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RESTRICTED LIE ALGEBRAS OF MAXIMAL CLASS

D.M. RlLEY

Let L be a possibly infinite-dimensional Lie algebra of maximal class. We show that
if L admits the structure of a Lie p-algebra then the dimension of L can be at most
p + 1. Furthermore, this bound is best possible.

1. INTRODUCTION

to be of maximal class. This definition extends naturally to infinite dimensional Lie
algebras: L has maximal class if L is residually nilpotent and

dimL/7n(L) =n

for all n > 1, where 7n(L) denotes the nth term of the lower central series of L.

The analogous notion defined for finite p-groups and pro-p groups has been studied
extensively by many authors (see [6] for an overview). In fact, Blackburn's original study
of finite p-groups of maximal class [2] predates Vergne's seminal work on Lie algebras of
maximal class [9, 10, 11].

We single out now a few relevant results about maximal class. First, Alperin [1]
proved every pro-p group with maximal class has an open Abelian subgroup. Second,
and along this same vein, Shalev and Zelmanov proved in [8] that every graded (that is,
Z+-graded and generated by its first homogeneous component) Lie algebra of maximal
class in characteristic zero is virtually Abelian. Actually, Vergne proved a similar result
long ago, but Shalev and Zelmanov's theorem was proved more generally under the weaker
hypothesis of finite coclass. Nowadays, pro p-groups and Lie algebras of finite coclass are
actively studied. See [6], for example. We note here only that having maximal class is
equivalent to having coclass 1.

In contrast to the aforementioned characteristic zero result, Shalev constructed in
[7] examples of modular graded Lie algebras of maximal class that are not virtually
soluble. Moreover, by a recent result of Caranti, Mattarei and Newman [3], the number
of isomorphism types of such Lie algebras is 2". It might be surprising then that the
structure of restricted Lie algebras of maximal class cannot be nearly so complicated.
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Indeed, it follows from a result of Semple and the present author in [4] that the dimension
of a restricted Lie algebra of maximal class is finite and bounded above by 2p + 2 if the
characteristic p is odd, and 14 if p = 2. A similar statement also holds under the weaker
hypothesis of finite coclass. The aim of this note is to sharpen this bound to p + 1 for all
p > 0. It will transpire that this new bound is best possible.

THEOREM B. Suppose that L is a restricted Lie algebra over a field with prime
characteristic p > 0 and that L is of maximal class. Then L is nilpotent of class at most
p and dimL < p+ 1.

Let us now illustrate why the bound produced in Theorem B is best possible. Let
{ei, e2, • • •, en} be a basis of the Lie algebra over a field F of characteristic p > 0 defined
via

if i + j ^ n
otherwise.

It is easy to check that these structural constants do in fact define a Lie algebra over
F and that this Lie algebra is of maximal class whenever 2 ^ dimL = n ^ p + 1. In
addition, one may verify that this Lie algebra admits the structure of a restricted Lie
algebra by defining the p-map to be trivial in the case n < p + 1, and by setting e\ = ep

and ef = 0 for i > 1 when n = p + 1.

One might wonder whether or not the derived length of a restricted Lie algebra of
maximal class can be uniformly bounded for all p > 0. However, the derived length of
the restricted Lie algebra just constructed is approximately log2 n, and thus can be taken
to be arbitrarily large (as p increases).

The more general problem of obtaining precise bounds on restricted Lie algebras of
a given finite coclass greater than 1 is briefly discussed in Section 5.

Before closing this section, we would like to make it clear that the techniques em-
ployed below were heavily influenced by those of Blackburn in [2].

2. T H E DEGREE OF COMMUTATIVITY

Let F b e a field of characteristic p > 0. Throughout the remainder of this section, L
represents a finite-dimensional (ordinary) Lie algebra over F of maximal class. We intend
to adapt some group-theoretic notions originally due to Blackburn, [2], to our present
needs. Define L\ to be the centraliser of 72(L)/74(L) in L, and write Li = 7*(L) for each
i > 1. The degree of commutativity of L, 5 = S(L), is said to be positive if

for al i i , j ^ 1. The key result of this note is as follows.

THEOREM A. Suppose that p > 2 and the dimension of L is an odd number at
most 2p+l. Then 6 > 0.
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The proof of Theorem A is contained in the next section. We develop some back-

ground machinery below.

LEMMA 2 . 1 . Suppose that d imL ^ 4. Then d i m L / L j = 1

P R O O F : We may write L2 = Fa+L3 and L3 = Fb+L^. Let x € L. Then [a. x) e L3.

so that

[a, x) = ab mod L4

for some a = a(x) £ F. Define a linear map 77: L —» F by r)(x) = a. The kernel of 77 is

Li, so d i m L / L i $C 1. Finally, L ^ Li , for otherwise L3 = [ ^ j l ' ] ^ L4, contrary to our

assumption that dim L ^ 4. D

We shall abbreviate Engel commutators by

[x,my] •= [x,y,y,...,y]

where the y appears on the right hand side exactly m times.

LEMMA 2 . 2 . Suppose that dimL = n ^ 5 and 5(L/Ln-i) > 0. Choose elements

s € L\ L\ and S\ S L\ \ Li, and set Si = [si,j_i s] for each i = 2 , . . . , n — 2. Then

L = {s, Si), Li = Fsi + Li+l and

for each i = 1 ,2 , . . . , n — 2.

P R O O F : The elements s and Si exist by the previous lemma. Since L is nilpotent,

Li coincides with the set of non-generators of L (recall that L is an ordinary Lie algebra

in this section); therefore s and S\ generate L. Clearly L\ = Fsi + Li. Assume by

induction that Lj_i = F S J _ I + Lj. Then

Li = F[si-U s] + F[si-i, si] + Li+i

= Fsi + Li+1

since 5(L/L n _ i ) > 0 implies [s;_i, Si] € [Li_i, L\\ ^ Li+i for i ^ n — 2.

Suppose i ^ n — i — 1. Then using the Jacobi identity we have

= [s, Sn-i-i, Si]

- [sit Sn_j_2, S] + [S, Si, Sn_j_2]

because [sj,sn_i_2,s] € [Ln_i,L] = 0. A simple induction argument now proves the

lemma. D
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LEMMA 2 . 3 . Suppose that dim L = n ^ 4 and that

[Li, Li] $C L{+2

fori = 1,2,..., n- 2. Tiien<5>0.

PROOF: This is trivial if n = 4. Suppose then that n > 4. We shall proceed by
induction on n. Thus we may assume that 6(L/Ln-i) > 0. It remains to show

for i = 2 , 3 , . . . , n — 3 since [Li, Ln_2] = 0 by hypothesis. But by Lemma 2.2 we have

= F[sl,sn_2]

= 0

for 2 ^ i ^ n — 3 since then 2 ^ n — i - l ^ n - 3 , as well. D

LEMMA 2 . 4 . Suppose that dimL - n ^ 5 and 6(L/Ln-i) > 0. T ien the foiiow-

ing statements hold.

1. Ifn is odd, then 6 > 0.

2. Ifn is even, then 6 > 0 precisely when L(n/2)-\ is Abelian.

P R O O F : By the previous result it follows that 6 > 0 if and only if [Lx,Ln-2[ = 0.
By Lemma 2.2, this is equivalent to [s\, sn_2] = 0. But if n is odd, then

[si,sn_2] = (-l) ( n-1 ) / 2[S ( n_1 ) / 2 ,s ( n_1 ) / 2] = 0.

On the other hand, if n is even, then

Therefore [si, sn_2] = 0 if and only if L(n/2)-\ = Fs(n/2)-i + Ln/2 is Abelian. D

3. P R O O F OF THEOREM A

Assume that p > 2 and dimL = n is odd with n ^ 2p + 1. Since automatically
6(L/Li) > 0, the result follows for the case n ^ 5 from Lemma 2.4. For n > 5, we use
induction on n. Assume then that 5(L/Ln-2) > 0. From Lemma 2.4, we may assume,
to the contrary, that <5(L/Ln_i) = 0. Consequently, Lemma 2.3 implies that [Li,Ln_3] is
not contained in Ln_x; in other words, Si does not centralise Ln_3 modulo Ln_i. Because
Ln_3 = Fsns + Ln-2, it follows that tn_2 := [sn_3,Si] generates Ln_2 modulo Ln-\.
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Since <5(L/Ln_2) > 0, we may apply Lemma 2.2 to L/Ln_i to get [s^Sj] € Li+j+\ if

i+j ^ n - 3 and [s{,sn_i_2] = ( - ^ ' " ' [ s i . S n - s ] for i = 1,2, . . . , n - 3. Thus in_2 =

[sn.SjS!] = [s2,sn_4]. Using the Jacobi identity we obtain

= 0

since [si,sn_4] € Ln_2 and [s2)si] € L4. It follows that [L1,Ln_2] ^ Ln = 0, and hence
that in_i := [tn_2,s] generates Ln_i.

We now use induction to prove

[si, Sn-i-!] = (-i) : l(i - i)tn_i

for i — 2 , 3 , . . . , n - 3. Indeed, let i = 2. Then because [Ln_2, Iq] = 0,

[s2.St.-3] = [si>s,sn_3]

= [sn_3)s,si] + [si,sn_3)s]

= - i n - 1 -

Suppose now that

[Vi,Vi] = (-ir2(i-2)in-i.

Then

[Si,Sn_j_i] = [Si_i,S, Sn_i_i]

= [Sn-i-l, S, Sj_i] + [Si-i, Sn-i_i, s]

= [Sn-i, Si-l] + [Sj_!, Sn-i-l, S]

= -[8i-u8n-i] + [(-1) '~2[*1, Sn-3] , S]

as required.

Setting i = (n - l)/2 in the identity just proved yields

0 = [5(n_1)/2)5(n_1)/2] = ( - l ) ( n - 3 ) / 2 [ ^ ( n -

contrary to our choice of p o r n . D
Let us note the following corollary.
COROLLARY 3 . 1 . If dim L — n is even and 6 ^ n ̂  2p + 2, then 6 > 0 precisely

when L(n/2)_i is Abelian.

PROOF: Applying Theorem A to L/Ln_! we find that 5{L/Ln^{) > 0. The result
now follows from Lemma 2.4. D
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4. P R O O F OF THEOREM B

In this section, we also assume that L admits the structure of a restricted Lie algebra.
We shall require one last lemma.

LEMMA 4 . 1 . Let x be an element of L. Then xp lies in Lp.

P R O O F : First notice that xp € Ly. Indeed, let a be an element of L2. Then

[a,xp] = [a,px] e Lp+2 ^ L4.

Now let i be maximal such that xp € Li. Then Li = Fxp + Lj+i, so that

Li+i = [L, xp] + Li+2 — [L,px] + Li+2 < I/p+i + Li+2.

Therefore i ^ p. D

Assume that the conclusion of Theorem B is false. Then there exists a restricted Lie
algebra L of maximal class and dimension precisely p + 2. If p = 2 then L4 = 0, and so
5 > 0 automatically. Otherwise, Theorem A guarantees that the degree of commutativity
of L is positive (since p + 2 is odd). From Section 2, we know

Sp+l = [sUpS] = [SUSP]

generates Lp+\. However, sp lies in Lp by Lemma 4.1, so that 6 > 0 forces

Sp+i = \si,sp] € [ L L Lp] ^ Lp+2 = 0,

the desired contradiction. D

5. ANOTHER COCLASS CONJECTURE

Recall from [4] that the coclass of a finite dimensional nilpotent Lie algebra is the
difference of its dimension and nilpotency class, so that a Lie algebra is of coclass 1 pre-
cisely when it is of maximal class. The definition extends naturally to infinite dimensional
Lie algebras as in the coclass 1 case. It was shown in [4] that restricted Lie algebras with
finite coclass r have dimension at most 2pr + r + 1 if p is odd, and 6 • 2T + r + 1 if p = 2.
This result is an analogue of the so-called 'coclass conjectures' for p-groups (see [6] for a
complete overview).

In light of Theorem B, we pose the following problem:

PROBLEM. Suppose that a restricted Lie algebra L over a field of characteristic p > 0
has finite coclass r. Is it true that this implies that

dim L ^ pr + r?

If so, then this bound would be tight: see [5, 2.1] for examples of restricted Lie algebras
of coclass r and dimension pT + r, for each r ^ 1.
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