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ON 2-GENERATOR 2-RELATION SOLUBLE GROUPS

by C. M. CAMPBELL and E. F. ROBERTSON

(Received 30th October 1978)

The class of non-metacyclic finite soluble groups known to have 2-generator 2-relation
presentations is small. Classes of such groups are given in (3), (4), (8) and (9). Some
subclasses of the groups discussed in (1) and (2) also provide examples, while a class of
finite nilpotent 2-generator 2-relation groups is given by Macdonald in (7).

Any finite deficiency zero group G must have GIG' at most 3-generated (6). The
question arises as to whether there is a bound on the rank of other factors of the derived
series. For the groups given in (4), (8), and (9) these factors are at most 2-generated (5). We
shall show that examples with G'/G" of unbounded rank can be found in the class
investigated in (2), that is the class

F * b-c = (x, y | x2 = 1, xyaxybxye = 1>-

For this purpose it is convenient to define the class

Ft "•c = (x, y | x2 = y*<»+»+e> = xy-xy V > ,

noting that F$b-C = F*b-c, while Ffb-C is studied in (3).
We first prove some general results concerning Ftb'c- Introduce the notation n =

a + b + c and d = (a — b,b — c, An). The group Ftb'c has an infinite abelian factor group if
n = 0 o r A = — 2 and, since Ftb'c is isomorphic to F~K

a'~b'~c, we assume that n > 0 and
AT^ — 2. Once the case (a, b, c) = 1 is solved, arguments similar to those in (3) enable the
case (a, b, c)^l to be dealt with, so from now on assume (a, b, c) = 1.

For any non-zero integer r let Cr denote the cyclic group of order \r\. Putting
G = Ftb-C we have G/G'=Ca+2)n. Define Ki b-c to be G'/G".

Lemma 1. G" contains <y(A+2)")G, the normal closure of y(A+2)" in Ffb'c.

Proof. In Ftb'c we have

x~1y-»x = y V (1)

and, since x2 is central, two additional relations obtained from (1) by permuting a, b, c
cyclically. Now xyn and xy"~axy°x~1 belong to G' so G" contains

x2y2n
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The Reidemeister-Schreier algorithm may be used to find a presentation for the
derived group of p£b'ci(y<-*-+2'>nyo

 ancj this derived group shown to be abelian using a
technique similar to that in Section 3 of (2). This proves the first part of the next theorem.

Theorem 2.

(i) F%b'cl{y(x+2)n)G is metabelian.

(ii) <yu+2)">G=G".

(iii) / / A is even, KZ b'c = K£ b-c.

(iv) IfX is odd, K% b'c = K^b-c and Ka-b-c is the maximal elementary abelian 2-factor of
b

Proof, (ii) This is a consequence of (i) and Lemma 1.
(iii) and (iv). By (ii) K%b'c is the derived group of Fl-b'c/(y(-x+2)n)c. The Reidemeister-

Schreier method referred to above then shows that K£b'c depends on A only to the extent
of its parity. For, putting x, = y'~ixyn~'+1, l g i S n , w e obtain the presentation

\X\, X2, • •., xn | Xi+a — xi'xiira+^, i = i =

for K\ b'c when A is even, and

(Xi, X2, . . . , Xn\ Xi+a — X-iX-i+a+b, Xi=l, 1 S i 1 = £ « )

when A is odd. In these two presentations the subscripts on the x's are reduced modulo n
and e, is +1 or — 1 according to whether i reduced modulo 2n lies in the range 1 to n or
n +1 to 2 n respectively.

To find the rank of K^b'c associate with F±b'cthe nxn matrix A = (a0) over the field
F2 defined by

&ij = ^i, j + Sj+a, / + 8i+a+b, j

where , . .. . . , , .
» _ fl if i = ;(mod n),
'"' \0 otherwise.

Lemma 3. The elementary abelian 2-group K-b'c has rank n — t where t is the rank of
the matrix A.

Proof. This is immediate from the presentation for Ktb'c, A odd, given in the proof of
Theorem 2.

We can now show that the rank of K-b'c is unbounded.

Theorem 4. Given any fc=^2 there exists a positive integer m^2k — k— 1 such that
Khf-1-m has rankk.

Proof. Let F^ be the vector space of fc-tuples over F2 with basis {et: 1 Si i Si k} where,
as usual, e, denotes the k-tuple whose only non-zero entry is in the i-th position. Define
d-.Ft^F^ by

efi = ei+i, 1 Si (g k -1; ekd = ei + e2.
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Clearly 6 is an isomorphism so 0 belongs to GL(k, 2) and has order | 0 |, say, where
\0\^2k-l.

Consider k to be fixed. We shall find necessary and sufficient conditions on the positive
integer m so that the (fc + m)x(fc + m) matrix A associated with Fl/1"1'mhas rank m. The
rank of A is the same as the rank of the circulant matrix B over F2 with first row

(1 0 0 ... 0 1 1 0 0 ... 0).

m k

Reduce B to upper triangular form using elementary row operations. It is straightforward
to check that after this reduction the final fc-tuple of entries in row i is (e1 + e2)0

i~1 for
1 S= i ^ m. The last k rows of the reduced matrix consist entirely of zeros if, and only if,
(ei + e2)0

m = ei- But e16
k = e! + e2 so the conditions on m are that m = t-k where t is

divisible by | 0|. In particular we can choose m — \ 0\—k and the result follows.

Corollary 5. K$ b'c has unbounded rank.

Proof. This follows from Theorem 2(iv) and Theorem 4.

To show that the class F^b'c contains examples of finite soluble groups with derived
groups of unbounded rank it remains to study G".

Lemma 6. In F£b>cy2n commutes with x~1ydx.

Proof. From (1) x~lyax = y~cx~ly~b and x'lybx = y~ax~1y~c so

x-1y"-bx = y-cx-iyc-bxya. (2)
By symmetry,

x-lyb-cx=y-ax-1ya-cxyb (3)
and

x-1yc-ax = y-"x-lyb-axyc. (4)

Now from (2), (3) and (4)

x-lya-bx = y-c(y-bx-iyc-axya)ya = y-c-b(y-bx-1yb-axyc)y2a.
Hence

x~lya-"x = y-c-2b(x-lyb-ax)yc+2a

= y-c-2b(y-2a-cx-lya-bxyc+2b)yc+2a

and so [y2n, x~lya~bx] = 1. By symmetry [y2n, x~1yb~cx]= 1 and, since yA" is central,
[y2n, x-'yXnx]= 1. Therefore, since d = (a-b,b-c, An), [y2n, x~lydx]=l.

Corollary 7. In G = F£b-c, if either d=l or A = ± l then G" is a central cyclic
subgroup.

Proof. If d = \ then [y2n, x~1yx] = l so [y2n, x~xyax~] = 1. Therefore, using (1),
[y2", x]= 1 and y2" is central. By Theorem 2(ii) G" = <y(A+2)n)G so G" is a central cyclic
subgroup as required. If A = ± 1 then y" is central giving the same result in this case.
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Notice that when A = ± 1 the only possible values of d are 1 and 3. For, since
(a,b,c) = l,
d = {a-b, b-c, a + b + c) = (a-b, b-c,3a) = (a-b, b-c, 3a, 3b, 3c) = {a-b, b-c,3).

Corollary 8. F£b'c is a finite soluble group of derived length § 3 i/ either d=\ or
X = ± l .

Proof. In both cases the centre of F£fc> c has finite index and the commutator quotient
of Fxbc is finite. Hence the result follows by a well-known theorem due to Schur.

The order of G" in the cases d = 1 and A = ± 1 may be calculated using the
Reidemeister-Schreier method. We omit the details of this argument which, now that we
have Corollary 7, is similar to that of Theorem 3.3 and Lemma 4.1 of (3). The method
shows that G" is trivial when d = 1 and is Q when d = 3.

The case d = 1 verifies part of the conjecture given in §12 of (2).
The following example shows that the rank of the third factor of the derived series of a

finite soluble 2-generator 2-relation group can also exceed 3. Let Hbe defined by

(x, y | x3 = 1, yxy3xy~3x = 1).

Then H/iLT= C3 and the Reidemeister-Schreier method shows that

W = (x, y, z I xy3 = z3, yz3 = x3, zx3 = y3)

so that LT/H" s Q x C14. A machine implementation of the Todd-Coxeter coset enumera-
tion algorithm now shows that H" is the direct product of seven copies of Q .
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