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Two fundamental frames of reference are used in the study of the 
rotation of the Earth: the nonrotating celestial coordinate system XYZ 
attached to the directions to stars and/or extragalactic sources, and 
the terrestrial coordinate system xyz attached in "a prescribed way" 
to several points (observatories) on the surface of the Earth or to 
the pencil of unit vectors drawn from an arbitrary origin parallel to 
the local verticals at these points. 

We may write 
(x,y,z) T = M(t).(X,Y,Z) T , (1) 

where M(t) is the transformation matrix. Numerical values of its 
elements should be known for any moment t for the transformation (1) 
to be possible. Strictly speaking, the motion of the axes xyz rela
tive to the XYZ system is unpredictable because of perturbations of 
the Earth's rotation by geophysical phenomena. It is the responsi
bility of the time and latitude services to monitor this motion by 
means of regular observations which allow the elements of the matrix 
M(t) to be calculated for any past moment. 

It seems convenient to introduce an intermediate frame of reference 
which would meet the following requirement: its rotation should ap
proximate as close as possible that of the Earth and at the same time 
be precisely predictable. There may be a number of such intermediate 
systems. We shall describe one which seems to be the best choice. 

Let f be a unit vector normal to the plane of the ecliptic of date and 
H be the angular momentum of the Earth. Designate by F a unit vector 
normal to the vectors £ and ft and define the intermediate right-handed 
system £n£ in the following way: the Or, axis is the direction of the 
angular momentum vector ft; the 0£ axis rotates around ft. Designate 
by $ the angle between the vector ? and the axis 0£. The rate d<|>/dt 
should be equal to the mean angular velocity of the Earth measured by 
observations during a certain interval of time. But to calculate 
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values of $ for the future some standard of time independent of the 
Earth's rotation is to be used. In Woolard's (1953) development of 
the theory of the Earth's rotation, the nutations Ai|, and A6 which 
locate the 0^ axis in the mean equatorial system XYZ are obtained as 
a result of integrating Pois^on's equations. They may be taken from 
Woolard's Table 24 after removing the small terms in his equation (55). 

Then we may write 

where 
U , n , c ) T = N-(X,Y,Z) T , (2) 

N = R (< | , ) .R (-e)-R (A*) . (3) 

So long as the matrix N is known, the position of the axes £n£ can be 
calculated for any moment t; predicted values of the angles Ai|; and A9 
are published in the Astronomical Ephemeris. For this reason the 
system £n£ may be called the terrestrial ephemeris system. 

There are two ways of transforming from this system to the conven
tional terrestrial system xyz: 

(i) To add the perturbations 6i|;, 60, 6$ to the Euler 
angles \J/, 0, $; 

(ii) To rotate the £n£ axes through small angles u, v, w 
shown in Fig. 1 to make them coincide with the axes xyz. 

In the first case we have 

where 
(x,y,z) T = (N+6N)-(X,Y,Z) T , (4) 

3N 8N 8N 

In the second case we may write 

(x,y,z) T = (I+a).N.(X,Y,Z) T (6) 
where I is the unit matrix and 

( 0 w -v \ 
-w 0 u J . (7) 

v -u 0 / 
Substituting (3) in (5) and equating the matrix so obtained with aN we 
get nine equations connecting the angles u, v, w with the Euler angles 
perturbations 60 and 6ij> sin 0; of these equations we shall have need 
of the following: 

v cos <)> + u sin <|> = -6i|/ sin 0 , (8) 
v sin <|> - u cos <f> = 60 . (9) 

The angles u,v may be replaced by the direction cosines of the angular 
momentum vector ft in the system xyz or, in other words, by the coor
dinates x,y of the end of the unit vector 
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Figure 1 

->• 

h -w • 
It is easy to see from Fig. 1 that 

x = -v , y = u (10) 
Hence 

-6i|; sin 9 = -x cos <f> + y sin <J> , (11) 

69 = -x sin <|> - y cos <f> (12) 
The motion of ii in the system xyz may be broken into two parts. The 
first is an empirical one that is not predictable from theory and 
needs to be regularly monitored by observations. The second part is 
nearly diurnal motion due to the lunisolar torques. Oppolzer was the 
first to derive this second motion theoretically. Accordingly £ may 
be represented as a sum of two vectors, h^ and h^* Then 

x = x + x 2 , y = yl + y 2 , a = + £ 2 , (13) 
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0 

a 1 ( 1 4 ) 

Up to the present the generally adopted practice has been to use 
transformation (6) to relate the terrestrial axes to the non-rotating 
frame of reference, because astronomers have believed that for their 
purposes the axis of figure is not directly of interest. The origin 
of this belief is in the assertion that astronomical latitudes and 
longitudes upon the Earth, which are the only geographic coordinates 
that are directly observable, depend upon the poles of rotation 
(Woolard, 1953, p. 17). 

On the contrary, Jeffreys (1963) has pointed out that the instanta
neous axis of rotation does not enter directly into any observation 
at all and that what the observations really do give is the axis of 
figure. This idea was supported and developed by Atkinson (1973,1975) 
and some other authors. 

In principle we also adhere to the same point of view, but with the 
reservation that in the case of a deformable Earth the axis of figure 
shall be replaced by the Oz-axis of the conventional terrestrial sys
tem (in particular, it may be the axis connecting the geocenter with 
the CIO). 

In terms of the present paper this means that the following matrix 
should be used to transform from the mean equatorial system of date 
to the conventional terrestrial system: 

To compute the Euler angle perturbations 602 and 6^2, *2 anc* Y2 a*" e to 
be substituted in (11) and (12) instead of x and y. Note that 6^2 is 
subtracted from A\|; because it is reckoned positive to the east while 
nutation is traditionally reckoned positive to the west. 

The x2,y2"-components of the unit vector h 2 are the sums of periodic 
terms called the Oppolzer terms. McClure's (1973) Table 8-1 contains 
coefficients of 135 terms in both of these sums. Terms are called 
symmetrical when their arguments may be represented as <\> + TT + 3 and 
<J> + 7T - 3 where 3 denotes a linear combination of Brown's fundamental 
arguments. Two symmetrical terms are combined to form 

(I+a 1)*R z((|)+6(l> 2).R x(-A0-6e 2)*R z(Ai(;-6i(;2) (15) 

x 2 = A + sin((()+3) + A_ sin(<f>-3) 

y = A cos(<f>+3) + A_ cos(<|>-3) 
(16) 

Hence 
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- 6 1 ^ sin 9 = (~A + A )sin 3 , 
(17) 

69 2 = (-A - A_)cos 3 

Further we have 

6(f> = cos X + y 2 sin X * , 

6t = (x 2 sin X - y 2 cos X)tan <j> 

where X is the longitude reckoned positive eastward. Thus the transi
tion from the angular momentum H to the Oz axis of the conventional 
terrestrial system results in the following variations of the latitude 
and time obtained from observations: 

6<f> = 6i(;2 sin 9 cos S - 6 9 2 sin S , (18) 

6t = (S\\)2 sin 9 sin S + 69 2 cos S)tan <f> , (19) 

where S is the local sidereal time. The expressions for 692 and 
6^2 sin 9 from (17) are substituted in (18) and (19) to obtain 

64 = A + sin(S+3) + A_ sin(S-3) , (20) 

6t = -[A cos(S+3) + A_ cos(S-3)]tan 4 . (21) 

The lengthening of the period of the free nutation is known to be the 
most noticeable manifestation of the effect of the Earth's deformation 
on its rotation. The influence of this same deformation on forced nu
tation was considered by Schweydar (1916), Fedorov (1963), and McClure 
(1973). The elastic deformation has been shown^not to affect the 
motion in space of the angular momentum vector H of the whole Earth. 
Moreover the equations of its motion remain practically unchanged for 
any assumption about the interior of the Earth. The reason is that 
the tide-producing body stretches the Earth along the line connecting 
its center with that of the Earth. Such a deformation does not change 
the moment of the couple exerted on the Earth. 

Thus the introduction of the system related to the angular momentum 
vector H as an intermediate ephemeris system has an advantage in the 
exposition of the theory of the rotation of the deformable Earth. 
Concerning this matter Jeffreys (1963) writes: "Fedorov is certainly 
right in maintaining that if we want an intermediate standard of ref
erence independent of all properties of the Earth other than its mo
ments of inertia, that standard must be the axis of angular momentum." 

From what has been said it is clear that for computing nutation of the 
angular momentum vector we may continue to use the theory of the rota
tion of the rigid Earth. At the same time tidal deformation results 
in considerable changes in the relative positions of the axis Oz and 
the axis of the greatest moment of inertia often called the axis of 
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figure: the amplitude of the variation in the angle between these 
axes reaches two seconds of arc. That's why the axes of inertia are 
inappropriate as a terrestrial frame of reference. The motion of 
these axes in the xyz system a-ffects the motion of the vector H (but 
not of the axis of rotation) in the same system. The elastic deforma
tion of the Earth leads to nearly the same relative diminution of the 
coefficients of all the terms induced by the tide-generating force, in 
as much as the factor (1 - K/K s) * 2/3 appears throughout. Here K and 
K s are the tidal-effective and secular Love numbers. 

At the same time the suggestion to use the system xyz as an interme
diate system has met with some criticism, mainly because "there is no 
way at all of observing the angular momentum" (Jeffreys, 1963). How
ever, the mean of two positions of the axis of rotation taken 12 hours 
apart approximates the position of the angular momentum H. Thus ob
servations of the same star when it crosses the meridian above and 
below the pole are capable of giving the angle between the direction 
of H and the direction to the observed star (Fedorov et al., 1972). 

Fundamental declinations and latitudes obtained from upper and lower 
transit observations pertain to the angular momentum axis rather than 
to the instantaneous axis of rotation. Time and latitude services ob
serve the motion of stars relative to the terrestrial frame of refer
ence xyz, which enables the motion of the vector H to be obtained in 
the same frame (Fedorov, 1975). Several attempts were made to derive 
from observations the coefficients of the principal, semiannual and 
fortnightly terms of nutation. In the remainder of this paper, we 
shall be concerned with these terms only. 

Table 1 comprises the coefficients of circular motions of the rota
tional axis, the axis of figure and the angular momentum in the system 
xyz for both the rigid and deformable (elastic) Earth. The coeffi
cients are taken from McClure's Tables 9-1, 9-2. Note that the 
coefficients for the rigid Earth differ slightly from those for a 
deformable Earth. In Table 2 the perturbations 69 and 6i|;*sin 8 are 
given In the sense "the Euler angles of the angular momentum vector 
minus those of the z-axis of the conventional terrestrial system." 
Ultimately this system is to be related to the nonrotating axes XYZ, 
and in particular to the mean equatorial axes of date. This may be 
achieved by adding the values of 68 and 6\|;«sin 8 to the adopted nuta
tions of the angular momentum, which are independent of the internal 
structure of the Earth, and by subsequent rotation through the small 
angles u,v,w. 

If the Earth were an elastic body from its center to the surface the 
analysis of latitude and time observations would detect the following 
leading short-periodic terms: 

6(() = -0 ,:0020.sin(S-2L l) - 0:0046 sin(S-2L) 
6t = [0V0020 cos(S-2L T) + 0.*0046 cos(S-2L) ] tan <j> 

https://doi.org/10.1017/S0074180900031764 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900031764


Ta
bl

e 
1.
 

Te
rm

 
Ar

g.
 

Ro
ta

ti
on

 
ax

is
 

Ax
is

 
of

 
fi

gu
re

 
An

gu
la

r 
mo

me
nt

um
 

Te
rm

 
Ar

g.
 

Ri
gi

d 
Ea

rt
h 

De
fo

rm
. 

Ea
rt

h 
De

fo
rm

. 
Ea

rt
h 

Ri
gi

d 
Ea

rt
h 

De
fo

rm
. 

Ea
rt

h 

Pr
in

ci
pa

l 
ft

 
0:

00
11

8 
-0

-0
00

17
 

0.
'0
01
18
 

-0
.0

00
17

 
O'
.l
ll
OO
 

0.
01

62
3 

0:
00

11
7 

-0
.0

00
17

 
0:

00
08

1 
-0

.0
00

12
 

Se
mi

-a
nn

ua
l 

2L
f 

-0
.0

02
90

 
0.

00
01

2 
-0

.0
02

90
 

0.
00

01
2 

0.
27

18
6 

-0
.0

11
71

 
-0

.0
02

90
 

0.
00

01
2 

-0
.0

02
00

 
0.

00
00

8 

Fo
rt

ni
gh

tl
y 

2L
 

-0
.0

06
67

 
0.

00
02

5 
-0

.0
06

52
 

0.
00

02
5 

0.
58

24
1 

-0
.0

02
51

 
-0

.0
06

65
 

0.
00

02
5 

-0
.0

04
59

 
0.

00
01

7 

ft
 =
 
lo

ng
it

ud
e 
of

 
th

e 
me

an
 a

sc
en

di
ng

 
no

de
 
of
 
th

e 
lu

na
r 

or
bi

t 
on

 
th

e 
ec

li
pt

ic
. 

L1 
= 

so
la

r 
me

an
 
lo

ng
it

ud
e.

 
L 

= 
lu

na
r 

me
an

 
lo

ng
it

ud
e.

 

> H
 

O
 z > z a o -0
 

O
 r N
 w C/3
 

H
 W
 

PC
 

S to
 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
74

18
09

00
03

17
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0074180900031764


Ta
bl

e 
2.
 

Te
rm

 
Pe

ri
od

 
da

ys
 

Ti
da

l 
co

de
 

nu
mb

er
 

Ar
g.

 

66
 

6\
j;
*s
in
 0
 

Ri
gi

d 
De

fo
rm

. 
Ea

rt
h 

Ea
rt

h 
Ri

gi
d 

De
fo

rm
. 

Ea
rt

h 
Ea

rt
h 

Pr
in

ci
pa

l 
67

93
 

16
5.

56
5 

16
5.

54
5 

-O
VO

OI
OO

 
-0

V0
00

69
 

-0
:0

01
35

* 
-0

:0
00

93
 

Se
mi

-a
nn

ua
l 

18
3 

16
3.

55
5 

16
7.

55
5 

21
/ 

0.
00

27
7 

0.
00

19
3 

0.
00

30
2 

0.
00

20
8 

Fo
rt

ni
gh

tl
y 

13
.7

 
14

5.
55

5 
18

5.
55

5 
2L
 

0.
00

64
0 

0.
00

44
2 

0.
00

69
0 

0.
00

47
6 

*T
he

se
 
te

rm
s 

in
 M

cC
lu

re
's

 
Ta

bl
es

 
8-

3,
 
8-

4,
 
9-
3 

an
d 

9-
4 

ar
e 

gi
ve

n 
er

ro
ne

ou
sl

y 
wi

th
 
th

e 
po

si
ti

ve
 
si

gn
. 

o y -fl
 

tn
 

D
 

O
 

O
 < 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
74

18
09

00
03

17
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0074180900031764


Ta
bl

e 
3.
 

Nu
ta

ti
on

 
in
 
ob

li
qu

it
y 

Nu
ta

ti
on

 
in

 
lo

ng
it

ud
e 

2L
f 

2L
 

2L
1 

2L
 

Nu
ta

ti
on

s 
fo
r 

th
e 

an
gu

la
r 

mo
me

nt
um

 
ax

is
: 

Pe
rt

ur
ba

ti
on

s 
fo

r 
Oz

 a
xi

s:
 

fo
r 

ri
gi

d 
Ea

rt
h 

fo
r 

el
as

ti
c 

Ea
rt

h 

Ob
se

rv
ed

: 

9:
22

72
 

0:
55

22
 

0:
08

85
 

-0
-0

01
0 

0-
00

28
 

0.
00

64
 

-0
.0

00
7 

0.
00

19
 

0.
00

44
 

-0
.0

29
8 

0.
02

60
 

0.
00

80
 

-6
:8

73
3 

-0
:5

06
7 

-0
:0

81
2 

0.
00

14
 

-0
.0

03
0 

-0
.0

06
9 

0.
00

09
 

-0
.0

02
8 

-0
.0

04
8 

0.
02

96
 

-0
.0

26
3 

-0
.0

12
2 

z c H
 

> H
 

O
 

Z > z a o 3 r N
 

PI
 

?3
 

on
 

H
 m jo
 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
74

18
09

00
03

17
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0074180900031764


32 E. P. FEDOROV 

These equations result from (18), (19) and the data of Table 3. 
Formerly we obtained (Fedorov, 1963) 

64 = -0V0022 sin(S-2L f) - 0V0051 sin(S-2L) 

Now we shall turn to the case of the Earth composed of a mantle and a 
liquid core. In this case the conception of the rotational axis of 
the whole Earth loses its sense but that of the angular momentum vec
tor remains. Nutation of this vector will still be the same as in the 
case of a rigid Earth, and for descriptive purposes the conventional 
terrestrial system xyz may be considered as attached to the mantle. 

The effect of the liquid core manifests itself in the Euler angle 
perturbations 662 and 6i|>2

#sin 0 which may be deduced theoretically. 
This already has been done for several models of the Earth, but the 
discussion of the results so obtained is out of the scope of the 
present paper. 

However for estimating the perturbations 6 02 and 6^2 #sin 0 we may use 
another way^ namely the comparison of nutations of the angular momen
tum vector H obtained in the theory of the rotation of the rigid Earth 
with nutations of the z-axis derived from the analysis of observations. 
For this comparison we use our previous results (Fedorov, 1963), though 
it is hoped that after discussing some new determinations more reliable 
and precise values will be obtained. 

The perturbations 602 and 6\J/2
#sin 0 given in Table 3 should be added to 

the coefficients of nutation of the angular momentum vector in obliquity 
and longitude to obtain coefficients of nutation of the axis Oz. 
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