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Abstract

We give an asymptotic formula for correlations∑
n6x

f1(P1(n))f2(P2(n)) · · · fm(Pm(n)),

where f, . . . , fm are bounded ‘pretentious’ multiplicative functions, under certain
natural hypotheses. We then deduce several desirable consequences. First, we
characterize all multiplicative functions f : N → {−1,+1} with bounded partial sums.
This answers a question of Erdős from 1957 in the form conjectured by Tao. Second,
we show that if the average of the first divided difference of the multiplicative function
is zero, then either f(n) = ns for Re(s) < 1 or |f(n)| is small on average. This settles
an old conjecture of Kátai. Third, we apply our theorem to count the number of
representations of n = a+ b, where a, b belong to some multiplicative subsets of N. This
gives a new ‘circle method-free’ proof of a result of Brüdern.

1. Introduction

Let U denote the unit disc and let T be the unit circle. It is of current interest in analytic number
theory to understand the correlations∑

n6x

f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))

for arbitrary multiplicative functions f1, . . . , fm : N → U and arbitrary polynomials P1, . . . ,
Pm ∈ Z[x]. For example, Chowla’s conjecture says that, for any distinct natural numbers h1, . . . ,
hk, ∑

n6x

λ(n+ h1) · · ·λ(n+ hk) = o(x),

where λ(n) is a Liouville function. These problems are still wide open in general, though
spectacular progress has been made recently due to the breakthrough of Matomäki and
Radziwi l l [MR16] and subsequent work of Matomäki et al. [MRT15]. In particular, this led
Tao [Tao16b] to establish a weighted version of Chowla’s conjecture in the form∑

n6x

λ(n)λ(n+ h)

n
= o(log x)
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Multiplicative functions

for all h > 1. Combining this with ideas from the Polymath5 project, and a new ‘entropy
decrement argument’, led to the resolution of the Erdős discrepancy problem.

Following Granville and Soundararajan [GS07a], we define the ‘distance’ between two
multiplicative functions f, g : N → U:

D(f, g; y;x) =

( ∑
y6p6x

1− Re(f(p)g(p))

p

)1/2

and D(f, g;x) := D(f, g; 1;x). The crucial feature of this ‘distance’ is that it satisfies the triangle
inequality

D(f, g; y;x) + D(g, h; y;x) > D(f, h; y;x)

for any multiplicative functions f, g, h bounded by 1.
Halász’s theorem [Hal71, Hal75] implies Wirsing’s theorem that for multiplicative f : N →

[−1, 1], the mean value satisfies a decomposition into local factors,

1

x

∑
n6x

f(n) =
∏
p

Mp(f) + o(1) (1)

when x →∞, where we define the multiplicative function fp for each prime p to be

fp(q
k) =

{
f(qk) if q = p,

1 if q 6= p
(2)

for all k > 1 and

Mp(f) := lim
x→∞

1

x

∑
n6x

fp(n) =

(
1− 1

p

)∑
k>0

f(pk)

pk
.

This last equality, evaluating Mp(f), is an easy exercise. Substituting this into (1), one finds that
the mean value there is � exp(−D(f, 1;∞))2 and so is non-zero if and only if D(f, 1;∞) < ∞
and each Mp(f) 6= 0. Moreover, using our explicit evaluation of Mp(f), we see that Mp(f) = 0 if
and only if p = 2 and f(2k) = −1 for all k > 1. We also note that one can truncate the product
in (1) to the primes p 6 x and retain the same qualitative result.

1.1 Mean values of multiplicative functions acting on polynomials
Our first goal is to prove the analog of (1) for the mean value of f(P (n)) for any given polynomial
P (x) ∈ Z[x]. This is not difficult for linear polynomials P but, as the following example shows,
it is not so straightforward for higher degree polynomials.

Proposition 1.1. There exists a multiplicative function f : N → [−1, 1] such that D2(1, f ;x) =
2 log log x+O(1) for all x > 2 and

lim sup
x→∞

∣∣∣∣1x∑
n6x

f(n2 + 1)

∣∣∣∣ > 1

2
+ o(1).

In the proof of Proposition 1.1 (see § 2), the choice of f(p) for certain primes p > x has
a significant impact on the mean value of f(n2 + 1) up to x. In order to tame this effect, we
introduce the set

NP (x) = {pk, p > x | ∃n 6 x, pk‖P (n)}
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for any given P ∈ Z[x] and modify the ‘distance’ to

DP (f, g; y;x) =

( ∑
y6p6x

1− Re(f(p)g(p))

p
+

∑
pk∈NP (x)

1− Re(f(pk)g(pk))

x

)1/2

and DP (f, g;x) := DP (f, g; 1;x). Moreover, we define

Mp(f(P )) = lim
x→∞

1

x

∑
n6x

fp(P (n))

and one easily shows that

Mp(f(P )) =
∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
,

where ωP (m) := #{n (mod m) : P (n) ≡ 0 (mod m)} for every integer m (and note that ωP (.) is
a multiplicative function by the Chinese remainder theorem). We establish the following analog
of (1).

Corollary 1.2. Let f : N → U be a multiplicative function and let P (x) ∈ Z[x] be a polynomial.
Then

1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) +O

(
DP (1, f ; log x;x) +

1

log log x

)
.

This implies that if D(1, f ;x) <∞ and∑
pk∈NP (x)

1− Re(f(pk)) = o(x),

then
1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) + o(1) =
∏
p>1

Mp(f(P )) + o(1)

when x →∞.

1.2 Mean values of correlations of multiplicative functions
We now move on to correlations. For P,Q ∈ Z[x], we define the local correlation

Mp(f(P ), g(Q)) = lim
x→∞

1

x

∑
n6x

fp(P (n))gp(Q(n)). (3)

Evaluating these local factors is also easy yet can be technically complicated, as we shall see
below in the case that P and Q are both linear.

More generally, we establish the following result.

Theorem 1.3. Let f, g : N → U be multiplicative functions. Let P,Q ∈ Z[x] be two polynomials
such that res(P,Q) 6= 0. Then

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + Error(f(P ), g(Q), x),

where

Error(f(P ), g(Q), x)� DP (1, f ; log x;x) + DQ(1, g; log x;x) +
1

log log x
.
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Theorem 1.3 implies that if D(1, f ;x),D(1, g;x) < ∞ and
∑

p∈NP (x) 1 − Re(f(pk)) = o(x)

and
∑

p∈NQ(x) 1− Re(g(pk)) = o(x), then

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + o(1) =
∏
p>1

Mp(f(P ), g(Q)) + o(1).

If DP (f, nit;∞),DP (g, niu;∞) <∞, then we let f0(n) = f(n)/nit and g0(n) = g(n)/niu so that
DP (1, f0;∞),DP (1, g0;∞) <∞. We apply Theorem 1.3 to the mean value of f0(P (n))g0(Q(n))
and then proceed by partial summation to obtain

1

x

∑
n6x

f(P (n))g(Q(n)) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + Error(f0(P ), g0(Q), x),

where, if P (x) = axD + · · · and Q(x) = bxd + · · · , then we define T = Dt+ du and

Mi(f(P ), g(Q), x) :=
1

x

∑
n6x

P (n)itQ(n)iu = aitbiu
xiT

1 + iT
+ o(1).

Here, the o(1) term depends on the polynomials P,Q ∈ Z[x] and

Error(f0(P ), g0(Q), x)�t,u DP (1, f0; log x;x) + DQ(1, g0; log x;x) +
1

log log x
,

where the implied constant depends on t, u. The same method works for m-point correlations∑
n6x

f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))

for multiplicative functions fj : N → U and polynomials Pj with each DPj (nitj , fj ,∞) <∞. We
give a more explicit version of our results in the case that P and Q are linear polynomials.

Corollary 1.4. Let f, g : N → U be multiplicative functions with D(f, nit,∞), D(g, niu,∞) <
∞ and write f0(n) = f(n)/nit and g0(n) = g(n)/niu. Let a, b > 1, c, d be integers with (a, c) =
(b, d) = 1 and ad 6= bc. As above we have

1

x

∑
n6x

f(an+ c)g(bn+ d) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

when x →∞ and the o(1) term depends on the variables a, b, c, d, t, u.
We have

Mi(f(P ), g(Q), x) =
aitbiuxi(t+u)

1 + i(t+ u)
+ o(1)

when x →∞ and the o(1) term depends on a, b, t, u.
If p|(a, b), then Mp(f0(P ), g0(Q)) = 1. If p - ab(ad− bc), then

Mp(f0(P ), g0(Q)) = Mp(f0(P )) +Mp(g0(Q))− 1 = 1 +

(
1− 1

p

)(∑
j>1

f0(p
j)

pj
+
∑
j>1

g0(p
j)

pj

)
.

In general, if p - (a, b), we have a more complicated formula

Mp(f0(P ), g0(Q)) =
∑

06i6k,
k>0,

pk‖ad−bc

(
θ(pi)γ(pi)

pi
+ δb

∑
j>i

θ(pi)γ(pj)

pj
+ δa

∑
j>i

γ(pi)θ(pj)

pj

)

and δl = 0 when p|l and δl = 1 otherwise. Here, f0 = 1 ∗ θ and g0 = 1 ∗ γ.
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For t = u = 0, some version of Corollary 1.4 also appeared in Hildebrand [Hil88a],
Elliott [Ell92] and Stepanauskas [Ste02].

Next we apply Theorem 1.3 to obtain a number of consequences. The key idea for our
applications is that one expands

1

x

∑
n6x

∣∣∣∣n+H+1∑
k=n+1

f(k)

∣∣∣∣2 =
∑
|h|6H

(H − |h|)
∑
n6x

f(n)f(n+ h) +O

(
H2

x

)
and then one observes that the h = 0 term equals H if each |f(n)| = 1. Therefore, if the above
sum is small, then

1

x

∑
n6x

f(n)f(n+ h)� 1

for some h, 1 6 |h| 6 H. As Tao showed, if some weighted version of this is true, then D(f(n),
χ(n)nit;x) � 1 for some primitive character χ. Therefore, to understand the above better, we
need to give a version of Theorem 1.3 for functions f with D(f(n), χ(n)nit;x)� 1.

1.3 Correlations with characters
Now we will suppose that D(f(n), nitχ(n),∞) < ∞ for some t ∈ R, where χ is a primitive
character of conductor q. We define F to be the multiplicative function such that

F (pk) =

{
f(pk)χ(pk)p−ikt if p - q,
1 if p | q

and

Mp(F, F ; d) = lim
x→∞

1

x

∑
n6x

Fp(n)Fp(n+ d).

In § 3, we prove the following result.

Theorem 1.5. Let f : N → U be a multiplicative function such that D(f(n), nitχ(n);∞) < ∞
for some t ∈ R and χ be a primitive character of conductor q. Then, for any non-zero integer d,
we have

1

x

∑
n6x

f(n)f(n+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl‖q

Mpl(f, f , d) + o(1)

when x →∞. Here, the o(1) term depends on d, χ, t and

Mpl(f, f , d) =



0 if pl−1 - d,

1− 1

p
if pl−1‖d,(

1− 1

p

) k∑
j=0

|f(pj)|2

pj
− |f(pk)|2

pk
if pl+k‖d

for any k > 0 and, if pn‖d for some n > 0, then

Mp(F, F , d) = 1− 2

pn+1
+

(
1− 1

p

)∑
j>n

(
F (pn)F (pj)

pj
+
F (pn)F (pj)

pj

)
.

In particular, the mean value is o(1) if q - d
∏
p|q p.
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The same method works for correlations:∑
n6x

f(n)g(n+m),

where D(f(n), nitχ(n);∞),D(g(n), niuψ(n);∞) <∞.

1.4 The Erdős discrepancy problem for multiplicative functions
The Polymath5 project showed, using Fourier analysis, that the Erdős discrepancy problem can
be reduced to a statement about completely multiplicative functions. In particular, Tao [Tao16a]
established that for any completely multiplicative f : N → {−1, 1},

lim sup
x→∞

∣∣∣∣∑
n6x

f(n)

∣∣∣∣ =∞.

In [Erd57, Erd85a, Erd85b], Erdős, along with the Erdős discrepancy problem, asked to classify
all multiplicative f : N → {−1, 1} such that

lim sup
x→∞

∣∣∣∣∑
n6x

f(n)

∣∣∣∣ <∞. (4)

In [Tao16a], Tao, partially answering this question, proved that if for a multiplicative f : N →

{−1, 1}, (4) holds, then f(2j) = −1 for all j and∑
p

1− f(p)

p
<∞. (5)

In § 4, we resolve this question completely by proving the following result.

Theorem 1.6 (Erdős–Coons–Tao conjecture). Let f : N → {−1, 1} be a multiplicative function.
Then (4) holds if and only if there exists an integer m > 1 such that f(n + m) = f(n) for all
n > 1 and

∑m
n=1 f(n) = 0.

There are examples known with bounded sums, such as the multiplicative function f for which
f(n) = +1 when n is odd and f(n) = −1 when n is even. One can easily show that f satisfies
the above hypotheses if and only if m is even, f(2k) = −1 for all k > 1 and f(pk) = f((pk,m))
for all odd prime powers pk. In particular, if p does not divide m, then f(pk) = 1.

It would be interesting to classify all complex-valued multiplicative f : N → T for which (4)
holds. Using Theorem 1.5, it easy to prove the following result.

Theorem 1.7. Suppose for a multiplicative f : N → T that (15) holds. Then there exists a
primitive character χ of an odd conductor q and t ∈ R such that D(f(n), χ(n)nit;∞) <∞ and
f(2k) = −χk(2)2−ikt for all k > 1.

1.5 Distribution of (f(n), f(n + 1))
Let f : N → C be a multiplicative function and 4f(n) = f(n+ 1)− f(n). Kátai conjectured and
Wirsing proved (first in a letter to Kátai and then in a joint paper with Tang and Shao [WTS96])
that if a unimodular multiplicative function f satisfies 4f(n) → 0, then f(n) = nit (see also
a nice paper of Wirsing and Zagier [WZ01] for a simpler proof). One would naturally expect
that if 4f(n) → 0 in some averaged sense, then the similar conclusion must hold. Kátai [Kát83]
made the following conjecture, which we prove in § 5.
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Theorem 1.8 (Kátai’s conjecture, 1983). If f : N → C is a multiplicative function and

lim
x→∞

1

x

∑
n6x

|4f(n)| = 0,

then either

lim
x→∞

1

x

∑
n6x

|f(n)| = 0

or f(n) = ns for some Re(s) < 1.

Since f(n) = eh(n) is multiplicative, where h(n) : N → R is an additive function, one may
compare Theorem 1.8 with the following statement about additive functions, first conjectured by
Erdős [Erd46] and proved later by Kátai [Kát70] (and independently by Wirsing): if h : N → C
is an additive function and

lim
x→∞

1

x

∑
n6x

|h(n+ 1)− h(n)| = 0,

then h(n) = c log n.
The conjecture attracted considerable attention of several authors including Kátai,

Hildebrand, Phong and others. See, for example, [Hil88b], [Pho14], [Pho00] and [Kát91] for
some of the results and the survey paper [Kát00] with an extensive list of the related references.

1.6 Binary additive problems
A sequence A of positive integers is called multiplicative if its characteristic function, 1A, is
multiplicative. We define

ρA(d) = lim
x→∞

1

x/d

∑
k6x/d

IA(kd)

with ρA = ρA(1), which is the density of A. Note that these constants all exist by Wirsing’s
theorem.

Binary additive problems, which involve estimating quantities like

r(n) = |{(a, b) ∈ A×B : a+ b = n}|,

are considered difficult. However, using a variant of a circle method, Brüdern [Brü09], among
other things, established the following theorem, which we will deduce from Theorem 1.3 in § 6.

Theorem 1.9 (Brüdern, 2008). Suppose that A and B are multiplicative sequences of positive
densities ρA and ρB, respectively. For k > 1, let

a(pk) = ρA(pk)/pk − ρA(pk−1)/pk−1.

Define b(pk) in the same fashion. Then

r(n) = ρAρBσ(n)n+ o(n)

when n →∞, where

σ(n) =
∏
pm‖n

(
1 +

m∑
k=1

pk−1a(pk)b(pk)

p− 1
− pma(pm+1)b(pm+1)

(p− 1)2

)
.
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2. Multiplicative functions of polynomials

For any given polynomial P (x) ∈ Z[x], we define ωP (pk) to be the number of solutions of P (x) =
0 (mod(pk)). Clearly, ωP (pk) 6 degP for all but finitely many primes p. We begin by showing
that the mean value of f(P (n)) in general significantly depends on the large primes. We restrict
ourselves to the case P (x) = x2+1 but the same arguments work for all polynomials P (x) ∈ Z[x]
that are not products of linear factors.

Lemma 2.1. Let P (x) = x2 + 1. For any x > 2 and any complex numbers g(pk) ∈ T, p 6 2x and
k > 1, there exists a multiplicative function f : N → T such that f(pk) = g(pk) for all p 6 2x
and ∣∣∣∣1x∑

n6x

f(P (n))

∣∣∣∣ > 1

2
+ o(1).

Proof. Let
M(x) = {np 6 x | ∃p ∈ NP (x), p|P (np)}.

We note that for each p > 2x, there exists at most one element np ∈ M(x) such that p|P (np)
and moreover all prime factors of P (np)/p are smaller than x. We have

2x log x+O(x) =
∑
n6x

logP (n) =
∑
n6x

∑
d|P (n)

Λ(d)

6 2
∑
p6x,

p=1mod(4)

log p · x
p

+
∑
p>2x,
p|P (np),
np6x

log p+O(x)

6 x log x+ 2 log x · |M(x)|+O(x)

and therefore
|M(x)| > x(12 + o(1)).

Consider the multiplicative function f defined as follows: f(pk) = g(pk) for all primes p 6 2x
and

f(p) = eiφf

(
P (np)

p

)
if p > 2x and there exists np ∈M(x) such that p|P (np), where

φ = arg

( ∑
n∈M(x)
n6x

f(P (n))

)
.

Define f(pk) = 1 for all other primes and all k > 1. Clearly,∑
n6x

f(P (n)) =
∑

n∈M(x)
n6x

f(P (n)) +
∑

np∈M(x)

f(P (np)) =
∑

n∈M(x),
n6x

f(P (n)) + eiφ|M(x)|.

Selecting φ so that the two sums point in the same direction, we deduce that∣∣∣∣1x∑
n6x

f(P (n))

∣∣∣∣ > |M(x)|
x

>
1

2
+o(1). 2
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Proposition 1.1. There exists a multiplicative function f : N → [−1, 1] such that D2(1, f ;x) =
2 log log x+O(1) for all x > 2 and

lim sup
x→∞

∣∣∣∣1x∑
n6x

f(n2 + 1)

∣∣∣∣ > 1

2
+ o(1).

Proof. Take the sequence xk = 22
k

for k > 1 and define a completely multiplicative function f
inductively: f(p) = −1 for all primes in p ∈ (xk, xk+1] unless p ∈ NP (xk), in which case we define
the function as in the proof of Lemma 2.1. This guarantees that for all k > 1,∣∣∣∣ 1

xk

∑
n6xk

f(n2 + 1)

∣∣∣∣ > 1

2
+ o(1).

Since NP (x) contains at most x elements, we have∑
p∈NP (x)

1/p 6
∑

x<p62x log x

1/p� (log log x)/log x

so that
∑

k>1

∑
p∈NP (xk) 1/p�

∑
k>1 k/2

k � 1. Therefore,

D2(1, f ;x) >
∑
p6x

p/∈∪k>1NP (xk)

2

p
> 2 log log x−O(1). 2

For technical reasons, we define an equivalent distance

D∗(f, g;x) =

(∑
pk6x

1− Re(f(pk)g(pk))

pk

)1/2

.

We thus focus on the class of functions such that f(p) is close to 1 on large primes p > x where
the distance is given by DP (1, f ;x), where

D2
P (1, f ;x) �

∑
p

(1− Re f(pk)) · 1

x

∑
n6x,

pk‖P (n)

1,

which generalizes D(1, f ;x), where

D2(1, f ;x) � D∗2(1, f ;x) �
∑
p

(1− Re f(pk)) · 1

x

∑
n6x,
pk‖n

1.

In order to prove Theorem 1.3, we begin by proving a few auxiliary results. The following lemma
is a simple consequence of the Turán–Kubilius-type inequality for the polynomial sequences.

Lemma 2.2. Let h : N → C be an additive function such that h(pk) = 0 for pk > x and |h(pk)| 6 2
for all p and k > 1. Suppose that P (x) ∈ Z[x] is irreducible. Define

µh,P =
∑
pk6x

h(pk)

pk

(
ωP (pk)− ωP (pk+1)

p

)
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and

σ2h,P =
∑
pk6x

|h(pk)|2

pk

(
ωP (pk)− ωP (pk+1)

p

)
.

Then ∑
n6x

|h(P (n))− µh,P |2 � x
∑
pk6x

|h(pk)|2

pk
+ x

(log log x)3

log x
. (6)

Proof. By multiplicativity, we have

|{n 6 x | d|P (n)}| = ωP (d)

d
x+ rd,

where rd = O(ωP (d)). Furthermore, by [GS07b, Proposition 4] applied to the additive functions
in place of strongly additive ones,∑

n6x

|h(P (n))− µh,P |2 6 C2xσ
2
h,P +O

((
max
p6y
|h(pk)|2

)(∑
p6x

ωP (p)

p

)2 ∑
d=p1p2,
pi6x

|rd|
)
.

The error term is bounded by(
max
p6x
|h(pk)|2

)(∑
p6x

ωP (p)

p

)2 ∑
d=p1p2,
pi6x

|rd| � max
p6x
|h(pk)|2(log log x)2 · x log log x

log x
.

Combining this observation with the estimate

σ2h,P �
∑
pk6x

|h(pk)|2

pk
,

we conclude the proof of (6). 2

In what follows, we are going to focus on two-point correlations but the same method actually
works for m-point correlations with mostly notational modifications. Let

µh,P =
∑
pk6x

h(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)

and

P(f ;P ;x) =
∏
p6x

(∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

))
.

We also introduce equivalent distance

D∗P (f, g; y;x) =

( ∑
y6pk6x

1− Re(f(pk)g(pk))

pk
+

∑
pk∈NP (x)

1− Re(f(pk)g(pk))

x

)1/2

.

We begin by proving the concentration inequality for the values of a multiplicative function
f : N → U.
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Proposition 2.3. Let f : N → U be a multiplicative function. Let P (n) ∈ Z[x]. Then

∑
n6x

|f(P (n))−P(f ;P ;x)|2 � xD∗2P (1, f ;x) +
x(log log x)3

log x
.

Proof. We begin by proving the proposition for the multiplicative function f such that f(pk) = 1

for all pk > x. Note that ez−1 = z +O(|z − 1|2) for |z| 6 1. By repeatedly applying the triangle

inequality, we have that for all |zi|, |wi| 6 1,∣∣∣∣ ∏
16i6n

zi −
∏

16i6n

wi

∣∣∣∣ 6 ∑
16i6n

|zi − wi|. (7)

Therefore,

∏
pk‖P (n)

ef(p
k)−1 =

∏
pk‖P (n)

(f(pk) +O(|f(pk)− 1|2)) =
∏

pk‖P (n)

f(pk) +O

( ∑
pk‖P (n)

|f(pk)− 1|2
)

and

f(P (n)) =
∏

pk‖P (n)

f(pk) =
∏

pk‖P (n)

ef(p
k)−1 +O

( ∑
pk‖P (n)

|f(pk)− 1|2
)
.

We now introduce an additive function h such that h(pk) = f(pk)− 1. Clearly,∑
n6x

|f(P (n))− eh(P (n))|2 �
∑
n6x

|f(P (n))− eh(P (n))|

�
∑
n6x

∑
pk‖P (n),

pk6x

|f(pk)− 1|2 � x
∑
pk6x

|f(pk)− 1|2

pk
� xD∗2(f, 1;x).

Since |ea − eb| � |a− b| for Re(a),Re(b) 6 0, Lemma 2.2 implies that

∑
n6x

|eh(P (n)) − eµh,P |2 �
∑
n6x

|h(P (n))− µh,P |2 6 xD∗2(f, 1;x) +
x(log log x)3

log x
.

We introduce µh,P =
∑

p6x µh,p, where

µh,p =
∑
pk6x

h(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)

and observe that

eµh,p = 1 + µh,p +O(µ2h,p) =
∑

16pk6x

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+O

(
1

x
+

1

p

∑
pk6x

|h(pk)|
pk

)
.
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Note that |eµh,p | 6 1. Using (7) and the Cauchy–Schwarz inequality once again yields

|eµh,P −P(f ;P ;x)|2 6

(∑
p6x

∣∣∣∣eµh,p − ∑
16pk6x

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+O

(
1

x

)∣∣∣∣)2

�
(∑
pk6x

1

p

|f(pk)− 1|
pk

+
∑
p6x

1

x

)2

� D∗2(f, 1;x) +
1

log2 x
,

which, together with the triangle inequality, completes the proof of the lemma in the special case
when f(pk) = 1 for pk > x.

We now consider any multiplicative function f and decompose f(n) = fs(n)fl(n), where

fs(p
k) =

{
f(pk) if pk 6 x,

1 if pk > x

and

fl(p
k) =

{
1 if pk 6 x,

f(pk) if pk > x.

Note that for a fixed prime power pk ∈ NP (x),

|{n 6 x | pk|P (n)}| 6 ωP (pk)

and each P (n) is divisible by � degP elements of NP (x). Using the Cauchy–Schwarz inequality
yields ∑

n6x

|f(P (n))− fs(P (n))|2 �
∑
n6x

( ∑
pk‖P (n),

pk>x

|f(pk)− 1|
)2

� x ·
∑

pk∈NP (x)

|f(pk)− 1|2

x
.

We are left to collect the error terms and note that

D∗2(1, f ;x) +
∑

pk∈NP (x)

1− Re f(pk)

x
= D∗P

2(1, f ;x). 2

Proposition 2.3 immediately implies the following corollary, which will be used in the proof
of Theorem 1.3.

Corollary 2.4. Let f : N → U be a multiplicative function and let g : N → U be any function.
Let P (n) ∈ Z[x]. Then∑

n6x

f(P (n))g(n) = P(f ;P ;x)
∑
n6x

g(n) +O

(
xD∗P (1, f ;x) +

x(log log x)3/2√
log x

)
.

Proof. Using Proposition 2.3, the triangle inequality and the Cauchy–Schwarz inequality gives∑
n6x

f(P (n))g(n)−P(f ;P ;x)
∑
n6x

g(n)�
∑
n6x

|f(P (n))−P(f ;P ;x)|

�
(
x
∑
n6x

|f(P (n))−P(f ;P ;x)|2
)1/2

� xD∗P (1, f ;x) +
x(log log x)3/2√

log x
. 2
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Let f, g : N → U be multiplicative functions. For any two irreducible polynomials P,Q ∈ Z[x],
we define

M(f, g;x) =
1

x

∑
n6x

f(P (n))g(Q(n)).

We define ω(pk, pl) to be the quantity such that

{n 6 x | pk‖P (n), pl‖Q(n)} = xω(pk, pl) +O(1).

We note that if p - res(P,Q), then ω(pk, pl) = 0 unless k = 0 or l = 0. In the latter case

ω(pk, 1) =
ωP (pk)

pk
− ωP (pk+1)

pk+1

and

ω(1, pl) =
ωQ(pl)

pl
−
ωQ(pl+1)

pl+1
.

Furthermore, by the Chinese remainder theorem, we have

{n 6 x | d1|P (n), d2|Q(n)} = xF (d1, d2) +O(ωP (d1)ωQ(d2)) = xF (d1, d2) +Oε(x
ε)

for some multiplicative function F (d1, d2) and any ε > 0. Our main goal in this section is to
prove that the mean value M(f, g;x) satisfies the ‘local-to-global’ principle. We first evaluate
the local correlations.

Lemma 2.5. Let f, g : N → U be multiplicative functions. Define fp, gp as in (2). Let P,Q ∈ Z[x]
and res(P,Q) 6= 0. Then

1

x

∑
n6x

fp(P (n))gp(Q(n)) =
∑

pk,pl>1

f(pk)g(pl)ω(pk, pl) +O

(
log x

x log p

)
.

In particular, if p - res(P,Q), then

1

x

∑
n6x

fp(P (n))gp(Q(n))

=

(∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+
∑
k>0

g(pk)

(
ωQ(pk)

pk
−
ωQ(pk+1)

pk+1

)
− 1

)
+O

(
log x

x log p

)
.

Proof. We first suppose that p - res(P,Q). In this case we have

1

x

∑
n6x

fp(P (n))gp(Q(n))

=
1

x

( ∑
pk6x,
pk‖P (n)

f(pk) +
∑
pl6x,
pl‖Q(n)

g(pl) +
∑
n6x,

p0‖P (n)Q(n)

1

)

=

(∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+
∑
k>0

g(pk)

(
ωQ(pk)

pk
−
ωQ(pk+1)

pk+1

)
− 1

)
+O

(
log x

x log p

)
.
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More generally,

1

x

∑
n6x

fp(P (n))gp(Q(n)) =
1

x

∑
pk,pl6x,
pk‖P (n),

pl‖Q(n)

f(pk)g(pl) =
∑

pk,pl>1

f(pk)g(pl)ω(pk, pl) +O

(
log x

x log p

)
.

This completes the proof of the lemma. 2

Theorem 1.3. Let f, g : N → U be multiplicative functions. Let P,Q ∈ Z[x] be two polynomials
such that res(P,Q) 6= 0. Then

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + Error(f(P ), g(Q), x),

where

Error(f(P ), g(Q), x)� DP (1, f ; log x;x) + DQ(1, g; log x;x) +
1

log log x
.

Proof. Choose y = (1− ε) log x. We begin by decomposing f(n) = fs(n)fl(n), where

fs(p
k) =

{
f(pk) if pk 6 y,

1 if pk > y

and

fl(p
k) =

{
1 if pk 6 y,

f(pk) if pk > y.

By analogy, we write g(n) = gs(n)gl(n). We apply Corollary 2.4 to get∑
n>1

fl(P (n))fs(P (n))g(Q(n)) = P(fl;P ;x)
∑
n6x

fs(P (n))g(Q(n))

+O

(
xD∗P (1, fl; y;x) +

x(log log x)3/2√
log x

)
.

We now apply Corollary 2.4 to the inner sum to arrive at∑
n6x

gl(Q(n))gs(Q(n))fs(P (n)) = P(gl;Q;x)
∑
n6x

fs(P (n))gs(Q(n))

+O

(
xD∗P (1, fl; y;x) + xD∗Q(1, gl; y;x) +

x(log log x)3/2√
log x

)
.

Combining the last two identities, we conclude that∑
n6x

f(P (n))g(Q(n)) = P(fl;P ;x)P(gl;Q;x)
∑
n6x

fs(P (n))gs(Q(n))

+O

(
xD∗P (1, fl; y;x) + xD∗Q(1, gl; y;x) +

x(log log x)3/2√
log x

)
.

Let fs = 1 ∗ θs and gs = 1 ∗ γs. Then θs(p
k) = 0 and γs(p

k) = 0 whenever pk > y. Since∏
pk6y p = ey+o(y) 6 x as long as y 6 (1 − ε) log x, the following sums are supported on the
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integers d1, d2 6 x. Hence,∑
n6x

fs(P (n))gs(Q(n)) =
∑

d1,d26x,
p|di⇒p6y

θs(d1)γs(d2)
∑
n6x,

d1|P (n),
d2|Q(n)

1

=
∑
d6x,

d|res(P,Q)

∑
d1,d26x,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2)x+O

(
xε

∑
d1,d26x

|θs(d1)γs(d2)|
)

=
∑
d6x,

d|res(P,Q)

∑
d1,d2>1,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2)x+O

(
xε

∑
d1,d26x

|θs(d1)γs(d2)|
)
.

To estimate the error term, we observe that∑
d1,d26x

|θs(d1)γs(d2)| 6 x1/2
(∑
d>1

|θs(d)|
d1/4

)(∑
d>1

|γs(d)|
d1/4

)

6 x1/2
(∏
p6y

(∑
k>0

|θs(pk)|
pk/4

))(∏
p6y

(∑
k>0

|γs(pk)|
pk/4

))

� x1/2
(∏
p6y

(
1 +

2

p1/4

))2

� x1/2 exp

(
3y3/4

log y

)
. (8)

The last sum is O(x1/2+ε) for y � log x and y → ∞. It easy to see that for p 6 y, Lemma 2.5
implies that

Mp(f, g) =
∑

pk,pl>1

θ(pk)γ(pl)F (pk, pl),

where Mp(f, g) is defined as in (3). By multiplicativity, the contribution of small primes is∑
d|res(P,Q)

∑
d1,d2>1,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2) =
∏
p6y

Mp(f, g). (9)

We are left to estimate P(fl;P ;x)P(gl;Q;x). The contribution of primes pk > y and p 6 y is∏
pk>y,
p<y

(
1 +

∑
i>k

θl(p
k)ωP (pk)

pk

) ∏
pk>y,
p<y

(
1 +

∑
i>k

γl(p
k)ωQ(pk)

pk

)

= 1 +O

(∑
pk>y
p<y

1

pk

)
= 1 +O

(
1

y
· y

log y

)
= 1 +O

(
1

log y

)
.

Furthermore, for p > y, we clearly have (p, res(P,Q)) = 1 and

P(fl;P ;x)P(gl;Q;x)

=

(
1 +O

(
1

log y

))
·
∏

y<p6x

(
1 +

∑
k>1

θl(p
k)ωP (pk)

pk

) ∏
y<p6x

(
1 +

∑
k>1

γl(p
k)ωQ(pk)

pk

)
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=

(
1 +O

(
1

log y

))
×
∏

y<p6x

(
1 +

∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk
+
∑
k>1

θ(pk)ωP (pk)

pk

∑
k>1

γ(pk)ωQ(pk)

pk

)
=

(
1 +O

(
1

log y

))
exp

(
O

( ∑
y6p6x

1

p2

)) ∏
y<p6x

(
1 +

∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk

)
=

(
1 +O

(
1

log y

)) ∏
y<p6x

(
1 +

∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk

)

and thus

P(fl;P ;x)P(gl;Q;x) =
∏
p>y

Mp(f, g) +O

(
1

log y

)
.

We note that D∗P (1, f ; log x;x) can be replaced with DP (1, f ; log x;x) at a cost of O(log log x/

log x). Combining all of the above, we arrive at the result claimed. 2

Applying Theorem 1.3 and Lemma 2.5 with g = 1, we deduce the following corollary.

Corollary 1.2. Let f : N → U be a multiplicative function and P ∈ Z[x]. Then

1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) +O

(
DP (1, f ; log x;x) +

1

log log x

)
.

3. Corollaries required for further applications

To state some corollaries required for our future applications, we introduce a few notations. We fix

two integer numbers a, b > 1. For multiplicative functions f, g : N → C such that D(1, f ;∞) <∞,

D(1, g;∞) <∞, we set f = 1 ∗ θ, g = 1 ∗ γ. For (r, (a, b)) = 1, we define

G(f ; g; r;x) = G(r, x) :=
∏

pk‖r, p6x

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)
(10)

and δl = 0 when p|l and δl = 1 otherwise. We remark that in (10), we allow k = 0 if p - r. For

(r, (a, b)) > 1, we set

G(r, x) := 0.

We can now deduce the following corollary.

Corollary 3.1. Let f, g : N → U be multiplicative functions. Suppose that D(1, f ;∞) < ∞,
D(1, g;∞) <∞. Let a, b > 1, c, d be integers with (a, c) = (b, d) = 1 and ad 6= bc. Then

1

x

∑
n6x

f(an+ c)g(bn+ d) =
∑

r|ad−bc

G(f ; g; r;x)

r
+ o(1)

when x →∞ and the error term o(1) depends on the coefficients a, b, c, d.
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Proof. We note that

|{n 6 x | ∃pk > x, pk|an+ c}| � x

log x

and thus the contribution of terms with large prime power factors can be absorbed into the
error term. We can now apply Theorem 1.3 (using the same notations) with P (n) = an+ c and
Q(n) = bn + d and note that res(P,Q) = ad − bc, ωP (pk) = 1 for p - a and ωP (pk) = 0 for p|a,
ωQ(pk) = 1 for p - b and ωQ(pk) = 0 for p|b, pk 6 x. We are left to note that

F (d1, d2) =
1

[d1, d2]

and the terms coming from small primes p 6 y, such that (r, (a, b)) = 1

Gs(r) =
∑

d1,d2>1
(d1,d2)=r
(d1,a)=1
(d2,b)=1
p|rdi⇒p6y

θs(d1)γs(d2)

[d1, d2]
,

each has an Euler product

Gs(a) :=
∏

pk‖a, p6y

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)
and δl = 0 when p|l and δl = 1 otherwise. 2

We will require the following extension of Corollary 3.1 to all ‘pretentious’ functions.

Corollary 1.4. Let f, g : N → U be multiplicative functions with D(f, nit,∞), D(g, niu,∞) <
∞ and write f0(n) = f(n)/nit and g0(n) = g(n)/niu. Let a, b > 1, c, d be integers with (a, c) =
(b, d) = 1 and ad 6= bc. As above we have

1

x

∑
n6x

f(an+ c)g(bn+ d) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

when x →∞ and the o(1) term depends on the variables a, b, c, d, t, u.
We have

Mi(f(P ), g(Q), x) =
aitbiuxi(t+u)

1 + i(t+ u)
+ o(1)

when x → ∞ and the o(1) term depends on a, b, t, u. If p|(a, b), then Mp(f0(P ), g0(Q)) = 1. If
p - ab(ad− bc), then

Mp(f0(P ), g0(Q)) = Mp(f0(P )) +Mp(g0(Q))− 1 = 1 +

(
1− 1

p

)(∑
j>1

f0(p
j)

pj
+
∑
j>1

g0(p
j)

pj

)
.

In general, if p - (a, b), we have a more complicated formula

Mp(f0(P ), g0(Q)) =
∑

06i6k,
k>0,

pk‖ad−bc

(
θ(pi)γ(pi)

pi
+ δb

∑
j>i

θ(pi)γ(pj)

pj
+ δa

∑
j>i

γ(pi)θ(pj)

pj

)

and δl = 0 when p|l and δl = 1 otherwise. Here, f0 = 1 ∗ θ and g0 = 1 ∗ γ.
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Proof. We observe that D(f0, 1,∞) <∞ and D(g0, 1,∞) <∞ and let

M(x) =
∑
n6x

f0(an+ c)g0(bn+ d).

Corollary 3.1 implies that

M(y) = y
∑

r|ad−bc

G(f0; g0; r; y)

d
+ o(y).

Recall that for any r > 1, (r, (a, b)) = 1,

G(f0; g0; r;x) = G(r, x) :=
∏

pk‖r, p6x

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)
.

Note that D(1, f0,∞) <∞ together with the fact that Re(θ(p)) 6 0 implies that

−
∑
p>1

Re(θ(p))

p
<∞

and thus for y � r we have

G(r, y)� exp

(∑
p>1

Re(θ(p))

p
+

Re(γ(p))

p

)
= O(1).

Furthermore, since Re(θ(p))/p 6 0 and Re(γ(p))/p 6 0, we use (7) to estimate

G(r, x)−G(r, y) = G(r, y)

[ ∏
y<p6x

(
1 +

∑
k>1

θ(pk)

pk
+
∑
k>1

γ(pk)

pk

)
− 1

]
= G(r, y)

[
exp

(
log

∑
y<p6x

(
1 +

∑
k>1

θ(pk)

pk
+
∑
k>1

γ(pk)

pk

))
− 1

]
�
∣∣∣∣exp

( ∑
y6p6x

Re(θ(p))

p
+

Re(γ(p))

p

)(
1 +O

(
1

y

))
− 1

∣∣∣∣
�
( ∑
y<p6x

1

p

)
� log

(
log x

log y

)
. (11)

For (r, (a, b)) > 1, we have G(r, x) = G(r, y) = 0 and (11) holds. Hence,∑
r|ad−bc

G(r, y)

r
=

∑
r|ad−bc

G(r, x)

r
+O

(
log

(
log x

log y

))
.

Since

M(y) = y
∑

r|ad−bc

G(r, y)

r
+ o(y),

we have
M(y)

y
=
M(x)

x
+O

(
log

(
log x

log y

))
.
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Summation by parts yields∑
n6x

f(an+ c)g(bn+ d) =
∑
n>1

(an+ c)it(bn+ d)iuf0(an+ c)g0(bn+ d)

=

∫ x

1
(ay + c)it(by + d)iud(M(y))

= M(x)(ax+ c)it(bx+ d)iu −
∫ x

1
M(y)[(ay + c)it(by + d)iu]′ dy

= M(x)(ax+ c)it(bx+ d)iu − 1

x

∫ x

1
M(x)y[(ay + c)it(by + d)iu]′ dy

+O

(∫ x

2
y log

(
log x

log y

)
|[(ay + c)it(by + d)iu]′| dy

)
=
M(x)

x

∫ x

2
(ay + c)it(by + d)iu dy

+O

(∫ x

2
y log

(
log x

log y

)
|[(ay + c)it(by + d)itu]′| dy

)
.

Note that
y|[(ay + c)it(by + d)iu]′| � y

ay + c
+

y

by + d
= O(1)

and so the error term is bounded by∫ x

2
log

(
log x

log y

)
dy � x

log x
= o(x).

Since |(ay + c)it − (ay)it| = O(t/y), we have∫ x

2
(ay + c)it(by + d)iu dy =

∫ x

2
(ay)it(by)iu dy + o(x).

Evaluating the last integral and performing simple manipulations with the Euler factors, we
conclude that ∑

r|ad−bc

G(f0; g0; r;x)

r
=
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

and the result follows. 2

Remark 3.2. Let fk(n), k = 1,m be multiplicative functions such that |fk(n)| 6 1 and D(fk(n),
nitk ;∞) <∞ for all n ∈ N. Following the lines of the proof, one can generalize Corollary 1.4 to
compute correlations of the form∑

n6x

f1(a1n+ b1)f2(a2n+ b2) · · · · · fm(amn+ bm).

Finally, we will require the following special case of Corollary 3.1.

Corollary 3.3. Let f : N → U be a multiplicative function such that D(1, f ;∞) <∞, m ∈ N.
Then

1

x

∑
n>1

f(n)f(n+m) =
∑
r|m

G0(r)

r
+ o(1)

1640

https://doi.org/10.1112/S0010437X17007163 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007163


Multiplicative functions

when x →∞ and o(1) depends on m, where f = 1 ∗ θ and

G0(r) :=
∏
pk||r

(
|θ(pk)|2 + 2

∑
i>k

Re(θ(pk)θ(pi))

pi−k

)
.

Proof. We apply Corollary 3.1 with g = f , a = b = 1, d = 0 and c = m and observe that∏
p>x

(
|θ(pk)|2 + 2

∑
i>k

Re(θ(pk)θ(pi))

pi−k

)
=
∏
p>x

(
1 + 2

∑
i>1

Re(θ(pi))

pi

)
→ 1.

Hence, the Euler factors

G(a) :=
∏

pk||a, p6x

(
|θ(pk)|2 + 2

∑
i>k

Re(θ(pk)θ(pi))

pi−k

)
converge to

G0(a) :=
∏
pk||a

(
|θ(pk)|2 + 2

∑
i>k

Re(θ(pk)θ(pi))

pi−k

)
. 2

Let f be a multiplicative function such that |f(n)| 6 1 and D(f(n), nitχ(n);∞) < ∞ for
some t ∈ R, where χ is a primitive character of conductor q. We define F to be the multiplicative
function such that

F (pk) =

{
f(pk)χ(pk)p−ikt if p - q,
1 if p | q

(12)

and

Mp(F, F ; d) = lim
x→∞

1

x

∑
n6x

Fp(n)Fp(n+ d).

We are now ready to establish the formula for correlations when f ‘pretends’ to be a modulated
character.

Theorem 1.5. Let f : N → U be a multiplicative function such that D(f(n), nitχ(n);∞) <∞
for some t ∈ R and χ be a primitive character of conductor q. Then, for any non-zero integer d,
we have

1

x

∑
n6x

f(n)f(n+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl‖q

Mpl(f, f , d) + o(1)

when x →∞. Here, the o(1) term depends on d, χ, t and

Mpl(f, f , d) =



0 if pl−1 - d,

1− 1

p
if pl−1‖d,(

1− 1

p

) k∑
j=0

|f(pj)|2

pj
− |f(pk)|2

pk
if pl+k‖d
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for any k > 0 and, if pn‖d for some n > 0, then

Mp(F, F , d) = 1− 2

pn+1
+

(
1− 1

p

)∑
j>n

(
F (pn)F (pj)

pj
+
F (pn)F (pj)

pj

)
.

In particular, the mean value is o(1) if q - d
∏
p|q p.

Proof. We partition the sum according to r, s > 1 such that r|n and rad(r)|q, (n/r, q) = 1 and
s|(n+ d) and rad(s)|q, ((n+ d)/s, q) = 1. Note that (r, s)|d. We write

n = m · lcm(r, s) + rb(r)

such that sb(s)− rb(r) = d for some integers b(r), b(s). The sum can now be rewritten as

∑
n6x

f(n)f(n+ d) =
∑
r,s

f(r)f(s)
∑

m∗6x/lcm(r,s)

f

(
m∗

s

(r, s)
+ b(r)

)
f

(
m∗

r

(r, s)
+ b(s)

)
,

where the inner sum runs over m∗ such that(
m∗

s

(r, s)
+ b(r), q

)
= 1

and (
m∗

r

(r, s)
+ b(s), q

)
= 1.

We can therefore define the function f1 such that f1(p
k) = f(pk) for all primes p - q and f1(p

k) = 0
otherwise. In this case Corollary 1.4 implies that∑

m∗6x/lcm(r,s)

f

(
m∗

s

(r, s)
+ b(r)

)
f

(
m∗

r

(r, s)
+ b(s)

)

=
∑

m6x/lcm(r,s)

f1

(
m

s

(r, s)
+ b(r)

)
f1

(
m

r

(r, s)
+ b(s)

)
, (13)

where now m runs over all integers up to x/lcm(r, s). We can now factor f1(n) = χ(n)F (n).
Note that D(F, 1,∞) <∞. Let m = kq + a, where a runs over residue classes mod(q). The sum
in (13) can be rewritten as

∑
r,s

f(r)f(s)
∑

amod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)

×
∑

k6x/q lcm(r,s)

F

(
kq

s

(r, s)
+ a

s

(r, s)
+ b(r)

)
F

(
kq

r

(r, s)
+ a

r

(r, s)
+ b(s)

)
.

We apply Corollary 1.4 to the inner sum and observe that

a2b1 − a1b2 =
dq

(r, s)
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and the asymptotic in Corollary 1.4 does not depend on b1, b2 and consequently on the residue
class a (mod(q)). Hence, up to a small error, the innermost sum is equal to∑

m6x/q[s,r]

F

(
m

s

(r, s)
+ b(r)

)
F

(
m

r

(r, s)
+ b(s)

)
.

We now focus on the sum ∑
amod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)
. (14)

Let q = pa11 p
a2
2 · · · p

ak
k and χ = χpa11

χpa2 · · · · · χpakk , where each χpaii
is a primitive character of

conductor paii . By the Chinese remainder theorem, the sum (14) equals∑
amod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)

=
∏
pk‖q

∑
amod(pk)

χpk

(
a

s

(r, s)
+ b(r)

)
χpk

(
a

r

(s, r)
+ b(s)

)
.

We claim that the last sum is zero unless r = s. Indeed, if r 6= s, then there exists a prime p
such that pi‖r and pj‖s for j > i. Since (r/(r, s), p) = 1, we can make a change of variables

a →
ar

(r, s)
(mod(pk))

and the pth factor can be rewritten as∑
amod(pk)

χpk(apj−it+ b1(r))χpk(a+ b1(s)),

where (t, p) = 1. If j − i > k, then the first term is fixed and the second runs over all residues
modulo pk. So, the sum is zero. If j − i < k, we write a = A + pk−(j−i)L, where A runs over
residues modulo pk−(j−l) and L runs over residues modulo pj−i. Then our sum becomes∑

Amod(pk−(j−l))

χpk(Apj−it+ b1(r))
∑

Lmod pj−i

χpk(A+ b1(s) + pk−j+iL).

It is easy to show that the inner sum∑
Lmod pj−i

χ(A+ b1(s) + pk−j+iL) = 0.

Thus, the main contribution comes from the terms r = s=R. In this case we have R(b(s)−b(r)) =
d = bR and we can take b(r) = 0, b(s) = b. Our character sum can be rewritten as∑

amod(q)

χ(a)χ(a+ b).

To evaluate the last sum, we split it into prime powers. Now, if pk‖q and pi‖b (possibly i = 0),
then we have a non-zero contribution if and only if i > k − 1. Indeed, let b = pib1, (b1, p) = 1.
We note that ∑

amod(pk)

χpk(a)χpk(a+ b) =
∑

cmod(pk),
(c,p)=1

χpk(pic+ 1).
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This sum is 0 if i 6 k − 2 and equals −pk−1 whenever i = k − 1 and φ(pk) whenever i > k. We
thus have ∑

amod(q)

χ(a)χ(a+ b) =
∏
pk‖q
pi‖b
i6k−1

µ(pk−i)pi
∏
pk‖q
pk|b

φ(pk)

and the result follows by combining this with Corollary 1.4 and easy manipulations with the
Euler products. 2

Combining the last proposition with Corollary 3.3, we deduce the following result.

Corollary 3.4. Let f : N → U be a multiplicative function with D(f(n), nitχ(n);∞) <∞ for
some primitive character χ of conductor q. Then

1

x

∑
n6x

f(n)f(n+ 1) =
µ(q)

q

∏
p>1
p-q

(
2 Re

(
1− 1

p

)(∑
k>0

f(pk)χ(pk)p−ikt

pk

)
− 1

)
+ o(1)

when x →∞ and o(1) depends on χ, t.

We remark that using the same arguments one may establish the formula for the correlations∑
n6x

f(n)g(n+m)

for D(f(n), nit1χ(n),∞) <∞ and D(g(n), nit2ψ(n),∞) <∞. We state here one particular case
when m = 1.

Proposition 3.5. Let f, g : N → U be two multiplicative functions with D(f(n), nit1χ(n),∞) <
∞ and D(g(n), nit2ψ(n),∞) < ∞ for some primitive characters χ, ψ. Let R = qψ/(qχ, qψ) and
S = qχ/(qχ, qψ), Q = [qχ, qψ]. Then

1

x

∑
n6x

f(n)g(n+ 1) =
Rit1Sit2

i(t1 + t2) + 1
f(R)g(S)

∑
amod(Q)

χ(aS + b(R))ψ(aR+ b(S))

×
∏
p6x
p-Q

((
1− 1

p

)(∑
k>0

f(pk)p−ikt1

pk

)

+

(
1− 1

p

)(∑
k>0

g(pk)p−ikt2

pk

)
− 1

)
+ o(1)

when x →∞ and o(1) depends on the parameters t1, t2, χ, ψ.

Proof. We follow the lines of the proof of Proposition 1.5 and note that in this case (r, s) = 1
and the only term that contributes is

r = R =
qψ

(qχ, qψ)

and

s= S =
qχ

(qχ, qψ)
. 2
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4. Application to the Erdős–Coons–Tao conjecture

In this section, we are going to study multiplicative functions f : N → T such that

lim sup
x→∞

∣∣∣∣∑
n6x

f(n)

∣∣∣∣ <∞. (15)

We first focus on the complex-valued case and the proof of Theorem 1.7. The key tool is the
following recent result by Tao [Tao16b].

Theorem 4.1 (Tao). Let a1, a2 be natural numbers and let b1, b2 be integers such that a1b2 −
a2b1 6= 0. Let ε > 0 and suppose that A is sufficiently large depending on ε, a1, a2, b1, b2. Let
x > ω > A and let g1, g2 : N → U be multiplicative functions with g1 non-pretentious in the
sense that ∑

p6x

1− Re(g1(p)χ(p)pit)

p
> A

for all Dirichlet characters χ of period at most A and all real numbers |t| 6 Ax. Then∣∣∣∣ ∑
x/ω<n6x

g1(a1n+ b1)g2(a2n+ b2)

n

∣∣∣∣ 6 ε logω.

We will require the following technical lemma.

Lemma 4.2. Let a > 1 be given and let xn be an increasing sequence such that xn < xn+1 6 xan.
Suppose that for each xm, there exist a primitive character χm of conductor O(1) and a real tm
with |tm| � xm such that D(f(n), nitmχm(n), xm) = O(1). Then there exist t ∈ R and a primitive
character χ such that D(f(n), nitχ(n),∞) <∞.

Proof. Without loss of generality, we may assume that xn+1 = xan (otherwise we can choose a
suitable subsequence and modify the values of a if necessary). We note that there exists k = O(1)
such that for all n > 1, χkn(p) = 1 for all but finitely many primes p. The triangle inequality now
implies that

D(fk(n), niktm , xm) = D(fk(n), niktmχkm(n), xm) +O(1) > kD(f(n), nitmχm(n), xm) = O(1).

Moreover,

D2(fk(n), niktm , xm+1) 6 O(1) +
∑

xm6p6xm+1

2

p
6 O(1) + 2 log

log xm+1

log xm
= O(1)

and therefore applying the triangle inequality once again we end up with

O(1) > D(fk(n), niktm , xm+1) + D(fk(n), niktm+1 , xm+1) > D(1, nik(tm+1−tm), xm+1).

Clearly, k|tm+1 − tm| � xm+1 and therefore by the classical zero-free region we get

|tm+1 − tm| �
1

log xm+1
.

Iterating the last inequality, we conclude that there exists t such that

|tm − t| �
1

log xm+1
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for all m > 1. Since there are only finitely many options of characters χm, we can pass to the
subsequence and assume that χm = χ is fixed. The triangle inequality now implies that

D(f(n), nitmχ(n), xm) + D(1, ni(t−tm), xm) > D(f(n), nitχ(n), xm) +O(1).

We are left to note that
D(1, ni(t−tm), xm) = O(1)

as long as |tm − t| � 1/log xm and we can replace tm with t at a cost of O(1). This completes
the proof of the lemma. 2

Lemma 4.3. Suppose that for a multiplicative f : N → T, (15) holds. Then there exist a primitive
character χ and t ∈ R such that D(f(n), χ(n)nit,∞) <∞.

Proof. Let H ∈ N. Suppose that for each 1 6 h 6 H, we have

1

log x

∑
n6x

f(n)f(n+ h)

n
6

1

2H
.

Consider

T (x) :=
1

log x

∑
n6x

1

n

∣∣∣∣n+H+1∑
k=n+1

f(k)

∣∣∣∣2.
Expanding the square, we get

T (x) =
∑

16h1 6=h26H

1

log x

∑
n6x

f(n+ h1)f(n+ h2)

n
.

The diagonal contribution h1 = h2 is 1+o(1). For h2 > h1, we introduce h = h2−h1 and replace
n in the denominator by N = n + h1 at a cost of � H/log x. We change the range for N from
1 + h1 6 N 6 x+ h1 to 1 6 n 6 x at a cost of � logH/log x. Therefore,

T (x) = H + o(1)−
∑
|h|6H

(H − |h|) · 1

log x

∑
N6x

f(N)f(N + h)

N

> H − (H2 −H) · 1

2H
+ o(1) =

H

2
+O(1)

for x →∞. This contradicts (15) for sufficiently large H > 1. Thus, for a fixed H > 1 and every
large x� 1, there exists 1 6 hx 6 H such that

1

log x

∑
n6x

f(n)f(n+ hx)

n
� 1.

Since hx 6 H, we can apply Theorem 4.1 to conclude that there exists A = A(H) > 0 such that
for any sufficiently large x, there exist tx ∈ R, |tx| 6 Ax and a primitive character χ of modulus
D 6 A such that D(f(n), nitxχ(n);x) 6 A, namely∑

p6x

1− Re(f(p)p−itxχ(p))

p
6 A2.

Since the latter holds uniformly for all large x, Lemma 4.2 implies the result. 2
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We now refine the result of Lemma 4.3.

Theorem 1.7. Suppose for a multiplicative f : N → T, (15) holds. Then there exist a primitive

character χ of an odd conductor q and t ∈ R such that D(f(n), χ(n)nit;∞) < ∞ and f(2k) =

−χk(2)2−ikt for all k > 1.

Proof. Applying Lemma 4.3, we can find a primitive character χ of conductor q and t ∈ R such

that D(f(n), χ(n)nit;∞) <∞. Theorem 1.5 implies that for any d > 0, we have

Sd = lim
x→∞

1

x

∑
n6x

f(x)f(x+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl‖q

Mpl(f, f , d).

For fixed H > 1, we can now write

lim
x→∞

1

x

∑
n6x

∣∣∣∣n+H+1∑
k=n+1

f(k)

∣∣∣∣2 = lim
x→∞

1

x

[ ∑
h=0, n6x

Hf(n)f(n+ h) + 2
∑

16h6H

(H − h)
∑
n6x

f(n)f(n+ h)

]

= HS0 + 2
H∑
h=1

(H − h)Sh = H + 2
H−1∑
N=1

N∑
n=1

Sm.

We note that all Sm 6 1 and Theorem 1.5 implies that each Sm behaves like a scaled multiplicative

function, since it is given by the Euler product. We are going to show that there exists

limN→∞ (1/N)
∑

n6N Sn = c and so

H + 2

H−1∑
N=1

N∑
n=1

Sm = O(1) ∼ H + 2

H∑
N=1

cn = cH2 +O(H).

The latter would imply that c = 0. We turn to the computations of the corresponding mean

values. Clearly,

lim
N→∞

1

N

∑
n6N

Sn =
∏
p6N

S(p),

where S(p) denotes the local factor that corresponds to the prime p. If p - q, then, using
Theorem 1.5 and simple computations,

Sp =
∑
k>0

(
1

pk
− 1

pk+1

)
Mp(F, F , p

k) =

∣∣∣∣(1− 1

p

)∑
k>0

F (pk)

pk

∣∣∣∣2.
If pl‖q, then again using Theorem 1.5 we get

Sp =
∑
k>0

(
1

pk
− 1

pk+1

)
Mpl(f, f , p

k) =
1

pl−1

(
1− 1

p

)2

.

Since c = 0, one of the Euler factors has to be 0. The only possibility then is S2 = 0 and 2 - q
and F (2k) = −1 for all k > 1. This completes the proof. 2
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Proof of the Erdős–Coons–Tao conjecture
We now move on to the proof of Theorem 1.6. It turns out that periodic multiplicative functions
with zero mean have the following equivalent characterization that we will use throughout the
proof.

Proposition 4.4. Suppose that f is multiplicative with each |f(n)| 6 1 for all n ∈ N. Then
there exists an integer m such that f(n+m) = f(n) for all n ∈ N and

∑m
n=1 f(n) = 0 if and only

if f(2k) = −1 for all k > 1 and there exists an integer M such that if the prime power pk >M ,
then f(pk) = f(pk−1).

Proof. Suppose that f(n + m) = f(n) for all n > 1 and
∑m

n=1 f(n) = 0. From periodicity, we
have f(km) = f(m) for all k > 1 and so, if pa‖m, then f(pb) = f(pa) for all b > a. In particular,
if p does not divide m, then f(pb) = 1. Hence,

m∑
n=1

f(n) =
∑
d|m

f(d)φ

(
m

d

)
=
∏
pa‖m

(
pa
(

1− 1

p

)( ∑
16k6a−1

f(pk)

pk

)
+ f(pa)

)
.

Consequently, some factor has to be 0. The only possibility is then p = 2 and f(2k) = −1 for all
k > 1. The other direction immediately follows from the Chinese remainder theorem. 2

Our starting point is the following result.

Theorem 4.5 (Tao, 2015). If, for a multiplicative f : N → {−1, 1},

lim sup
x→∞

∣∣∣∣∑
n6x

f(n)

∣∣∣∣ <∞,
then f(2j) = −1 for all j > 1 and ∑

p

1− f(p)

p
<∞.

In what follows we restrict ourselves to the multiplicative functions f : N → {−1, 1} such
that D(1, f,∞) < ∞, f = 1 ∗ g and f(2j) = −1 for all j > 1. For such such functions, we are
going to drop the subscript and set

G0(a) = G(a) :=
∏
pk||a

(
|g(pk)|2 + 2

∑
i>k+1

g(pk)g(pi)

pi−k

)
. (16)

Here, we allow k = 0 if p - a. The following lemma summarizes properties of G(a) that we will
use throughout the proof.

Lemma 4.6. Let G(a) be as above. Then:

(i) G(4a) = 0, a ∈ N;

(ii) G(2a) = −4G(a) for odd a;

(iii)
∑

a>1 (G(a)/a2) = 0;

(iv) if f(3) = 1, then G(a) 6 0 for all odd a;

(v)
∑

a>1 (G(a)/a) = 1.
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Proof. Note that g(2) = −2 and g(2i) = f(2i) − f(2i−1) = 0 for i > 2. Thus, G(4a) = 0 and
G(2a) = −4G(a) for odd a. The third part immediately follows from∑

a>1

G(a)

a2
=

∑
a>1, a odd

G(a)

a2
+

∑
a>1, a odd

G(2a)

(2a)2
= 0.

To prove (iv), fix p and suppose that pk‖a. We note that for k = 0, the Euler factor

Ep(a) = 1 + 2
∑
i>1

g(pi)

pi
> 1− 4

p− 1
> 0

for p > 5. Note that E2(a) = 1−2 = −1. If 30‖a, then g(3) = f(3)−1 = 0 and E3(a) > 1− 4
9 ·

3
2 =

1
3 > 0. Suppose that pk‖a and k > 1. Then

Ep(a) = |g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k
> 4− 8

p− 1
> 0

for p > 3. Hence, the only negative Euler factor is E2 and (iv) follows. To prove (v), we take
m = 0 in Corollary 3.3 to arrive at

lim
x→∞

1

x

∑
n6x

f(n)f(n+ 0) = 1 =
∑
a|0

G(a)

a
=
∑
a>1

G(a)

a
. 2

Lemma 4.7. Suppose that G(a) 6= 0. Then

|G(a)| � (54)ω(a)−1 · 25 · |G(1)|.

Proof. Recall that

G(a) =
∏
pk||a

(
|g(pk)|2 + 2

∑
i>k+1

g(pk)g(pi)

pi−k

)
.

Note that g(pk)g(pk+1) 6 0 and so if pk‖a and k > 1 we have

Ep(a) = |g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k
> 4− 8

p
· 1

1− 1/p2
= 4− 8p

p2 − 1
.

For p = 3, the last bound reduces to E3(a) > 1 and for p > 5 we clearly have Ep(a) > 2. For
k = 0, we have

Ep(1) = 1 + 2
∑
i>1

g(pi)

pi
6 1 +

4

p
· 1

1− 1/p2
= 1 +

4p

p2 − 1
.

Consequently, for k > 1 and p > 3,

Ep(p
k) > 5

4Ep(1).

Taking into account p = 3, we conclude that

|G(a)| =
∣∣∣∣ ∏
pk||a, k>1

(
|g(pk)|2+2

∑
i>k+1

g(pk)g(pi)

pi−k

)∣∣∣∣ > (5

4

)ω(a)−1
· 2
5
·|G(1)|. 2
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In fact, it is easy to check that G(1) 6= 0 and thus the last lemma provides a non-trivial lower
bound for G(a). In the next lemma we compute the second moment of the partial sums over the
interval of fixed length.

Lemma 4.8. Let H ∈ N. Then

1

x

∑
n6x

(n+H+1∑
k=n+1

f(k)

)2

= −2
∑

a>1,a odd

G(a)

∥∥∥∥H2a
∥∥∥∥+ ox→∞(1).

Proof. Note that

1

x

∑
n6x

(n+H+1∑
k=n+1

f(k)

)2

=
1

x

[ ∑
h=0, n6x

Hf(n)f(n+ h) + 2
∑

16h6H

(H − h)
∑
n6x

f(n)f(n+ h)

]
+ o(1)

=
∑
a>1

G(a)

a

(
H + 2

∑
16h6H,
a|h

(H − h)

)
+ ox→∞(1).

To compute the corresponding coefficient, we write H = ra+ s, 0 6 s < a, to arrive at

ra+ s+ 2
∑

16m6r

(ra+ s−ma) = ra+ s+ ar(r − 1) + 2rs

=
(ra+ s)2

a
+ a

(
s

a
−
(
s

a

)2)
.

Inserting this into our formula and using (iii), (i) and (ii) from Lemma 4.6, we get

H2
∑
a>1

G(a)

a2
+
∑
a>1

G(a)

({
H

a

}
−
{
H

a

}2)

=
∑
a>1

G(a)

({
H

a

}
−
{
H

a

}2)

=
∑

a>1,a odd

G(a)

[({
H

a

}
−
{
H

a

}2)
− 4

({
H

2a

}
−
{
H

2a

}2)]
= −2

∑
a>1,a odd

G(a)

∥∥∥∥H2a
∥∥∥∥,

since ({
H

a

}
−
{
H

a

}2)
− 4

({
H

2a

}
−
{
H

2a

}2)
= −2

∥∥∥∥H2a
∥∥∥∥,

where ‖x‖ denotes the distance from x to the nearest integer. 2

We are now ready to prove Theorem 1.6.

Theorem 1.6. Let f : N → {−1, 1} be a multiplicative function. Then

lim sup
x→∞

∣∣∣∣∑
n6x

f(n)

∣∣∣∣ <∞
if and only if there exists an integer m > 1 such that f(n + m) = f(n) for all n > 1 and∑m

n=1 f(n) = 0.
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Proof. If f satisfies
∑m

i=1 f(i) = 0 and f(n) = f(n+m) for some m > 1, then, for all x > 1,∣∣∣∣∑
n6x

f(n)

∣∣∣∣ 6 m

and the claim follows. In the other direction, we assume that |
∑

n6x f(n)| = Ox→∞(1). By

Theorem 4.5, we must have f(2i) = −1 for all i > 1 and D(1, f,∞) < ∞. By Lemma 4.8, we
must have that for all H > 1,

1

x

∑
n6x

(n+H+1∑
k=n+1

f(k)

)2

= −2
∑

a>1,a odd

G(a)

∥∥∥∥H2a
∥∥∥∥+ ox→∞(1) = Ox→∞(1).

Suppose that there is an infinite sequence of odd numbers {an}n>1 such that g(an) 6= 0.
Observe that |G(an)| � 1. Choose H = lcm[a1, . . . , aM ]. If f(3) = 1, then, by Lemma 4.6, part
(iv), we have

− 2
∑

a>1,a odd

G(a)

∥∥∥∥H2a
∥∥∥∥ > −2

∑
16n6M

G(an)

∥∥∥∥ H2an
∥∥∥∥�M.

This is clearly impossible if M is sufficiently large.
Suppose that f(3) = −1. Let

G∗(a) =
∏

pk‖a, p>3

(
|g(pk)|2 + 2

∑
i>k+1

g(pk)g(pi)

pi−k

)
and

S(H) = −2
∑

a>1, (a,6)=1

G∗(a)

∥∥∥∥H2a
∥∥∥∥.

Note that

− 2
∑

a>1,a odd

G(a)

∥∥∥∥H2a
∥∥∥∥ =

∑
i>0

E3(3
i)S

(
H

3i

)
= O(1). (17)

If E3(1) > 0, then we proceed as in the previous case. If E3(1) < 0, then g(3) = f(3)− 1 = −2.
Since g(pk)g(pk+1) 6 0 for all k > 0, we get

E3(3) > 4− 8

9
· 1

1− 1/9
> 3

and

0 > E3(1) = 1 + 2
∑
i>1

g(3i)

3i
> 1− 4

3
· 1

1− 1/9
= −1

2
.

Since E3(3
k) > 0 for all k > 1, applying the triangle inequality in (17) yields

S(H) >
E3(3)S(H/3)

−E3(1)
+O(1) > 6S

(
H

3

)
−M. (18)

If there is an infinite sequence {bn}n>1 such that g(bn) 6= 0 and (bn, 6) = 1, then we select H0 as
before such that S(H0) >M and S(3H0) >M . Then (18) yields S(3H0) > 5S(H0). By induction,
one easily gets that for all n > 1,

S(3nH0) > 5nS(H0).
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This implies that, for the sequence Hn = 3nH0, we have S(Hn)� H1+c
n . On the other hand,∑

a>H, (a,6)=1

G∗(a)

a
= oH→∞(1)

and so

S(H) = −2
∑

a>1, (a,6)=1

G∗(a)

∥∥∥∥H2a
∥∥∥∥� ∑

a6H, (a,6)=1

G∗(a) +H
∑

a>H, (a,6)=1

G∗(a)

a

�
√
H

∑
a6
√
H, (a,6)=1

G∗(a)

a
+H

∑
√
H6a6H, (a,6)=1

G∗(a)

a
+ o(H)

and so S(H) = o(H).
To finish the proof, we are left to handle the case g(3k) 6= 0 for infinitely many k > 1 and

there exists finitely many b1, b2, . . . , bm (bi, 6) = 1, i > 1 and g(bi) 6= 0. In this case we have

S(H) 6
m∑
i=1

G∗(bi) := M.

Choose H0 = lcm[b1, . . . , bm] and observe that S(3kH0) >M/2 for k = 1, . . . ,K. Then

−2
∑

a>1,a odd

G(a)

∥∥∥∥3KH0

2a

∥∥∥∥ =
∑
i>0

E3(3
i)S

(
3KH0

3i

)

>
∑

16i6K

E3(3
i)S

(
3KH0

3i

)
− E3(1)S(H0)

>
M

2

∑
16i6K

E3(3
k)−M.

The last sum is bounded if E3(3
k) = 0 for all k > K0. Consequently, f(3k) = f(3k+1) for k > K0

and the result follows. 2

5. Applications to the conjecture of Kátai

Let f : N → C be a multiplicative function and 4f(n) = f(n + 1) − f(n). In this section, we
focus on proving the following result.

Theorem 1.8. If f : N → C is a multiplicative function and

lim
x→∞

1

x

∑
n6x

|4f(n)| = 0, (19)

then either

lim
x→∞

1

x

∑
n6x

|f(n)| = 0

or f(n) = ns for some Re(s) < 1.

In [Kát00], Kátai, building on the ideas of Mauclaire and Murata [MM80], showed that in
order to prove Theorem 1.8, it is enough to consider a multiplicative f with |f(n)| = 1 for all
n > 1. Observe that, if we denote

S(x) =
1

x

∑
n6x

|4(n)|,
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then (19) implies that∑
n6x

|4f(n)|2

n
6
∑
n6x

2|4f(n)|
n

�
∫ x

1

S(t)

t2
dt = o(log x).

We begin by proving the following lemma.

Lemma 5.1. Suppose that f : N → T is multiplicative and∑
n6x

|4f(n)|2

n
6 2(1− ε) log x

for x sufficiently large and some 0 < ε < 1. Then there exist a primitive character χ1(n) and
tχ1 ∈ R such that D(f(n), χ1(n)nitχ1 ;∞) <∞.

Proof. We note that

Re f(n)f(n+ 1) = 1− |4f(n)|2

2

and therefore ∑
n6x

Re f(n)f(n+ 1)

n
> ε log x+O(1).

We can now apply Lemma 4.3, since the only fact that was used in the proof is that the
logarithmic correlation is large, to conclude the result. 2

Remark 5.2. The conclusion of the lemma also holds if f : N → T satisfies∑
n6x

|4f(n)|2

n
> 2(1 + ε) log x

for some ε > 0. In other words, if
∑

n6x (|4f(n)|2/n) is bounded away from 2 log x, then

D(f(n), χ1(n)nitχ1 ;∞) <∞.

Proposition 5.3. Let f : N → T be a multiplicative function and D(f, nitχ(n);∞) < ∞ for
some t ∈ R and a primitive character χ of conductor q. Then∑

n6x

|4f(n)|2

n
= 2(1− E(f) + o(1)) log x,

where

E(f) =
µ(q)

q

∏
p>1
p-q

(
2 Re

(
1− 1

p

)(∑
k>0

f(pk)χ(pk)p−ikt

pk

)
− 1

)
.

Proof. Applying Corollary 3.4, we have that

M(y) =
∑
n6y

f(n)f(n+ 1) = y
µ(q)

q

∏
p>1
p-q

(
2 Re

(
1− 1

p

)(∑
k>0

f(pk)χ(pk)p−ikt

pk

)
− 1

)
+ o(y).
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Consequently,∑
n6x

Re f(n)f(n+ 1)

n
=
M(x)

x
+

∫ x

1

M(y)

y2
dy = log x · E(f) + o(log x)

and ∑
n6x

|4f(n)|2

n
= 2 log x− 2

∑
n6x

Re f(n)f(n+ 1)

n
+O(1) = 2(1−E(f) + o(1)) log x. 2

Corollary 5.4. Let f : N → T be a multiplicative function such that D(f, nitχ(n);∞) < ∞
for some t ∈ R and a primitive character χ of conductor q. Suppose that∑

n6x

|4f(n)|2

n
= o(log x).

Then f(n) = nit.

Proof. Proposition 5.3 implies that E(f) = 1. We have that for all p > 2, p - q, each Euler factor

Ep(f) = 2

(
1− 1

p

)∑
k>0

Re f(pk)χ(pk)p−ikt

pk
− 1 > 2

(
1− 1

p

)(
1−

∑
k>1

1

pk

)
− 1 =

p− 4

p
> −1

with the possible equality only at p = 2. On the other hand,

Ep(f) 6 2

(
1− 1

p

)(∑
k>0

1

pk

)
− 1 = 1.

Consequently, we must have q = 1 and |Ep(f)| = 1 for all p > 2. Since E(f) = 1 > 0, we have
E2(f) 6= −1 and

2

(
1− 1

p

)∑
k>0

Re f(pk)p−ikt

pk
− 1 = 1.

This is possible if and only if f(pk) = pkit for all p > 2 and k > 1. The result follows. 2

Theorem 1.8 now follows from the following result.

Proposition 5.5. Let f : N → T be a multiplicative function such that∑
n6x

|4f(n)|2

n
= o(log x).

Then f(n) = nit for some t ∈ R.

Proof. Applying Lemma 5.1, we can find a primitive character χ and t ∈ R such that

D(f(n), χ(n)nit;∞) <∞.

We now apply Corollary 5.4 to conclude that f(n) = nit. 2
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6. Applications to the binary additive problems

As was mentioned in the introduction, Brüdern established the following result.

Theorem 1.9 (Brüdern, 2008). Suppose that A and B are multiplicative sequences of positive
densities ρA and ρB, respectively. For k > 1, let

a(pk) = ρA(pk)/pk − ρA(pk−1)/pk−1.

Define b(h) in the same fashion. Then r(n) = ρAρBσ(n)n+ o(n) when n →∞, where

σ(n) =
∏
pm‖n

(
1 +

m∑
k=1

pk−1a(pk)b(pk)

p− 1
− pma(pm+1)b(pm+1)

(p− 1)2

)
.

We now sketch how one can derive this from our main result.

Proof. Let f(n) = IA(n) and g(n) = IB(n). Clearly, both f and g are multiplicative, taking values
{0, 1}. Since ρA > 0, we have

lim sup
x

1

x

∑
n6x

f(n) > 0.

The theorem of Delange readily implies that D(1, f ;∞) < ∞. By analogy, D(1, g;∞) < ∞.
Furthermore,

ρA = lim
x→∞

1

x

∑
n6x

f(n) = P(f, 1,∞)

and

ρB = lim
x→∞

1

x

∑
n6x

g(n) = P(g, 1,∞).

Notice that

r(m) =
∑
n6m

f(n)g(m− n).

We note that following the proof of Corollary 1.4, we may let a = 1, c = 0, b = −1 and d = m.
Despite the fact that d = m →∞, the error term is still bounded by (8). Corollary 1.4 gives

r(m) =
∑
l|m

G(f ; g; l;∞)

l
m+ o(m).

A straightforward manipulation with the Euler factors shows that the latter has the Euler product
described above. 2

Remark 6.1. In case one of the sets A,B has density zero, say ρA = 0, we can apply Delange’s
theorem to conclude that

r(m) =
∑
n6m

f(n)g(m− n) 6
∑
n6m

f(n) = o(m).
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CP 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
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