawn into the
new vortex. At t = 1.0T2 in figure 25(d), the strength of the old right tornado-like vortex
gradually weakens. At t = 1.4T2 in figure 25(e), the old right tornado-like vortex gradually
and finally disappears. At t = 2.0T2 in figure 25( f ), the structures of the left tornado-like
vortex are complex. While the fluids spiral upward from the bottom of the cavity to form
this vortex, the external fluids are drawn from the top into the core of the vortex. We will
further analyse the spatial structures of this vortex in the following.

Figure 26 shows the locations of the vortex cores near the bottom wall surface in
streamwise and spanwise directions at different instants. It can be observed that, in the
process of gradually weakening and disappearing, the old right tornado-like vortex tends
to move towards the new one in both the streamwise and spanwise directions. At t = 0.2T2,
the distance of the cores of two vortices in the streamwise direction is approximately
0.15D. From t = 0.2T2 to t = 2.0T2, the new right vortex moves upstream and the two
vortices gradually approach in the streamwise direction, as shown in figure 26(a). In the
spanwise direction, as shown in figure 26(b), the distance of the vortex core remains
approximately constant, which is similar to the Mach number 0.9 case. During these two
cycles of the dominant oscillations, the movement of the tornado-like vortices is mainly
single directional rather than periodic, especially in the streamwise direction, which also
suggests that the moving or change period of the two tornado-like vortices is longer than
that of the dominant oscillation mode of the cavity flow. In the low-speed incompressible
experiment conducted by Crook et al. (2013), they observed that the role of the dominant
vortex changes with time, and the relative strengths or positions of the two vortices are time
dependent. Crook et al. (2013) postulated that the switching of the relative positions of the
tornado vortices appears on a long time scale and is of periodic or random behaviour. The
change of positions of the two vortices at the present two Mach numbers also exhibits long
time scale behaviour which is similar to the incompressible case.

4.2.2. Spatial structure of the tornado-like vortex
Figure 27 is the sectional streamline pattern of the left vortex in figure 25( f ) at different
X–Z cross-sectional planes. At the cross-section y = −0.999, λ = 1.58, the sectional
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Figure 25. For the case Ma = 1.5, the instantaneous three-dimensional streamlines of the tornado vortices
at different instants. Here, T2 is the cycle length of the dominant oscillation mode; (a) t = 0, (b) t = 0.2T2,
(c) t = 0.6T2, (d) t = 1.0T2, (e) t = 1.4T2 and ( f ) t = 2.0T2.

streamlines in the vicinity of the vortex core spiral inward, as shown in figure 27(a).
At the cross-sections y = −0.95 and y = −0.87, the values of λ are −0.48 and −0.42,
respectively, and the sectional streamlines in the vicinity of the vortex core spiral outward,
as shown in figures 27(b) and 27(c). From y = −0.999 to y = −0.95, the sign of λ changes
from positive to negative. We can observe a limit cycle in the sectional streamline pattern
of y = −0.95. At the cross-section y = −0.67, λ = 0.03 > 0, the sectional streamlines
spiral inward near the vortex core, as shown in figure 27(d). At the cross-sections y =
−0.65 and y = −0.59, the values of λ are −0.04 and −0.51, respectively, and the sectional
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Figure 26. For the case Ma = 1.5, the locations of the core of the two tornado-like vortices near the bottom
wall (y = −0.999) at different instants. (a) Streamwise direction and (b) spanwise direction.
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Figure 27. For the case Ma = 1.5, the sectional streamline pattern of the left tornado-like vortex in
figure 25( f ); (a) y = −0.999, λ = 1.58, (b) y = −0.95, λ = −0.48, (c) y = −0.87, λ = −0.42, (d) y = −0.67,
λ = 0.03, (e) y = −0.65, λ = −0.04 and ( f ) y = −0.59, λ = −0.51.

streamlines in the vicinity of the vortex core spiral outward, as shown in figures 27(e)
and 27( f ). From y = −0.8 to y = −0.65, the sign of λ changes from negative to positive
and then to negative; a new limit cycle is added in the sectional streamline pattern with
each change. As a result, we can observe one limit cycle in the streamline pattern of the
cross-sectional plane at y = −0.67, and two limit cycles in the streamline pattern of the
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Perpendicular
plane

Y −0.9999 −0.98 −0.95 −0.90 −0.87 −0.80 −0.67 −0.65 −0.59

λ 1.58 −0.29 −0.48 −0.43 −0.42 −0.37 0.03 −0.04 −0.51
Sign(λ) + − − − − − − − −

Spiral direction in out out out out out in out out
Sign(λ) change — yes yes yes
New limit cycle — yes yes yes

Meridional
plane

Sign(q) — — — — − — + — —

Critical-point type — — — — saddle — node — —

Table 3. For the case Ma = 1.5, the critical-point type in the meridional plane and the streamline spiral
direction in the cross-section perpendicular to the vortex axis.

–0.86

(a) (b) (c)

–0.87Y
Saddle

Node

Saddle

–0.88
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X
1.63 1.54 1.55

X X
1.56 1.52 1.53 1.54 1.55

–0.68

–0.67

–0.58

–0.59

–0.60

–0.61

Figure 28. For the case Ma = 1.5, the local sectional streamline patterns of the left tornado-like vortex in
figure 25( f ) in the meridional plane.

cross-sectional plane at y = −0.65. In particular, we see again the three-layer structure
split by the limit cycles, as shown in figure 27(e). The above results are listed in table 3,
which further validates the criterion for the B-type proposed in § 2.3. All these results are
also consistent with the discussion in § 2.1.

Figure 28 shows the local sectional streamline patterns in the meridional plane of the left
tornado-like vortex in figure 25. For this tornado-like vortex, there are three critical points
along the direction that the vortex rolls up. The first saddle is located at y = −0.87 with
q = −0.45 < 0 and λ = −0.63 < 0. The node is located at y = −0.67 with q = 0.22 > 0
and λ = 0.12 > 0. The second saddle is located at y = −0.59 with q = −0.20 < 0 and
λ = −0.46 < 0. The streamline patterns in the cross-sectional plane perpendicular to the
axis at these three critical points are shown in figures 27(c), 27(d) and 27( f ), respectively.
The small difference in the λ value is due to the slight difference in the positions of the
point in the X–Y and X–Z planes. Similar to the Mach number 0.9 case, the streamlines
spiral outward and spiral inward in the cross-sectional plane perpendicular to the axis at
the saddle and the node, respectively. These results are also consistent with the discussion
in § 2.2 and the analytical analysis in § 2.3.

As shown in figure 28, the vortex axis passes through the saddle, the node and the saddle
in turn, and thus forms two reversal flow regions. The sign of velocity along the vortex
axis changes three times. The first reversal flow region is related to the vortex spirals from
the bottom of the cavity. The first saddle is the onset point of vortex breakdown and its
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breakdown type is the B-type, which is similar to that of the Mach number 0.9 case. The
second reversal flow region is related to the external fluids drawn from the top into the
core of the vortex. The second saddle can be regarded as the onset point of reversal vortex
breakdown. The structure of the vortex axis passes through a saddle and an adjacent node
is consistent with the discussion in § 2.2.

5. Concluding remarks

In this paper, we generalized the topology theory of the unsteady vortex in a rectangular
coordinate system to the curvilinear coordinate system. The relationship between
the topology structures in the meridional plane and the sectional streamlines in the
cross-section perpendicular to the vortex axis was analysed. We proved that the conical
core of the B-type breakdown is non-axisymmetric in the sense of topology. A criterion
for the B-type and the S-type based on the spatial structure characteristic of the two
breakdown types was provided.

In the cross-section perpendicular to the vortex axis, the spiral direction of the sectional
streamlines in the vicinity of the vortex core depends on the sign of the function λ(q1, t) =
H2/ρ · ∂ρ/∂t + 1/(ρH1H3) · ∂(ρH2H3u1)/∂q1 + (H2/H3 − 1)∂u3/∂q3. If λ(q1, t) > 0,
the sectional streamline spirals inward. If λ(q1, t) < 0, the sectional streamline spirals
outward. If λ(q1, t) changes its sign along the vortex axis, one more limit cycle may appear
in the cross-sectional plane streamline pattern. In the meridional plane, the critical point
can be of two types, the node or the saddle, depending on the sign of the function q(q1, t) =
∂u1/∂q1 × ∂u3/∂q3. If q(q1, t) > 0, the critical point is a node. If q(q1, t) < 0, the critical
point is a saddle. The deterministic relation between the critical point in the meridional
plane and the sectional streamlines in the cross-section perpendicular to the vortex axis
has been analysed theoretically. If the critical point is a saddle and the velocity of the
vortex axis passing through it changes from positive to negative, the streamlines spiral
outward in the cross-section perpendicular to the axis at this point. If the critical point is
a saddle and the velocity of the vortex axis passing through it changes from negative to
positive, the streamlines spiral inward in the corresponding cross-section perpendicular to
the axis. If the critical point is a node and the velocity of the vortex axis passing through it
changes from negative to positive, the streamlines also spiral inward in the corresponding
cross-section perpendicular to the axis. In the initial and breakdown region of a swirling
vortex, for the B-type, the function λ(q1, t) has and only has three zero points and its
initial value is greater than zero; for the S-type, the function λ(q1, t) has and only has one
zero point and its initial value is greater than zero. We also provided a corollary that the
streamline pattern is non-axisymmetric at the node.

The flow in a three-dimensional rectangular cavity with the ratio of L : W : D = 6 :
2 : 1 was simulated numerically for Mach numbers 0.9 and 1.5. The evolutions of the
tornado-like vortices located upstream of the bottom of the cavity are analysed. The
instantaneous three-dimensional streamlines of the tornado-like vortices indicate that the
strength and the positions of the vortex present asymmetrical features about the central
plane of the cavity. The wakes of the vortices are affected by the intense flow and are
changed frequently at different instants. Both the B-type and the S-type vortex breakdowns
are observed in the instantaneous structures of the tornado-like vortices. For the B-type,
there is a conical core at the centre. The conical core is non-axisymmetric at the tail node
point. For the S-type, the wakes of the vortex spread around and the curvature of the
vortex axis will increase quickly. The locations of the core of the vortices on the bottom
wall surface are traced. The results suggest that the moving or changing of positions of the
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tornado-like vortices exhibit longer time scale behaviour compared with the period of the
dominant oscillation mode of the cavity flow.

The spatial structures of the typical tornado-like vortices of the numerical results are
consistent with the analytical topological analysis. In the cross-section perpendicular to
the vortex axis, the sign of the function λ(q1, t) along the vortex axis changes several times
for the vortex with the B-type breakdown, while the sign of the function λ(q1, t) along the
vortex axis changes only once for the vortex with the S-type breakdown. When λ(q1, t)
changes its sign, one more limit cycle will appear in the sectional streamline pattern. In
particular, two limit cycles can be observed in the specific sectional streamline pattern
of the cross-section perpendicular to the vortex axis when the function λ contiguously
changes its sign twice in relatively close positions. In the meridional plane along the vortex
axis, the structure of the vortex axis passes through a saddle and an adjacent node can
be observed in the streamline pattern. The value of q satisfies q < 0 and q > 0 for the
saddle and the node, respectively. In the case of the saddle, the sectional streamlines in the
cross-section perpendicular to the axis spiral outward. In the case of the node, the sectional
streamlines in the cross-section perpendicular to the axis spiral inward.

Acknowledgements. The authors are very grateful to Professor D.G. Yang and Dr F.Q. Zhou for providing
the experimental results. The authors also thank the anonymous reviewers for greatly improving the quality of
the manuscript.

Funding. This research is supported by the National Natural Science Foundation of China (grant no.
12102450, no. 11732016 and no. 12172374) and Sichuan Science and Technology Program (grant no.
2018JZ0076) and National Numerical Windtunnel project.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Yimin Wang https://orcid.org/0000-0002-0813-624X;
Shuhai Zhang https://orcid.org/0000-0002-0588-3207.

REFERENCES

ASHRAFI, A., ROMANIC, D., KASSAB, A., HANGAN, H. & EZAMI, N. 2021 Experimental investigation of
large-scale tornado-like vortices. J. Wind Engng Ind. Aerodyn. 208, 104449.

ASHTON, R., REFAN, M., IUNGO, G.V. & HANGAN, H. 2019 Wandering corrections from PIV measurements
of tornado-like vortices. J. Wind Engng Ind. Aerodyn. 189, 163–172.

ATVARS, K., KNOWLES, K., RITCHIE, S.A. & LAWSON, N.J. 2009 Experimental and computational
investigation of an ‘open’ transonic cavity flow. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 223 (4),
357–368.

BENJAMIN, T.B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593–629.
BERESH, S.J., WAGNER, J.L. & CASPER, K.M. 2016 Compressibility effects in the shear layer over a

rectangular cavity. J. Fluid Mech. 808, 116–152.
BERESH, S.J., WAGNER, J.L., HENFLING, J.F., SPILLERS, R.W. & PRUETT, B.O.M. 2015a Width effects

in transonic flow over a rectangular cavity. AIAA J. 53 (12), 3831–3835.
BERESH, S.J., WAGNER, J.L., PRUETT, B.O.M., HENFLING, J.F. & SPILLERS, R.W. 2015b Supersonic

flow over a finite-width rectangular cavity. AIAA J. 53 (2), 296–310.
BOSSEL, H.H. 1969 Vortex breakdown flowfield. Phys. Fluids 12 (3), 498–508.
BROCKWELL, P.J. & DAVIS, R.A. 1991 Time Series: Theory and Methods, 2nd edn, pp. 239–241. Springer

Press.
CHEN, L., ZHU, T., XU, J. & JIANG, T. 2017 Applications of fluorescence-oil-flow visualization technique in

hypersonic wind tunnel test (in Chinese). Acta Aerodyn. Sin. 35 (6), 817–822.
CHONG, M.S., PERRY, A.E. & CANTWELL, B.J. 1990 A general classification of three-dimensional flow

fields. Phys. Fluids A: Fluid Dyn. 2 (5), 765–777.
CHURCH, C.R., SNOW, J.T., BAKER, G.L. & AGEE, E.M. 1979 Characteristics of tornado-like vortices as a

function of swirl ratio: A laboratory investigation. J. Atmos. Sci. 36, 1755–1776.

955 A9-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0813-624X
https://orcid.org/0000-0002-0813-624X
https://orcid.org/0000-0002-0588-3207
https://orcid.org/0000-0002-0588-3207
https://doi.org/10.1017/jfm.2022.1045


Tornado-like vortices in 3-D rectangular cavity flows

CITRO, V., GIANNETTI, F., BRANDT, L. & LUCHINI, P. 2015 Linear three-dimensional global and asymptotic
stability analysis of incompressible open cavity flow. J. Fluid Mech. 768, 113–140.

CROOK, S.D., LAU, T.C.W. & KELSO, R.M. 2013 Three-dimensional flow within shallow, narrow cavities.
J. Fluid Mech. 735, 587–612.

DÉLERY, J.M. 1994 Aspects of vortex breakdown. Prog. Aerosp. Sci. 30 (1), 1–59.
DÉLERY, J.M. 2001 Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation.

Annu. Rev. Fluid Mech. 33 (1), 129–154.
DIX, R.E. & BAUER, R.C. 2000 Experimental and predicted acoustic amplitudes in a rectangular cavity. AIAA

Paper 2000-0472.
DOLLING, D.S., PERNG, S.W. & LEU, Y.L. 1997 An experimental study of passive control of hypersonic

cavity flow oscillations. Tech. Rep. AFRL-SR-BL-TR-98-0240. Center for Aeromechanical Research,
University of Texas.

GLOERFELT, X., BOGEY, C. & BAILLY, C. 2007 Cavity noise, pp. 4–6, 46–47. Arts et Métiers ParisTech.
HALL, M.G. 1961 A theory for the core of a leading-edge vortex. J. Fluid Mech. 11 (2), 209–228.
HALL, M.G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195–218.
HELLER, H.H. & BLISS, D.B. 1975 The physical mechanism of flow-induced pressure fluctuations in cavities

and concepts for their suppression. AIAA Paper 1975-491.
JAMESON, A. & YOON, S. 1987 Lower-upper implicit schemes with multiple grids for the Euler equations.

AIAA J. 25, 929–935.
JORDAN, D.W. & SMITH, P. 1977 Nonlinear Ordinary Differential Equations. Oxford University Press.
KARAMI, M., HANGAN, H., CARASSALE, L. & PEERHOSSAINI, H. 2019 Coherent structures in tornado-like

vortices. Phys. Fluids 31 (8), 085118.
LAMBOURNE, N.C. & BRYER, D.W. 1962 The bursting of leading-edge vortices-some observations and

discussion of the phenomenon. Tech. Rep. 3282. Aeronautical Research Council.
LAWSON, S.J. & BARAKOS, G.N. 2011 Review of numerical simulations for high-speed, turbulent cavity

flows. Prog. Aerosp. Sci. 47 (3), 186–216.
LEGENDRE, R. 1956 Séparation de l’écoulement laminaire tridimensionnel. La Rech. Aéronaut. 54, 3–8.
LEGENDRE, R. 1977 Lignes de courant d’un écoulement permanent. La Rech. Aéronaut. 6, 327–335.
LEIBOVICH, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10 (1), 221–246.
LEIBOVICH, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22 (9), 1192–1206.
LESSEN, M., SINGH, P.J. & PAILLET, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory.

J. Fluid Mech. 63 (4), 753–763.
LUGT, H.J. 1989 Vortex breakdown in atmospheric columnar vortices. Bull. Am. Meteorol. Soc. 70, 1526–1537.
MESEGUER-GARRIDO, F., DE VICENTE, J., VALERO, E. & THEOFILIS, V. 2014 On linear instability

mechanisms in incompressible open cavity flow. J. Fluid Mech. 752, 219–236.
MORTON, M.H. 2007 Certification of the F-22 advanced tactical fighter for high cycle and sonic fatigue. AIAA

Paper 2007-1766.
NATARAJAN, D. & HANGAN, H. 2012 Large eddy simulations of translation and surface roughness effects on

tornado-like vortices. J. Wind Engng Ind. Aerodyn. 104–106, 577–584.
NOLAN, D.S. 2012 Three-dimensional instabilities in tornado-like vortices with secondary circulations.

J. Fluid Mech. 711, 61–100.
PERRY, A. & CHONG, M. 1987 A description of eddying motions and flow patterns using critical-point

concepts. Annu. Rev. Fluid Mech. 19, 125–155.
PICELLA, F., LOISEAU, J.-C., LUSSEYRAN, F., ROBINET, J.-C., CHERUBINI, S. & PASTUR, L. 2018

Successive bifurcations in a fully three-dimensional open cavity flow. J. Fluid Mech. 844, 855–877.
PLENTOVICH, E.B., STALLINGS, R.L. & TRACY, M.B. 1993 Experimental cavity pressure measurements at

subsonic and transonic speeds. Tech. Rep. 3358. Langley Research Center.
POPE, S.B. 2000 Turbulent Flows, 1st edn, p. 270. Cambridge University Press.
REFAN, M. & HANGAN, H. 2016 Characterization of tornado-like flow fields in a new model scale wind

testing chamber. J. Wind Engng Ind. Aerodyn. 151, 107–121.
REFAN, M. & HANGAN, H. 2018 Near surface experimental exploration of tornado vortices. J. Wind Engng

Ind. Aerodyn. 175, 120–135.
ROSSITER, J.E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic

speeds. Aeronautical Research Council Reports and Memoranda, no. 3438.
ROTUNNO, R. 2013 The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45 (1), 59–84.
ROWLEY, C.W., COLONIUS, T. & BASU, A.J. 2002 On self-sustained oscillations in two-dimensional

compressible flow over rectangular cavities. J. Fluid Mech. 455 (455), 315–346.
ROWLEY, C.W. & WILLIAMS, D.R. 2006 Dynamics and control of high-Reynolds-number flow over open

cavities. Annu. Rev. Fluid Mech. 38 (1), 251–276.

955 A9-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1045


Y. Luo, H. Tian, C. Wu, H. Li, Y. Wang and S. Zhang

SARPKAYA, T. 1971a On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (3), 545–559.
SARPKAYA, T. 1971b Vortex breakdown in swirling conical flows. AIAA J. 9 (9), 1792–1799.
SHUR, M.L., SPALART, P.R., STRELETS, M.K. & TRAVIN, A.K. 2008 A hybrid RANS-LES approach with

delayed-DES and wall-modelled LES capabilities. Intl J. Heat Fluid Flow 29 (6), 1638–1649.
SPALART, P.R. & ALLMARAS, S.R. 1994 A one-equation turbulence model for aerodynamic flows. AIAA

Paper 92-0439.
STALLINGS, R.L. & WILCOX, F.J. 1987 Experimental cavity pressure distributions at supersonic speeds.

Tech. Rep. 2683. Langley Research Center.
WOODIGA, S. & LIU, T. 2009 Skin friction fields on delta wings. Exp. Fluids 47, 897–911.
YANG, D.G., LIU, J., WANG, X.S., SHI, A., ZHOU, F.Q. & ZHENG, X.D. 2018 Analysis of design method

and aeroacoustics characteristics inside typical cavity. Acta Aerodyn. Sin. 36 (3), 432–439, 448.
YEOM, H.-W., SEO, B.-G. & SUNG, H.-G. 2013 Numerical analysis of a scramjet engine with intake

sidewalls and cavity flameholder. AIAA J. 51 (7), 1566–1575.
ZHANG, H. 1995 Analytical analysis of subsonic and supersonic vortex motion. Acta Aerodyn. Sin. 13 (3),

259–264.
ZHANG, H. 2005 Structural Analysis of Separated Flows and Vortex Motion (in Chinese). National Defense

Industry Press.
ZHANG, S. 2018 Tubular limiting stream surface: tornado in three-dimensional vortical flow. Appl. Maths

Mech. 39 (11), 1631–1642.
ZHANG, S., JIANG, S. & SHU, C.-W. 2008 Development of nonlinear weighted compact schemes with

increasingly higher order accuracy. J. Comput. Phys. 227 (15), 7294–7321.
ZHANG, S., ZHANG, H. & SHU, C.-W. 2009 Topological structure of shock induced vortex breakdown.

J. Fluid Mech. 639, 343–372.
ZHOU, F.Q., YANG, D.G., WANG, X.S., LIU, J. & SHI, A. 2018 Effect of leading edge plate on high speed

cavity noise control. Acta Aeronaut. Astronaut. Sin. 39 (4), 121812.
ZHOU, J., ADRIAN, R.J., BALACHANDAR, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent

packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

955 A9-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1045

	1 Introduction
	2 Topological analysis of spiral vortex
	2.1 In the cross-section perpendicular to the vortex axis
	2.2 In the meridional plane
	2.3 Relations of streamline pattern between the meridional and perpendicular planes

	3 Numerical simulation
	3.1 Governing equations
	3.2 Numerical method and flow configuration
	3.3 Validation

	4 Evolution of tornado-like vortex
	4.1 The case Ma=0.9
	4.1.1 Movement of the vortices
	4.1.2 Spatial structure of the right tornado-like vortex
	4.1.3 Spatial structure of the left tornado-like vortex

	4.2 The case Ma=1.5
	4.2.1 Movement of the vortices
	4.2.2 Spatial structure of the tornado-like vortex


	5 Concluding remarks
	References

