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New exact solutions are presented to the problem of steadily travelling water waves with
vorticity wherein a submerged von Kármán point vortex street cotravels with a wave on
a linear shear current. Surface tension and gravity are ignored. The work generalizes
an earlier study by Crowdy & Nelson (Phys. Fluids, vol. 22, 2010, 096601) who found
analytical solutions for a single point vortex row cotravelling with a water wave in a linear
shear current. The main theoretical tool is the Schwarz function of the wave, and the
work builds on a novel framework set out recently by Crowdy (J. Fluid Mech., vol. 954,
2022, A47). Conformal mapping theory is used to construct Schwarz functions with the
requisite properties and to parametrize the waveform. A two-parameter family of solutions
is found by solving a pair of nonlinear algebraic equations. This system of equations
has intriguing properties: indeed, it is degenerate, which radically reduces the number of
possible solutions, although the space of physically admissible equilibria is still found to be
rich and diverse. For inline vortex streets, where the two vortex rows are aligned vertically,
there is generally a single physically admissible solution. However, for staggered streets,
where the two vortex rows are offset horizontally, certain parameter regimes produce
multiple solutions. An important outcome of the work is that while only degenerate von
Kármán point vortex streets can exist in an unbounded simple shear current, a broad array
of such equilibria is possible in a shear current beneath a cotravelling wave on a free
surface.
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1. Introduction

In the study of two-dimensional water waves, it is common to assume that the flow is
irrotational and to study the effects of gravity or capillarity, or both. There is growing
interest, however, in the theory of water waves with vorticity where finite-amplitude
steadily travelling waves can exist even without either of these physical effects (Benjamin
1962; Simmen & Saffman 1985; Teles da Silva & Peregrine 1988; Pullin & Grimshaw
1988; Vanden-Broeck 1994, 1996; Sha & Vanden-Broeck 1995; Constantin & Strauss
2004; Groves & Wahlén 2007; Groves & Wahlén 2008; Ehrnström 2008; Wahlén 2009;
Hur & Dyachenko 2019a,b; Hur & Vanden-Broeck 2020; Hur & Wheeler 2020). A recent
review article (Haziot et al. 2022) gives an overview of some of the literature on water
waves with vorticity. When adding vorticity to the water wave problem, there is a choice
on the form of the vorticity distribution, and it has traditionally been taken to be uniform:
Tsao (1959) and Benjamin (1962) performed early weakly nonlinear analyses of this case.
Simmen & Saffman (1985) studied it numerically for gravity waves in deep water, work
extended by Teles da Silva & Peregrine (1988) to the finite depth scenario. In the infinite
depth case, one supposes that at large distances from the interface, the flow is a linear shear
current. By now, much other numerical work has been done for constant-vorticity water
waves using a variety of formulations (Vanden-Broeck 1994, 1996; Sha & Vanden-Broeck
1995; Hur & Dyachenko 2019a,b; Hur & Vanden-Broeck 2020; Hur & Wheeler 2020).

Another vortex model that has been studied in the context of water waves is the
point vortex. Early work on the rigorous existence theory, when gravity is present
but weak, and when the vorticity is modelled as a point vortex, was carried out by
Filippov (1961) and Ter-Krikorov (1958). Shatah, Walsh & Cheng (2013) have proved
the existence of steadily travelling two-dimensional capillary–gravity water waves with
compactly supported vorticity, including the case where the vorticity is in the form of
point vortices. Varholm (2016) constructed solitary solutions for capillary–gravity waves
with a submerged point vortex. Le (2019) looked at solitary waves carrying a submerged
finite dipole in deep water.

Recently, one of the authors (Crowdy 2022) has introduced a novel theoretical
framework for understanding water waves with uniform vorticity, in the absence of gravity
or surface tension, and possibly also punctuated by rows of cotravelling point vortices. The
mathematical tool used in this framework is the notion of a Schwarz function of a wave.
Earlier, Crowdy & Nelson (2010) used Schwarz functions in the context of a water wave
problem involving a linear shear current, and the recent work of Crowdy (2022) shows
how that study fits into a broader framework.

To explain the Schwarz function of a wave, consider first a flat wave profile y = 0, say,
in a Cartesian (x, y) plane. Using the complex variable z = x + iy, clearly

z̄ = z on y = 0. (1.1)

A key observation is that the right-hand side of (1.1) is an analytic function of z having the
feature that it can be analytically continued off the line y = 0. For a more general wave
profile, ∂D say, given by an analytic curve that is periodic in the x direction, the Schwarz
function of ∂D can be defined as the function S(z), analytic in a strip containing the wave
profile, satisfying the conditions

z̄ = S(z) on ∂D, (1.2)

with

S(z) → z + iΛ+ O(1/z) as y → −∞,Λ ∈ R. (1.3)

969 A5-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.551


Exact solutions for vortex streets cotravelling with a wave

The Schwarz function of the flat profile (1.1) corresponds to the special case S(z) = z with
Λ = 0.

Schwarz functions are defined most commonly for closed analytic curves, and much is
known about their properties and applications (Davis 1974). As shown by Crowdy (2022),
it turns out that the generalized notion of the Schwarz function S(z) of a wave profile
can be used to express the two-dimensional velocity field (u, v) associated with steadily
travelling waves with constant vorticity ω0, and allowing also for submerged cotravelling
periodic rows of point vortices, in the complex variable form

u − iv = − iω0

2
z̄ + q

√
S′(z)+ iω0

2
S(z), (1.4)

where (u, v) refers to the velocity field in the cotravelling frame of reference with speed Uf ,
say. The constant q represents the speed of the fluid on the interface itself; from Bernoulli’s
condition, this surface speed must be constant if both gravity and surface tension are
ignored, and if the region above the fluid region is at constant pressure. Condition (1.3)
means that as y → −∞,

u − iv = iω0

2
(z − z̄ + iΛ)+ q = −ω0y +

(
q − Λω0

2

)
, (1.5)

so the wave speed is related to the other parameters via

Uf = Λω0

2
− q. (1.6)

In view of the general expression (1.4), three cases arise naturally (Crowdy 2022,
pp. 6–7):

(i) case 1: ω0 /= 0, q = 0, uniform vorticity, zero velocity at the free surface;
(ii) case 2: ω0 = 0, q /= 0, irrotational flow, non-zero velocity at the free surface;

(iii) case 3: ω0 /= 0, q /= 0, uniform vorticity and non-zero velocity at the free surface.

In each case, only special classes of wave profiles will correspond to physically admissible
steadily travelling equilibria, and this means only special choices of S(z) are allowed in
the expression (1.4). Crowdy (2022) shows how to use conformal mapping theory to find
admissible Schwarz functions and, consequently, to construct new analytical solutions
to the problem of steadily travelling water waves with vorticity when the distribution is
uniform, possibly with superposed point vortices. Other singularity types can easily be
admitted too.

Using similar conformal mapping techniques, the aforementioned study of Crowdy &
Nelson (2010) found exact solutions for travelling waves on a deep-water linear shear
current having constant vorticity and with a single submerged cotravelling point vortex
row. Their techniques were borrowed from an earlier study of Crowdy (1999), who posed
that streamfunctions taking the form of so-called modified Schwarz potentials can provide
equilibrium vortical solutions of the incompressible two-dimensional Euler equations.
These have the form

ψ(z, z̄) = −ω0

4

[
zz̄ −

∫ z
S(z′) dz′ −

∫ z
S(z′) dz′

]
, (1.7)

for which a simple calculation, with u = ∂ψ/∂y, v = −∂ψ/∂x, leads to

u − iv = 2i
∂ψ

∂z
= − iω0

2
(z̄ − S(z)) , (1.8)
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which coincides with (1.4) once the case 1 choice of q = 0 is made. It is in this way that
the solutions of Crowdy & Nelson (2010) can now be viewed as the most basic water wave
solutions falling within the case 1 category of solutions.

In fact, the framework of Crowdy (2022) provides a theoretical unification of three (until
now, apparently unrelated) contributions in the water wave literature: those of Crowdy &
Nelson (2010), Crowdy & Roenby (2014) and Hur & Wheeler (2020) which, respectively,
are now understood as the most basic water wave solutions falling within cases 1, 2 and 3.
Interested readers are referred to Crowdy (2022) for a more detailed explanation of these
developments.

For present purposes, it is enough to point out that after describing the general
framework, Crowdy (2022) focused on producing a range of new solutions falling within
the case 2 category. Among these are solutions describing two submerged vortex rows,
also known as von Kármán vortex streets, cotravelling with a free surface wave but where
the flow was otherwise irrotational; the earlier work of Crowdy & Roenby (2014) had
found steady waves cotravelling with a single submerged point vortex row. The purpose
of the present paper is to present the ‘case 1 analogues’ of those new solutions involving
two vortex rows: here, we present analytical solutions for submerged von Kármán vortex
streets (i.e. two vortex rows) cotravelling in a linear shear current beneath a free surface
wave, thereby generalizing the work of Crowdy & Nelson (2010), who focused on a single
cotravelling vortex row.

The paper is set out as follows. In § 2, the background on steady equilibria falling within
case 1 of the solution taxonomy of Crowdy (2022) is given. Section 3 then describes
the classical von Kármán vortex streets in unbounded irrotational flow, and examines
whether those equilibria can be generalized to exist in a background simple shear. In § 4,
the problem of two submerged vortex rows, or a vortex street, in a linear shear current is
formulated. It is shown that finding equilibria within the case 1 category can be reduced
to the study of two algebraic equations whose solution structure is discussed in detail in
§ 5. A characterization of the physically admissible solutions is surveyed in § 6. The paper
closes with a discussion of the results in § 7.

2. Case 1 category of solutions

Once the expression (1.4) for the complex velocity field has been derived in terms of
the Schwarz function S(z) of the wave profile, the case 1 category of solutions follows
simply by taking q = 0, which means that the form of the complex velocity field reduces
to (1.8), as explained above. This is the generalized viewpoint espoused by Crowdy (2022).
However, because the present paper focuses on only case 1 solutions, it is possible to defer
to the earlier work of Crowdy & Nelson (2010) and offer a more direct formulation in this
case.

A vortex patch is the name given to a region of uniform vorticity (Saffman 1992);
an unbounded fluid region of constant vorticity below some wave profile can therefore
be viewed as a vortex patch of infinite extent. For any steadily travelling wave on the
boundary of a vortex patch, there is a kinematic condition that the vortex jump at the
patch boundary in a cotravelling frame of reference must be a streamline. An additional
dynamical condition at the vortex jump says that the velocity fields must be continuous
there; this turns out to ensure the continuity of the fluid pressure (Saffman 1992).

Suppose now that a streamfunction for a steadily travelling equilibrium over a
semi-infinite linear shear layer is given, in a cotravelling frame, by (1.7). It is checked
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Exact solutions for vortex streets cotravelling with a wave

readily that the free surface is a streamline since, on the vortex jump where z̄ = S(z),

dψ = ∂ψ

∂z
dz + ∂ψ

∂ z̄
dz̄ = −ω0

4

[
(z̄ − S(z)) dz +

(
z − S(z)

)
dz̄

]
= 0. (2.1)

Moreover, since from (1.8) u − iv = 0 on the vortex jump, it is continuous with the
vanishing velocity in the upper constant pressure phase. The streamfunction (1.7) therefore
appears to furnish a relative equilibrium of the two-dimensional Euler equations even
before any choice of S(z) is made, because both the kinematic and dynamic boundary
conditions at the vortex jump are satisfied.

The catch is that generic Schwarz functions S(z) have singularities in the region
corresponding to the fluid, and as such, only certain choices of S(z) will be admissible
physically. Even then, if S(z) has a physically admissible singularity – such as a simple
pole with a real residue that corresponds to a point vortex – then there are additional
dynamical constraints that any such point vortex is also in equilibrium with respect to the
global configuration. While all these constraints might appear, at first sight, to render it
unlikely that equilibrium streamfunctions within this class exist, many such solutions have
now been found. In the radial geometry most relevant when studying finite-area vortices,
such equilibrium solutions have been identified by Crowdy (1999, 2002a,b) and Crowdy &
Marshall (2004, 2005). For the water wave geometry, the aforementioned work of Crowdy
& Nelson (2010) provides such solutions; that study focussed on a single submerged point
vortex row cotravelling with a wave on the vortex jump on a semi-finite shear layer.
The aim of the present paper is to extend the latter class of water wave solutions to
the case where a submerged von Kármán vortex street – that is, a pair of vortex rows,
either symmetric (‘inline’) or asymmetric (‘staggered’) (Acheson 1990; Saffman 1992) –
cotravels with a wave on the vortex jump.

3. The classical von Kármán vortex streets

Since the aim here is to study solutions in which vortex streets resembling those studied
by von Kármán are cotravelling with a wave in a linear shear current, it is appropriate
to review the theory of von Kármán vortex streets, without any background shear, in an
unbounded irrotational flow.

The complex potential, w(z) say, for a single periodic point vortex row comprising
vortices all having circulation Γ and with period c, is well-known (Acheson 1990; Saffman
1992) to be

w(z) = − iΓ
2π

log sin
(πz

c

)
, (3.1)

where one of the vortices has been placed at the origin. Apart from the point vortices, the
flow is otherwise irrotational. The associated complex velocity field is

u − iv = dw
dz

= − iΓ
2c

cot
(πz

c

)
→ ∓Γ

2c
as y → ±∞. (3.2)

Far from the vortex row, the fluid velocity is uniform in the x direction but in opposite
directions above and below.

A staggered, or asymmetric, von Kármán vortex street is made up of two such point
vortex rows, one with vortices of circulation Γu above another row with vortices of
circulation Γl offset by half a period; in the classical setting, Γl = −Γu, for reasons to
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be seen shortly. Such a street, with period c = 2π, therefore has complex potential

− iΓu

2π
log sin

(
z + i

2

)
− iΓl

2π
log sin

(
z − π + i(1 + λ)

2

)
, (3.3)

where we have now placed one of the vortices in the row having circulation Γu at z = −i,
and one of the vortices in the row having circulation Γl at z = π − i(1 + λ); this is for ease
of comparison with solutions found later. The parameter λ is the aspect ratio of the street
(Acheson 1990; Saffman 1992). The associated complex velocity field is

u − iv = − iΓu

4π
cot

(
z + i

2

)
− iΓl

4π
cot

(
z − π + i(1 + λ)

2

)
. (3.4)

Since both cotangent functions tend to ∓i as y → ±∞, it is clear that the velocity induced
far away from this street will vanish provided that Γu = −Γl := Γ . It is then easy to show,
using the usual rules for the velocity of a free point vortex, that the vortex street moves
steadily in the x direction, with velocity

Γ

4π
tanh

(
λ

2

)
. (3.5)

It is natural to ask whether such a relative equilibrium can also exist if placed in a simple
shear flow, (−y, 0) say. There is no complex potential in this case, but the associated
complex velocity field is

u − iv = −y − iΓ
4π

cot
(

z + i
2

)
+ iΓ

4π
cot

(
z − π + i(1 + λ)

2

)
, (3.6)

where the same relationship Γu = −Γl := Γ is again necessary to ensure that there is no
uniform flow component in the far field. Suppose that we assume the existence of a steadily
translating equilibrium moving in the x direction with speed U. Then the condition for
equilibrium at y = −1, or z = −i, is

Ustag = 1 + Γ

4π
tanh

(
λ

2

)
, (3.7)

while the condition at y = −(1 + λ), or z = −i(1 + λ), is

Ustag = 1 + λ+ Γ

4π
tanh

(
λ

2

)
. (3.8)

It is clear that (3.7) and (3.8) can be consistent only if λ = 0, corresponding to a degenerate
case, with zero aspect ratio, comprising a periodic row of vortices of alternating circulation
spaced apart by π.

A similar conclusion is reached for the inline (also known as unstaggered, or symmetric)
von Kármán vortex streets. In this case, provided that λ /= 0 (because otherwise the two
point vortex rows will sit directly atop each other and cancel each other out), the analogues
of the two conditions (3.7) and (3.8) are

Uinline = 1 + Γ

4π
coth

(
λ

2

)
(3.9)

and

Uinline = 1 + λ+ Γ

4π
coth

(
λ

2

)
. (3.10)

Since λ = 0 is the only consistent solution of both (3.9) and (3.10), and because this value
corresponds to the two vortices cancelling each other out, the conclusion is that there is no
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Inline vortices Staggered vortices

–2π 0 –2π 0

zb

zb

za za

z z

ω0 ω0

∂Ω ∂Ω

Ω Ω

(b)(a)

Figure 1. The physical plane for (a) inline and (b) staggered vortices. The positions of the vortices are
denoted za and zb, and the domain is 2π-periodic.

equilibrium for an inline, or symmetric, von Kármán vortex street in an unbounded simple
shear current.

These simple calculations reveal that no classical von Kármán vortex street equilibria
survive when placed in an unbounded simple shear. Interestingly, however, in what follows
we are able to show that equilibria resembling von Kármán vortex streets do survive when
the point vortices are cotravelling with a free surface wave in a simple shear current.

4. Von Kármán vortex streets cotravelling with a wave in a linear shear current

The physical situations of interest for the remainder of this paper are illustrated in
figures 1(a,b), which show inline configurations and staggered configurations in a single
period window of the complex z plane, respectively. The fluid domain in this 2π-period
window is denoted by Ω; it is unbounded as y → −∞, but bounded above by a free
surface, denoted by ∂Ω . As y → −∞, the flow tends to a linear shear of the form
(−y, 0) upon using the dimensionalization ω0 = 1; this simply sets a time scale for
the flow. It is assumed that there are two point vortices in the fluid in each 2π-period
window (although more vortices can be added; see the discussion in the previous section).
For inline configurations, both are located in the middle of the period window; for the
staggered configuration, the vortices are offset by half a period in the x direction (we note
that changing the horizontal offsets of the stagger of the two vortices simply changes the
length of the period window). Since steadily travelling equilibria with speed Uf in the
positive x direction are sought, it is natural to move to a cotravelling frame of reference
where, as y → −∞, the flow is steady and tends to a linear shear of the form (−y − Uf , 0).
In this frame of reference, the wave profile is fixed, as are the locations of any submerged
point vortices. This means, according to the usual equations of motion of a free point
vortex (Acheson 1990; Saffman 1992), that the non-singular component of the velocity
field at each point vortex must vanish.

Following the formulation in Crowdy & Nelson (2010), who allowed for a single point
vortex per period, or a single submerged vortex row, the extension to two point vortices per
period, or two submerged vortex rows, requires consideration of a generalized conformal
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Inline vortices Staggered vortices

ζ = 1/a ζ = 1/a

D D

ζ = 1/b

ζ = 1/b

ζ = 0 ζ = 0

ζ ζ

∂D ∂D

(b)(a)

Figure 2. The ζ plane for (a) inline and (b) staggered vortices. The branch cut is shown as a dotted line. The
singularities of u are at ζ = 1/a and ζ = 1/b (cf. (4.4)) and correspond to the positions of the vortices in the
ζ plane.

map of the form

z = Z(ζ ) = i
[

log ζ + A
ζ − a

+ B
ζ − b

]
+ d, (4.1)

where a, b,A,B ∈ R and d ∈ iR are parameters to be determined. This mapping
transplants a unit disc, in a parametric ζ plane, to the period window Ω in the z plane.
Let the interior of the unit disc be denoted by D, and its unit circle boundary by ∂D,
as shown in figure 2(a,b) for the inline and staggered cases, respectively. It is necessary
that |a|, |b| > 1 to ensure that there are no poles of z in D; this is because the conformal
mapping must be an analytic function mapping the cut disc in a one-to-one fashion to a
period window. The only allowed singularity inside the disc is therefore the logarithmic
singularity at ζ = 0 mapping to y → −∞ and required by the periodic nature of the image
domain. The two sides of a logarithmic branch cut between ζ = 0,∞ are transplanted to
the two sides of the period windowΩ . The boundary ∂D is transplanted to the free surface
∂Ω in the physical plane.

To see how (4.1) produces the two point vortices per period, note that the Schwarz
function can be written, as a function of ζ , as

S(z) = z̄ = Z(ζ ) = Z̄(1/ζ ) = i
[

log ζ − Aζ
1 − aζ

− Bζ
1 − bζ

]
+ d̄, (4.2)

where we have used the fact that ζ̄ = 1/ζ on ∂D, and hence on ∂Ω . Since this function
has the same logarithmic singularity as Z(ζ ) at ζ = 0, it is easy to check that this function
satisfies the far-field condition (1.3). The Schwarz function S(z) has simple poles at ζ =
1/a, 1/b, which are inside D and therefore correspond to simple poles of S(z) at

za = Z(1/a) = i
[

log(a−1)+ Aa
1 − a2 + Ba

1 − ab

]
+ d,

zb = Z(1/b) = i
[

log(b−1)+ Bb
1 − b2 + Ab

1 − ab

]
+ d

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

which are inside Ω . The two parameters a and b will be viewed as free parameters. It
then turns out that for equilibrium, A = A(a, b), B = B(a, b) and d = d(a, b) must be
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determined as functions of these two parameters. To see this, notice that the complex
velocity field (1.8) can be written as a function of ζ as

u − iv = − iω0

2
[z̄ − S(z)] = −ω0

2

[
log |ζ |2 + A

ζ̄ − a
+ B
ζ̄ − b

− Aζ
1 − ζa

− Bζ
1 − ζb

]
.

(4.4)
To find the condition that the point vortex at ζ = 1/a is in equilibrium, it is useful to
rewrite the velocity field as

u − iv = −ω0

2

[
log |ζ |2 + A

ζ̄ − a
+ B
ζ̄ − b

+ A
a

+ A
a2

1
(ζ − 1/a)

+ Bζ
1 − ζb

]
, (4.5)

and then make use of the fact that near ζ = 1/a,

1
ζ − 1/a

= Z′(1/a)
z − za

+ Z′′(1/a)
2Z′(1/a)

+ O(z − za). (4.6)

It follows that near z = za,

u − iv = −ω0

2

[
A
a2

Z′(1/a)
z − za

+ Sa + O(z − za)

]
, (4.7)

where

Sa = log(1/a2)+ Aa
1 − a2 + Ba

1 − ab
+ A

a
+ A

a2
Z′′(1/a)
2Z′(1/a)

+ B
b − a

. (4.8)

Thus a point vortex of circulation Γa at z = za = Z(1/a), where

− iΓa

2π
= −Aω0 Z′(1/a)

2a2 , (4.9)

will be in equilibrium provided that Sa = 0. This is the usual equilibrium condition for
a free point vortex. By exactly the same reasoning, the point vortex of circulation Γb at
z = zb = Z(1/b), where

− iΓb

2π
= −Bω0Z′(1/b)

2b2 (4.10)

will be in equilibrium provided that Sb = 0, where

Sb = log(1/b2)+ Ab
1 − b2 + Bb

1 − b2 + B
b

+ B
b2

Z′′(1/b)
2Z′(1/b)

+ A
a − b

. (4.11)

The two equilibrium conditions can be rewritten as

2a2
[

log(1/a2)+ A
a(1 − a2)

+ B(1 − a2)

(1 − ab)(b − a)

]
Z′(1/a)+ A Z′′(1/a) = 0,

2b2
[

log(1/b2)+ A(1 − b2)

(1 − ab)(a − b)
+ B

b(1 − b2)

]
Z′(1/b)+ B Z′′(1/b) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.12)

The algebraic form of these equations is

λ1A2 + λ2B2 + λ3AB + λ4A + λ5B + λ6 = 0,

μ1A2 + μ2B2 + μ3AB + μ4A + μ5B + μ6 = 0,

}
(4.13)

where the coefficients {λj, μj | j = 1, . . . , 6} are given as explicit functions of a and b
in Appendix A. These equations will be viewed as determining A and B as functions of
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a and b, i.e. A = A(a, b), B = B(a, b). Since it determines the possible equilibria, the
solution structure of (4.13) is discussed in detail in the next section, not least because it
is found to have intriguing and unexpected features. We also note that this framework can
be generalized easily to n vortices per period window, which will result in n nonlinear
equations similar to (4.13) to solve; but we leave a detailed discussion of this until § 7.

It only remains to fix d. But we are free to set the location of the vortex at za so, following
Crowdy & Nelson (2010), we set za = −π − i, i.e. unit distance below y = 0 in the middle
of the period window. This determines d. An alternative choice is to pick d so that the mean
level of the wave profile is specified, but then we would lose control of the position of one
of the vortices.

5. The solution structure of (4.13) for A and B

The possibility of finding equilibria has been reduced to determining A and B from
the algebraic system (4.13). For a single vortex, the equivalent single equation can be
manipulated easily into a closed-form expression that gives A as a straightforward function
of a (Crowdy & Nelson 2010). In the present two-vortex case, the analysis is more involved,
but as will be discussed here, it shares some interesting and surprising features. Due to the
complicated nature of the coefficients λi, μi, although an analytical solution is possible in
principle, it is too cumbersome to gain insight.

One would expect from the general algebraic structure in (4.13), and using Bézout’s
theorem (Bézout 1779), that, accounting for multiplicity of roots, there will be four pairs
of solutions (the number of solutions is the product of the highest power in each equation).
Indeed, the solutions (A,B) represent the intersection of two conic sections.

However, by working through the algebra (see Appendix A), surprisingly, it turns out
that λ1 ≡ 0 and μ2 ≡ 0 – a result not predictable a priori. Therefore Δ = λ2

3 − 4λ1λ2 >

0, thus the two conics are both hyperbolae. One can easily eliminate A, say, from the
equations in (4.13) to leave a quartic equation for B, which has four roots, as predicted,
with closed-form expressions. Remarkably, again working through the algebra, it turns out
that the coefficient of B4 is zero, namely,

μ1λ
2
2 − μ3λ2λ3 ≡ 0. (5.1)

This degeneracy implies that (4.13) has only three roots: either one real and two complex,
or three real. (We note that this does not contradict Bézout’s theorem as the extra root can
be accounted for by the intersection of the two hyperbolae at infinity.)

It should be emphasized that a similar phenomenon occurs in the single-vortex analysis
of Crowdy & Nelson (2010): a single equation for A is, at first glance, a quadratic
equation, but the coefficient of the leading quadratic term is identically zero, resulting
in a one-parameter family of solutions (Crowdy & Nelson 2010). More will be said on this
observation in § 7.

It is useful to understand this degenerate case by exploring the geometry of the curves
defined in (4.13). Examining the large (A,B) behaviour in (4.13), we find that

B ∼ 0, λ2B + λ3A ∼ 0, (5.2a,b)

A ∼ 0, μ3B + μ1A ∼ 0. (5.3a,b)

The asymptotes corresponding to A ∼ 0 and B ∼ 0 are vertical and horizontal lines in
the (A,B) plane, respectively, and the gradients of the non-trivial asymptotes are −λ2/λ3
and −μ3/μ1, respectively. We find that −λ2/λ3 = −μ3/μ1 ≡ (1 − b2)/(a2 − 1), thus
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Figure 3. (a) Two hyperbolae with the properties described in (5.5) that intersect at one point. (b) A zoomed-in
image of the rectangular area in (a) showing that no further intersection is possible. (c) Two hyperbolae with
the properties described in (5.5) that intersect at three points. (d) A zoomed-in image near to where the third
intersection occurs.

the asymptotes are parallel. The problem thus reduces to finding the intersection of two
hyperbolae, H1 and H2, with the two properties:

(1) one asymptote of H1 is perpendicular to H2; (5.4)

(2) one asymptote of H1 is parallel to H2. (5.5)

In figure 3, we sketch a standard rectangular hyperbola (we can always perform a
transformation on one of the conics in (4.13) to the standard form) with centre (0, 0) (red
curves), and another hyperbola satisfying the properties in (5.5). In figures 3(a,b), we see
that H1 and H2 intersect at only one point, whilst in figures 3(c,d), we show how they
can intersect at three points. In panel (a) we also see that the extra ‘roots’ predicted by
Bézout’s theorem are accounted for by the two curves ‘intersecting’ at infinity.

This analysis is important because naïvely solving (4.13) using a computer algebra
package can be expensive and inefficient, and sometimes not even give an answer in the
allotted time. In practice, it was found that the most computationally efficient method was
to reduce (4.13) to a single cubic equation for B, say, and then apply the cubic formula to
find the three roots in terms of a and b. Note that there is no way of knowing, a priori, that
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1)

Figure 4. Regions in the (a, b) plane that result in one real root (shaded) or three real roots (non-shaded) for
the staggered vortex configuration. The special parameter values (a∗

i , b∗
i ), i = 1, 2 (as marked in the figure),

correspond to transcritical bifurcations.

(4.13) reduces to a cubic equation. A double precision (a, b) mesh grid was constructed,
and the roots calculated using the analytical expressions.

It should be noted that solutions to (4.13) are not necessarily valid solutions to the
physical water-wave problem; this is because of the additional requirement that the
mapping (4.1) is a one-to-one, or univalent, mapping from D to Ω . In the case of three
pairs of real roots, the solution is non-unique for the given (a, b). However, as seen in
the next subsection, a valid solution can only be constructed in certain regions of (a, b)
parameter space. We can find the regions of (a, b) space where there are one or three roots
by calculating the discriminant of the resulting cubic equation in terms of a and b. For
inline vortices, i.e. when ab > 0, we find the discriminant is always positive except when
a = b and there is no solution, therefore there are always three real roots. For staggered
vortices, ab < 0, the discriminant can be negative, allowing for a single real solution;
figure 4 indicates these regions in the (a, b) plane. Before discussing these solutions in
more detail, it is worth discussing the solution structure in two particular limits, when
a − b → 0 and when a, b → 1.

5.1. The limit a − b → 0
In this limit, applicable only to inline configurations, by multiplying both equations in
(4.13) by a − b, and then taking the limit a − b → 0, we find that (4.13) reduces to

λ̂2B2 + λ̂3AB + λ̂5B = 0,

μ̂1A2 + μ̂3AB + μ̂4A = 0,

}
(5.6)

where λ̂i = (a − b)λi, μ̂i = (a − b)μi. This has a single trivial solution (A,B) = (0, 0);
the other roots do not exist as λ̂2μ̂3 − λ̂3μ̂1 = 0. Physically, this limit corresponds to a flat
profile with two increasingly close vortices that effectively disappear when a = b.
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5.2. The limit a, b → −1
In this limit (concentrating on a → −1, as the limit b → −1 is similar), if we multiply
the terms in (4.13) by (a2 − 1)2 and take the limit as a → −1, then we find that all of the
coefficients vanish identically. However, the dominant behaviour of (4.13) in this limit is

λ̄4A ∼ 0, μ̄5B ∼ 0, (5.7a,b)

where λ̄i = (1 − a2)2λi and μ̄i = (1 − b2)2μi. Therefore, as a, b → −1, (A,B) → 0.

6. Characterization of the equilibria

The inline and staggered configurations will be considered separately. In each case, the
solution space for (A,B) is discussed as functions of the free parameters (a, b). In what
follows, a valid solution is defined to be a set of parameters (a, b) with solutions (A,B)
of (4.13) for which the mapping in (4.1) is univalent, i.e. there are no intersections of the
interface in the physical z plane. We will discuss the conditions of validity as they arise in
the analysis. Finally, we note that all of the numbered solution profiles in the subsequent
discussion can be reproduced using the data provided in Appendix B, and that a simple
exemplar code can be found at https://doi.org/10.6084/m9.figshare.22128548.v3.

6.1. The inline (unstaggered) vortex street
As mentioned in the previous section, inline vortices (ab > 0) have a positive discriminant
of (4.13), and there are always three pairs of real solutions. Figures 5(a,b) show
the solutions A and B, respectively, as b is varied when a = −2. Each different
coloured branch represents one of the roots of (4.13), with solid/dotted lines indicating
univalent/non-univalent mappings. For a = −2, there is only a small portion of one branch
that contains univalent mappings and thus represent physical wave profiles. The limiting
profiles (1 and 3) that occur at the ends of this branch portion both self-intersect with a
neighbouring period window when ζ /= 1. The profile labelled 2 indicates a solution that
is almost flat in the far field. We remark that the solution branch crosses the line a = b,
but no solution exists when a = b exactly. When b < a, the za vortex is the upper vortex,
and vice versa when b > a.

The vortex strengths Γa and Γb are plotted in the inset diagrams of figures 5(a,b),
respectively. The circulations at the limiting profile, labelled 3, are Γa = 0.2711,
Γb = −30.5539, which indicates that the lower za vortex has significantly less influence on
the flow than the upper zb vortex. The circulations of the other limiting profile, labelled 1,
are Γa = −30.4596, Γb = 3.8487, so that although the lower zb vortex has less influence
on the flow than the upper zb vortex, it is not as weak as the lower vortex in profile 3.

For different values of a, we can vary b and larger portions of the solution branch
result in valid mappings. We emphasize that in each case, only one root branch results
in valid univalent solutions. Figure 6 shows the valid branch for values a = −14, −7 and
−2. As can be seen in figure 6(a), the a = −14,−7 solution branches have a longer
range of validity as b → −∞, but terminate at a lower value on the right-hand side
of the curve. In each case, the limiting profiles, i.e. profiles 6 and 9 (and profile 3 in
figure 5) self-intersect with an adjacent period window. As b → ∞, a solution persists
for a = −14,−7, corresponding to an elevation profile. As b → a, A,B → 0 (see § 5.1)
and the profile becomes flat, as shown in profile 8 when a = −14, b = −14.334. This is
because A = B = 0, and hence Γa + Γb = 0 as shown in figure 7.
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Figure 5. Solution structure for inline vortices with a = −2. (a,b) Plots of A,B, respectively, as b is varied.
The inset diagrams show the variations of the vortex strengths, Γa and Γb, respectively. The solid lines indicate
solutions of (4.13) that result in a univalent mapping. Thin dotted lines indicate solutions of (4.13) that do not
result in a valid solution. (c) The streamlines and profiles are shown for the solutions labelled 1, 2 and 3, as
well as the positions of the vortices.
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indicate solutions of (4.13) that result in a univalent mapping. Thin dotted lines indicate solutions of (4.13) that
do not result in valid solutions. (b) The numbered profiles correspond to the labelled dots in the (b,A) solution
space in (a).

Exploring the solution space further, as b → 1, it is found that the curves all collapse
to (A,B) = (0, 0) as discussed in § 5.2. However, this limit will depend on the value of a,
as demonstrated in figure 8. Here, we show how the range of valid solutions in b shrinks
as a → −1. The lower limit occurs at larger values of b (profiles in figure 8a) and the
upper limit appears to increase towards b = −1 (profiles in figure 8c). The heights of the
upper limit profiles do not change monotonically as a increases towards −1, so although
it appears that the curves are converging on the same solution, they converge only in the
limit as both a, b → −1.

The limiting profiles are qualitatively different to those of Crowdy & Nelson (2010). For
a single vortex, a cusp would appear in the middle of the period window for a critical value
of a, beyond which a univalent mapping is not possible. This feature is not observed here.
Instead, a profile intersects with that in an adjacent period window.
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solid lines indicate solutions of (4.13) that give a univalent mapping. Thin dotted lines indicate solutions of
(4.13) that do not result in valid solutions. (c) The profiles correspond to the marker furthest to the right in (b).

6.2. The staggered vortex street
Staggered vortices require that ab < 0. As shown in figure 4, there are regions in (a, b)
space that result in a unique solution. This is explored further by examining the solution
space for a fixed value of a and then varying b, as done previously for the inline case.

Figures 9(a,b) show the values of A and B, respectively, when a = −7. For sufficiently
large b, there is only one single root of (4.13) that does not represent a valid solution.
At b ≈ 10.68, two additional solution branches appear via a fold bifurcation, both
corresponding to valid solutions, as seen in the profiles labelled 1, 2 and 3. The lower
branch is a valid solution only until the profile develops a cusp in the middle of the period
window, as seen in the profile labelled 1. This is similar to the limiting profiles in Crowdy
& Nelson (2010), and occurs at parameter values (a, b) such that z′(1) = 0.
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Figure 9. Solution structure for staggered vortices, a = −7. (a,b) Plots of A,B, respectively, as b is varied.
The inset diagrams show the variations of the vortex strengths, Γa and Γb, respectively. The solid lines indicate
solutions of (4.13) that result in a univalent mapping. Thin dotted lines indicate solutions of (4.13) that do not
result in a valid solution. (c) The streamlines and profiles are shown for the solutions labelled 1–9.

Continuing on the upper branch as b decreases, the profiles become bimodal, with two
distinct profile peaks (see profile 4) until b = −a, which corresponds to two horizontally
aligned vortices (as seen in profile 5) where the profile is unimodal. Decreasing b further
results in more distinct bimodal wave profiles (see profile 6) until the branch reaches a
termination point at b ≈ 2.3235, when the interface self-intersects with an adjacent period
window (see profile 7).

Interestingly, for values of b less than this value, there is a small portion of the other
branch that allows valid solutions (see profiles 8 and 9). These profiles are similar in that
both have a cusp at the edge of the period window, corresponding to Z′(−1) = 0. In profile
9, zb is close to the cusp, which is as expected as b → 1; however, as seen in the inset
of figure 9(b), the strength of the vortex at zb in this limit is zero, rendering this vortex
harmless.

This bifurcation structure for a = −7 is not generic as a is varied. Figures 10(a–c) show
the structure for a = −14,−7,−2, respectively. When a = −14, there are always three
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Figure 10. Solution structure for staggered vortices: (a) a = −14, (b) a = −7, and (c) a = −2. The solid lines
indicate solutions of (4.13) that result in a univalent mapping. Thin dotted lines indicate solutions of (4.13) that
do not result in a valid solution. (d) The streamlines and profiles are shown for the solutions labelled 10–18.

roots and the fold bifurcation present when a = −7 ceases to exist. The profiles on the
portions of the branches that are physically admissible are significantly different to the
a = −7 case.

The ‘upper’ branch in figure 10(a) has no physically admissible solutions, and the
‘middle’ branch terminates on the ‘left’ when the profile develops a cusp close to the
edge of the period window (see profile 10) and terminates on the ‘right’ when the interface
intersects with the profile in an adjacent period window. The ‘lower’ branch, as b increases
from 1, starts to produce a physically admissible solution when a cusp develops in the
middle of the period window (see profile 12) and for the parameter values that we sampled,
continue to provide a physically admissible solution as b increases, resulting in a bimodal
wave profile, as seen in profile 13.

The structure changes again when a becomes smaller, as shown in figure 10(c), when
a = −2. The different roots interact in a non-trivial manner through a number of different
fold bifurcations. Starting at small b > 1, profile 14 shows that the ‘upper’ branch starts
when there is a cusp near the edge of the period window, continues through a fold, and
eventually terminates when the profile self-intersects (see profile 15). There is a large
region of b values that does not produce a physically admissible solution until a cusp
develops at the edge of the window (see profile 16), and then there is a single branch
of solutions, eventually terminating when a cusp develops at the middle of the period
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Figure 11. Solution structure for staggered vortices as a varies from −10 to −2. Each plot is of A versus b,
with the value of a as shown. The roots are shown regardless of whether or not they represent valid physical
mappings.

window (see profile 18). Interestingly, these termination points appear to coincide close to
fold bifurcations.

The structure of the equilibria for the staggered vortex system is clearly rich and
intriguing. Because the discriminant of (4.13) can change sign, the number of real solutions
varies, which results in a non-trivial interaction of the solution branches. This results in
quite exotic profiles, containing cusps and self-intersections. These do not have direct
counterparts in the case of a single cotravelling vortex row (Crowdy & Nelson 2010).

Exploring this further, the parameter a can be varied to identify two transcritical
bifurcations in the solution space. These occur when the two fold bifurcations collide,
and are shown in figure 4 as (a∗

i , b∗
i ). Figure 11 shows how the (b,A) bifurcation diagram

evolves as a increases from −10 to −2. The first transcritical bifurcation occurs when the
‘hook’ structure at small b self-intersects and becomes a closed loop; see a = −10 and
a = −9. The first bifurcation occurs at a∗

1 = −9.9336 to 4 d.p. The second transcritical
bifurcation occurs when the ‘loop’ structure intersects the lower branches for large b;
see a = −4 and a = −3. This second bifurcation occurs at a∗

2 = −3.3575 to 4 d.p. The
bifurcation diagram for a = a∗

1 is shown in figure 12, where we identify sections of the
curve that result in valid mappings (solid blue lines). The limiting profiles are indicated by
the labels. Particular attention is drawn to profile 19, which has a small unusual circular
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cusp at the edge of the periodic window. Finally, no further bifurcations are observed as a
decreases from −14; the bifurcation structure remains robust as a → −∞.

6.3. The limit |a|, |b| → ∞
The limiting case where |a|, |b| → ∞ is of significant interest. In this limit, the free
surface is expected to recede from the vortex rows into large positive y values and become
increasingly flat as deformation effects from the vortices weaken. It might be anticipated
that the limiting equilibria would be von Kármán vortex streets in unbounded shear; but it
was established in § 3 that no such equilibria exist.

Consider the case of staggered vortices with b = −a and a > 0, and let a → ∞. From
the explicit expressions given in Appendix A, it can be shown that

λ2, λ3 ∼ O(1/a), λ4 ∼ 4 log a − a2, λ5 ∼ 4 log a + a2, λ6 = −4a3 log a,
(6.1a–d)

so that the first equation of (4.10) becomes

(4 log a − a2)A + (4 log a + a2)B − 4a3 log a ∼ 0. (6.2)

From a similar analysis, the second equation of (4.10) becomes

(4 log a + a2)A + (4 log a − a2)B + 4a3 log a ∼ 0. (6.3)

Together, these two equations imply that

A = −B ∼ −2a log a. (6.4)

Consequently, as a → ∞,

z = Z(ζ ) ∼ i
[

log ζ − 2a log a
ζ − a

+ 2a log a
ζ + a

]
+ d ∼ i[log ζ + 4 log a] + d. (6.5)

The condition za = Z(1/a) = −i then implies

− i = Z(1/a) = i
[

log(1/a)+ Aa
1 − a2 + Ba

1 − ab

]
+ d, (6.6)
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implying that
d ∼ −i(1 + 3 log a). (6.7)

It follows from (6.5) that

Z(ζ ) ∼ i[log ζ + 4 log a] + d = i[log ζ + 4 log a − (1 + 3 log a)] = i log(ζa)− i.
(6.8)

Suppose also that we insist that zb = Z(1/b) = π − i(1 + λ). Then

i
[

log(1/b)+ Ab
1 − ab

+ Bb
1 − b2 − 1 − log(1/a)− Aa

1 − a2 − Ba
1 − ab

]
= π − i(1 + λ).

(6.9)
On use of (6.4), it follows from this that λ→ 0, so the two vortices per period tend to
y = −1 and are separated by distance π. From (4.9) and (4.10),

− iΓa

2π
= −A Z′(1/a)

2a2 ∼ − iA
2a
, − iΓb

2π
= −B Z′(1/b)

2b2 ∼ − iB
2b
, (6.10a,b)

where we have used the fact that as a → ∞, Z(ζ ) ∼ i log ζ + const.. But this means that

Γa ∼ Γb = −2π log a. (6.11)

The limiting configuration is not therefore the degenerate staggered von Kármán vortex
street in unbounded shear found in § 3. Rather, it is a single vortex row, with period π, of
identical point vortices with circulation Γa. It therefore falls within the class of solutions
considered by Crowdy & Nelson (2010); indeed, it is easy to verify that (6.4) is consistent
with (22) of Crowdy & Nelson (2010) as an analogous parameter a → ∞ in that study.
The new staggered equilibria found here can therefore be viewed as a steady ‘pairing
mode’ bifurcation from the latter solutions, that is, a class of subharmonic bifurcations
wherein adjacent pairs of vortices in a period-π equilibrium found by Crowdy & Nelson
(2010) displace separately to destroy the original periodicity forming instead one of the
2π-periodic generalized equilibria found here.

An analysis of the inline case follows similarly. In this case, for b ≈ a → ∞, the limiting
configuration is found to be an inline, or symmetric, von Kármán vortex street of vanishing
aspect ratio λ→ 0 corresponding to the situation where the two vortex rows sit on top of
each other and eventually cancel each other out.

The significance of all these observations is that while the results of § 3 show that
non-trivial equilibria generalizing the classical von Kármán vortex streets do not exist
in unbounded linear shear flow, a rich array of steadily travelling equilibria exists when a
cotravelling free surface is also present.

7. Discussion

There has been much recent interest in the problem of water waves with vorticity
(Haziot et al. 2022), and analytical solutions are rare. This paper has unveiled a novel
two-parameter family of analytical solutions for steadily travelling water waves with
uniform vorticity and superposed von Kármán point vortex streets. These solutions are
direct extensions of earlier work on water waves with uniform vorticity and single
cotravelling vortex row found by Crowdy & Nelson (2010). All these solutions fall within
‘case 1’ of a three-case categorization of water waves with vorticity set out recently by
Crowdy (2022).

Fundamental to constructing the equilibria is finding the solution of a pair of algebraic
nonlinear equations, which in the case of two vortices per period, has either one or three
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real roots that can be written and calculated in exact analytical form. The solution space
for inline configurations is simpler in that there are always three real roots, but only
one root branch results in a univalent conformal map. These solution branches terminate
when the wave profile intersects with that in an adjacent period window. For staggered
configurations, the solution space is more complicated as there are regions of parameter
space where only a single real root exists. For these configurations, limiting profiles can
exist where cusps form, or where the interface intersects, resulting in a rich variety of
solutions, including bimodal wave profiles and fold bifurcations.

The stability of the various equilibria found here is clearly of great interest, but requires
detailed investigation and has not been studied here. Crowdy & Cloke (2002) have studied
the linear stability of analogous case 1 solutions in the radial (vortex) geometry, and found
that exact solutions within this class can be linearly stable. The methods used in that study
are easily adaptable to study the stability of the new water wave equilibria found here.
More recently, Blyth & Părău (2022) have calculated the exact linear stability spectrum of
the waves described in Hur & Wheeler (2020) – which fit into case 3 of the taxonomy of
Crowdy (2022) – and those methods should also be generalizable to the solutions presented
here.

The method that we describe here can easily be extended to n submerged point vortex
rows. For n vortices per period there will arise an n-parameter family of solutions with a
system of n quadratic relations to be solved. From Bézout’s theorem, this means that there
will be potentially 2n possible solutions; the complexity of the solution space increases
exponentially as n increases. For n = 3, the equations are easy to solve using a symbolic
algebra package, but the complexity of the closed-form solution means that because of
the computer time taken to solve the system symbolically, and then convert to double
precision numbers, it is inefficient to calculate the roots in this way. For example, choosing
(a, b, c) = (−2,−3,−4), where c represents the parameter of the third vortex, takes
approximately 200 computer seconds to compute the roots symbolically and then convert
to a double precision number. Interestingly, by an extension of the degeneracies evident
here, and in the earlier study of Crowdy & Nelson (2010), five roots are obtained, rather
than the eight predicted. So far, after limited investigation, we have observed that none
of these roots results in a valid univalent map. However, we leave the existence of steady
n-vortex configurations as an open question.

More broadly, it is worth mentioning that other extensions of the classical von Kármán
point vortex streets have been found. Crowdy & Green (2011) have found analytical
solutions for steadily travelling streets of so-called hollow vortices that are finite-area
regions of constant pressure having non-zero circulation around them. These solutions can
be understood as regularized von Kármán vortex streets where the singular point vortices
are replaced by finite-area vortices for which the associated velocity fields are everywhere
finite. This hollow vortex model has much in common with the water wave problem in
that the boundary condition on the boundary of a hollow vortex, which also neighbours a
constant-pressure region, is akin to that on the free surface between a water wave and a
constant-pressure region. Crowdy & Roenby (2014) discuss the similarities between these
two problems. In view of the new equilibrium solutions found here, and the new case
2 solutions for submerged von Kármán point vortex streets beneath a free surface found
recently in Crowdy (2022), it is of interest to examine if the hollow vortex street equilibria
of Crowdy & Green (2011) can be generalized to incorporate steady translation beneath a
cotravelling free surface wave in the spirit of the present study. Such matters await further
investigation.
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The effects of gravity and surface tension have been ignored but how they will alter
the new wave solutions found here is clearly of interest. It might be argued that the
richness of the solution structure found here, even without gravity or surface tension
effects, underlines the theoretical importance of understanding this case first before adding
in other physical effects. It should be possible to add the effect of weak gravity as a
regular perturbation, an analysis that should be facilitated greatly by having available
closed-form expressions for the leading-order equilibria. Such analyses have recently been
carried out for constant-vorticity leading-order solutions by Hur & Wheeler (2021); see
also Akers, Ambrose & Wright (2013), who added weak gravity to irrotational capillary
waves. Asymptotic analyses of the effects of weak capillarity (Chapman & Vanden-Broeck
2002) on the solutions here will similarly be made easier by the closed-form description
of the equilibria.

Finally, we would like to discuss the broad importance of these solutions and the
framework established in Crowdy (2022) in the general context of the water wave problem.
Whilst existence theorems for the water wave problem exist for different physical effects
and geometries (see e.g. Haziot et al. 2022), they are usually not constructive, and typically
researchers have to rely on model equations (e.g. in the case of gravity waves in finite
depth, the Korteweg–de Vries equation; for others, see Lannes 2013), asymptotic analysis
(see e.g. Chapman & Vanden-Broeck 2002) and/or numerical methods. The solutions
here and in Crowdy (2022) are therefore of special importance as they can: (i) provide
a validation for any numerical code; (ii) provide a leading-order term in a perturbation
expansion for small gravity (i.e. the large Froude number limit) or small surface tension;
and, perhaps most importantly, (iii) do not require sophisticated mathematical techniques
to find and visualize them; the solution of a set of algebraic nonlinear equations and a
few lines of MATLAB code are all that is required. It is the hope, and indeed aim, that
these solutions can act as a springboard to solutions in other physical settings, and there
is realistic potential for other more exact solutions to be found. To quote Whitham (1974)
in the last sentence of his seminal work on water waves: ‘Not least is the lesson that
exact solutions are still around and one should not always turn too quickly to a search
for ε’.
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I Profile a b A1 A2 A3 B1 B2 B3

1 −2 −9.5233 7.4617 −32.2907 −18.5781 −9.6685 52.4604 210.9486
2 −2 −2.8335 1.2889 −11.5388 −39.2653 −1.2143 10.9391 78.2877
3 −2 −1.0784 −0.1003 0.1355 14.5455 0.49719 −0.6703 −0.9163
4 −7 −19.8778 33.5114 −989.9282 −1025.0357 −58.7433 2120.7896 3675.6522
5 −7 −12.0187 17.2380 −914.9454 −1301.6490 −22.9983 1313.8903 2585.6846
6 −7 −1.7057 −5.3123 115.9642 19.8468 5.0539 −10.2229 −16.5033
7 −14 −19.8874 28.4763 −9663.6168 −12825.9029 −35.6378 12803.6777 19352.3998
8 −14 −14.3354 1.7648 −95176.5334 −143764.8402 −1.7910 96932.0286 147888.7231
9 −14 −2.4963 −18.2925 470.6813 171.3329 11.7264 −41.1664 −75.0930

S Profile a b A1 A2 A3 B1 B2 B3

1 −7 10.4692 12.5422 −4.4173 208.3766 −78.5103 −115.6944 130.3844
2 −7 10.6757 4.8517 4.5931 213.9207 −97.3818 −97.9591 138.2260
3 −7 10.4898 12.1763 −3.9217 208.9281 −79.4839 −114.8426 131.1558
4 −7 9.3546 21.7266 179.1019 −19.9683 −51.1867 92.2319 −133.7416
5 −7 6.4737 27.5964 110.9992 −35.5523 −24.2027 25.5053 −115.1951
6 −7 4.3895 75.6490 23.1642 −32.8419 4.4199 −15.9276 −77.1505
7 −7 2.3225 62.4804 8.4013 −16.1444 0.0424 −10.4572 −32.7988
8 −7 2.0437 62.1484 6.2842 −12.7962 −0.0050 −9.4768 −27.1818
9 −7 1.0105 62.1883 0.04689 −0.1034 0.0000 −5.2346 −9.2915

Table 1. Table of values of a and b, with solutions A and B. The bold values are the values that produce the
profiles, whilst the other roots are also listed for completeness. The inline values (I) correspond to profiles in
figures 5 and 6, whilst the staggered values (S) correspond to the profiles in figure 9. Values reported to 4 d.p.

Appendix A. Coefficients of (4.13) for A and B

The coefficients of (4.13) are found to be

λ1 = 0, λ2 = 2a4(a2 − 1)
(a − b)(ab − 1)3

, λ3 = 2a4(b2 − 1)
(a − b)(ab − 1)3

,

λ4 = a2(2a2 log(a2)− a4 + 1)
(a2 − 1)2

,

λ5 = 2a3(ab + a2 log(a2)− a3b + a2 − ab log(a2)− 1)
(a − b)(ab − 1)2

,

λ6 = −2a3 log(a2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

and

μ2 = 2b4(b2 − 1)
(b − a)(ab − 1)3

, μ2 = 0, μ3 = 2b4(a2 − 1)
(b − a)(ab − 1)3

,

μ4 = 2b3(ab + b2 log(b2)− b3a + b2 − ab log(b2)− 1)
(b − a)(ab − 1)2

,

μ5 = b2(2b2 log(b2)− b4 + 1)
(b2 − 1)2

, μ6 = −2b3 log(b2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)
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Appendix B. Values of parameters

In table 1, we list the values of a and b, together with their solutions A and B for
reproducibility purposes, for a selection of the numbered profiles in this paper. These can
also be reproduced by the MATLAB script found at https://doi.org/10.6084/m9.figshare.
22128548.v3.
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