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ON THE LEAST POSITIVE EIGENVALUE OF THE LAPLACIAN
FOR THE COMPACT QUOTIENT OF A CERTAIN
RIEMANNIAN SYMMETRIC SPACE

HAJIME URAKAWA

§1. Introduction and statement of results

Let (M, g) be the standard Euclidean space or a Riemannian symmetric
space of non-compact type of rank one. Let G be the identity component
of the Lie group of all isometries of (M, g). Let I" be a discrete subgroup
of G acting fixed point freely on M whose quotient manifold M, is com-
pact. Let — 4, be the Laplace-Beltrami operator (cf. [4]) acting on smooth
functions on M, for the Riemannian metric g, on M, induced by g. The
compactness of M, implies that the spectrum of 4, forms a discrete subset
of the set of non-negative real numbers. Let 2(I") be the least positive
eigenvalue of 4,. Let vol (M) be the volume of (M, g;). Then we have

THEOREM A. Let (M, g) be the n-dimensional standard Euclidean space,
so that (M, g;) is a compact flat manifold. Then we have

» B . 2 n/2 2/n N i
(1) 2]([1) VO]. (M[’)Zl é n 1(2 + n)1 & [ [,(nn/z) ] [.’1:/2—1]2 K »
where the number j,,_, is the least positive zero point of the (n/2 — 1)-th
Bessel function ;.

Remark. Since j,,_, ~n/2 as n— oo (cf. [7] p. 1563), the right hand
side of (1) is (ze/2)n = (4.2699 - - -)n asymptotically as n — co.

Let p, = max, 2(I") vol (M,)”" where the maximum is taken over all
lattices I" of R*. For a lattice I" of R", the spectrum of the correspond-
ing flat torus (M., g,) is given by {4r’|x[; xe I'*}, where I'* is a dual
lattice of I, |x] = (x, x), x€ R" and (,) is the inner product of R* which
gives the standard Riemannian metric on R™ (cf. [1]). So we have A,(I)
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= 47’ mingc pv_(q | On the other hand, vol (M) = det (I'*)~"* (cf. [6]).
Here det (I™) is the determinant of the matrix ((b;, b,)):<:,7<n, Where {2,
is a basis of R" generating the lattice I'*. Then the above g, coincides
4z® times the largest possible value for the ratio

pI) = (_min [xF )t (7"
2 € I'*—(0)

where ['* varies over all lattices in R*. A problem to compute the value
u. for every n is related to the following classical problem (cf. [6] p. 34):
What is the maximum possible density for a union of non-overlapping balls
of fixed radius in R*? But until now the value g, is unknown for n = 9.
In 1905, H. Minkowski has given (cf. [6]) a lower estimate for p, by

Un > 471.2(0;2/7:

where w, is the volume of the unit disk in R" and 47’0;¥" ~ (2r/e)n =
(2.3115---)n as n—>oco0. On the other hand, in 1958, C. A. Rogers has
given (cf. [6]) an upper estimate for p, by

e = Qn

where the constant @, is (4z/e)n = (4.6229 - - -)n asymptotically as n — oo.
The above remark implies that Theorem A improves the result of Rogers
in the asymptotic sense.

TueoreM B. Let (M, g) be a Riemannian symmetric space of non-
compact type of rank one. Let G be the connected component of the Lie
group of all isometries of (M, g). We normalize g in such a way that it is
induced by the Killing form of the Lie algebra of G. Consider all discrete
subgroups I' of G acting fixed point freely on M whose quotient manifold
M, is compact. Then we have
(2) lim sup 2(I') < |F ,

vol (M p)—e

for a positive constant |3 depending only on (M, g) (cf. §2).

~

Notice that every real valued zonal spherical function ¢, on M cor-
responding to the principal series of G (cf. [10]) satisfies (cf. [3])

Aoy = (2F + 602, (AP = 0.

Here —4 is the Laplace-Beltrami operator of (M, g) and it satisfies (cf. § 4)
A(for) = (4rf) o w for every smooth function f on M, where = is the natural

https://doi.org/10.1017/5S0027763000018845 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018845

EIGENVALUE OF THE LAPLACIAN 139

projection of M onto M,. If (M, g) is the unit disc with the Poincaré
metric, then Theorem B has been obtained by H. Huber [5].

I would like to express my thanks to Professor T. Sunada for his
advices during the preparation of this paper.

§ 2. Preliminaries

In this section, following [2] and [3], we prepare some properties of
the zonal spherical functions on the Euclidean space or a Riemannian
symmetric space of non-compact type of rank one.

2.1. Let (M, g) be the standard Euclidean space (R, g). Let (x, - - -,
x,) be the orthonormal coordinate of R". Let —4 = > ,0"/dx} be the
Laplace-Beltrami operator on R". The zonal spherical functions on R”
(cf. [9]) are eigen-functions of 4 depending only on r = |x|, x ¢ R", whose
values at 0 are 1. For example (cf. [7]), for pe R (p > 0), consider the
functions

1-n/2
r(2)( ) o) £ 0),

(Dp(x) = {
1 (x=0).

Then @, is real analytic on R* and written as @,(x) = ¥ (r) where ¥ ,(s)
= Y(ps) and 4 is an even function on R defined by

Then ¥, satisfies the equation

d? n—1d
2.1 — v, — — U =pd,.
( ) dr2 ¥4 r dr D p y4
Recalling the general equality:
e P g n=10F
or? r or

for a rotationary invariant function Fe C*(R" — (0)), we get 40, = p*d,
(cf. [9]). Let j,.-, be the least positive zero point of ,,_,. Let f be the
even function on R by
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Ty(s), Mé—-”’z“ :

f(s) =

0, sl 2 Loesr
b

where 0 < e < 1. Then f satisfies

LeEmmA 2.1. (1) f belongs to C'(R) and the support of f is contained
in the set {|s| £ j..-1/p}, (2) [’ is continuous except the point |S| = j,._./D,
3 () = O|8| = jur-1[p™?), so f”e€L'(R), and (4) L(f) + 1 + e)p’f = 0
(8| # 0, j.j.-1/D), for the differential operator L, on R — (0) defined by
d’ n—1 d

+

L= ds? s ds

Proof. (1) and (2) are clear. (3) is due to the fact that the number
Juse-1 1s the zero point of J,,_, of first order (cf. [7] p. 151). By (2.1), we

have
2 avr,\*.._.
L(f) + @+ 9pf = L+ 9L Y ¥ 20,
for 0 <|s| <jnje-1/p, SO (4) holds. Q.E.D.
Let F be the function on R" defined by F(x) = f(|x]), xe R*. Then
we have

LemMa 2.2. F belongs to C(R") and CR" — y) where r, = {xe R";
|x| =0 or j,,..[p}, and the support of F is contained in the set {xc R";
|%| < juzoslp).  Moreover

(2.2) (4F)(x) = —(Lf)x))  (x+# 0) and 4Fec L'(R"),
2.3) AF < (1 + ¢)p°F on R* — y,.
Proofs are immediate from Lemma 2.1.

Due to Lemma 2.1, there exists a sequence {f,}n-, of smooth even
functions on R such that (6) f.(s) =f(s) (S| £ jue-1/2p) and f,(s) =0
(8] £ 2j,-1/p), (6) fr (resp.f,) converges to f (resp.f’) uniformly on R as
m—>co and (7) lim f " IFs) — f(s)) ds = 0.

Define F, ¢ C*(R") by F.(x) = f.(|x]), xe R*. Then by (5), (6) and (7),
the support of F, is included in the set {xe R";|x| < 2j,,,-./p}, F, con-
verges to F uniformly on R" and
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(2.4) lim [ |4F, — AF|dx =0,
R”

m— oo

where dx is the Lebesgue measure on R".

2.2. Let (]\71, £) be a Riemannian symmetric space of non-compact type
of rank one. Let G be the identity component of the Lie group of all
isometries of (I, g). Let K be the isotropy subgroup of G at some point
o of M. The subgroup K is a maximal compact subgroup of G. Let g,
(resp. f) be the Lie algebra of G (resp. K). Let g =f + p be the Cartan
decomposition of g corresponding to f. Then p is identified with the tangent
space of M at o. Let a be a maximal abelian subspace of p,a* its dual
and a} the complexification of a*. Then rank (M, g) = 1 means dima = 1.
Let B be the Killing form of g. We assume the Riemannian metric g on
M = G/K is induced by g.(X,, Y,) = B(X,Y), X, Yep, where X,, Y, are
the tangent vectors of M at o = {K} corresponding to X, Y, respectively.
For 1ea*, let H;ea be determined by A(H) = B(H,, H) for all Hea. Put
A, ) = B(H,, H,) for 2, pea*. We fix an order on a* once and for all.
Let X be the set of all non-zero restricted roots of (g,a) and X* the set
of positive elements in 3. For, ee X, let g, = {Xeq; [H, X] = «(H)X for
all He a}. Let denote m, = dim g, for a« € 2, which is called the multiplicity
of «. Let 6 =2"'> ,cs+m,. Let n=3,5+8, and N the connected
subgroup of G corresponding to n. Each ge G can be uniquely written
as g = k(g) exp (H(g))n(g) where x(g)e K, H(g)e a and n(g)e N. In case of
rank one, the zonal spherical functions on M mean the (complex valued)
K-invariant eigen-functions of the Laplace-Beltrami operator —4 of (M, 2)
whose values at o = {K} are 1. These functions are exhausted by ¢,(g) =

f eV-1-0HE) db 2¢ af, g€ G, where dk is the Haar measure on K such
K

that the total measure is 1. Here ¢, satisfies ¢,(gk) = ¢,(g) (g€ G, ke K)
and hence it is regarded as a function on M. Notice that 3* = {a, (2)}
and & = 27'(m, + 2m,,)a since M is of rank one. Let H, e a be the element
such that «(H) =1 and hence B(H, H) = 2(m, + 4m,,). For te R, put
h, = exp (tH,) ¢ A = exp (a). Then ¢ can be regarded as the coordinate on
the one dimensional Lie group A. Put x = —(sinh (¢))’. Since ¢, (h,) is
an even function of ¢, it is written as ¢,(h,) = g(x). Then g, satisfies

2
dzgl + ((a + b + l)x— C)—qgi = —abg'l1 s

(2.5) x(x — 1) I dr
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where a = 4-(m, + 2m,, + 2V —1A(H,)), b = 4 '(m, + 2m,, — 2v/ —1(H,))
and ¢ = 27'(m, + m,, + 1) (cf. [3] p. 301). Notice that a + b, ab and ¢ > 0.
Thus g,(x) is the hypergeometric function F(e, b, c; x). Moreover, each K-
invariant function F e C*(M — (o)) satisfies

—27(m, + 4m2a)(AF )(kh,-0)
= x(x — 1) (x) +{(a+ b+ 1)x — c)*(x)

(t + 0, ke K), where G is the function defined by F(f) = G(x) (cf. [3] p. 302).
Thus we have

27(m, + 4m,,)do, = abeg, .
If 2ea*, ¢, is real valued and has the following asymptotic behavior:

26)  lim[e"™p(h) — (e 4 o(— e THH) =0,
t—oo

where c¢(2) = I'(c)['(V —12(H))(a)'['(m, + 2 + 2+ —12(H,))"* (cf. [3] p. 303).
Let dg, be the volume element of (M, g). Then it is known (cf. [4]
p. 381) that

@7 [, fg-0des = ¢ Dgtrix

for every integrable K-invariant function f on M and g(x) = f(h,-0), x =
—(sinh (2))’. Here C is a positive constant which does not depend on f
and D(x) = (—x)> meatma=(] — )27 0mea)

2.3. First, we notice that if 1ea*, 1+ 0, then the function ¢, has
zero points. For, since |c(2)| = |c(—2)|, ¢(2) = c(—2), we have by (2.6)

@) ~ 2675 |c(2)] cos ((A(H,) + arg (c(D)),  6(H) >0,

as t—oo. So let —A,(0< A, < ) be the first zero point of g,(x), x < 0.
We consider also the function f, defined by

fix) = {g;(x)‘“ , —A,<x<0,
0, _°o<x<_A19

where 0 < ¢ <1, The continuous function f, on (— oo, 0] has the follow-
ing properties.

Lemma 2.3. (1) f; belongs to C'(— oo, 0] and the support of f; is con-
tained in the set {—A, < x < 0}, (2) f!’ is continuous on — oo < x < 0 except
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—A, (&) fi'(x) = O(x + A, so f’e L(—o0,0], and (4) Ly(f)(x) +
(1 + &abdfi(x) = 0, except x = 0, — A, for the differential operator L, on (— oo,
0] defined by

dZ

L= x(x—1
x(x ) i

Fa+b+Dx—o-% .
dx

Proof. (1) and (2) are clear. For (3), we may show that —A, is
the zero point of g, of first order. By the properties of the hypergeo-
metric function g(x) = F(a, b, c; x),

(=21 — x)**?7°'g) = —ab(—x)*"(1 — x)**""°g; .

Then G(x) = (—x)°(1 — x)***~°*'g; satisfies G'(x) <0 (—A4, < x<0) and
G(x)=0 (x=0, —A). Hence G(x) > G0) =0 (—A,<x<0), that is
gi(x) >0 (—A, =x<0). By (25),

L(f)(x) + (1 4 e)abfy(x) = (1 + e)ex(x — 1)(g2)’gi™* = 0
(—A,<x<0), so (4) holds. Q.E.D.

Define a function F, on A by Fi(h,) = fi(x), x = —(sinh (¢))®. Then it
belongs to C!(A) and is an even function, that is Fy(h,) = Fy(h_,). Hence
it can be extended to I uniquely as a K-invariant function, denoted by
the same letter F,. It satisfies the following properties.

LemMA 2.4. F, belongs to C'(M) and C*(M — 7.) Where 1, = {kh,-o0;
ke K, —(sinh () = 0, — A,}, and the support of F, is contained in the set
{kh,-0; ke K, —A, £ —(sinh (¢))’}. Moreover

(2.8 274(m, + 4my )(AF)(kh,-0) = —(L.f;)(x)
(t+0, ke K) and AF, e L(M),
(2.9) 2-Y(m, + 4m)AF, < (1 + &)abF, on M —y,,

where LNM) is the space of integrable functions on M with respect to the
volume element dg, in (2.7).

Proof. (2.8) follows from (2.7), (2.5) and Lemma 2.3. The remainds are
immediate from Lemma 2.3. Q.E.D.

Due to Lemma 2.3, there exists a sequence {F; ,}n.. of smooth even
functions on A such that (5) F, (k) = Fy(h,) (t|<¢/2) and F, (k) =0
(1t| = 2t,), where t, > 0 is given by —(sinh (¢,))’ = —A,, (6') F,, (resp. F;,)
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converges to F, (resp. F;) uniformly on A as m — oo, and (7))

lim | |F/u(h) — F/(h)|dt =0,

m—roo J —c0

where F; etc. means the differential of F, with respect to £. The functions
F,, can be extended as K-invariant C= functions on M, denoted by the
same letter F,,. Then the support of F,, is contained in the set {kh,-o;
ke K,|t| < 2}, F,, converges to F, uniformly on M and

(2.10) lim | |4F,, — AF,dgx = 0
M

m—oo

by (5", (6), (7)), (2.5) and (2.7).

§3. Proof of Theorem A

3.1. In this section, we preserve the notations in 2.1 and introduction.
Let = denote the projection of R” onto M. For ye I, let z, be the action
of y on R". The Laplace-Beltrami operator —4, on M, satisfies 4(forn) =
4,rf)or for twice differentiable functions f on M. The volume element
on M, induced by dx is denoted by dw. Let & be the fundamental domain
in R" for I', that is &# = {xe R*; |x| < |x — 7,-0| for all yeI'}. It is known
(cf. [7]) that
3.1) Rr=Ur,F and ¢, FNF

rer

has measure 0 for every yel', y 1.

Now since the functions F and F,, have the compact supports, we can
define the [-invariant functions § and 6,, on R" by

6= For,, On = 2 Fporz,.

rer r€r
Then there exist functions ¢ and ¢, on M, such that gpon =46, ¢, on = 6,,.

These functions have the following properties:

LemMmaA 3.1. (1) The function ¢ belongs to C'(M;) and C*(M, — n(yy)),
and 4,¢ belongs to L'(M;), (2) drp < (1 + ¢)p’e on M, — =(y,), and (3)
¢on € C=(M}) converges to ¢ uniformly on M, as m — oo, and
lim |4r¢n — dro|do =0 .

Mr

Mm—oo

Moreover (4)
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lim [ on(dron)do = j o(4r0)do .
Mp My

m—sco

Proof. (1), (2) and (3) follow from Lemma 2.2 and (2.4). The inequality

[, ortdepdo = [ odrprdo)

|
= hdrﬁﬂm - Ar?”( -Sup (@ | + ([ 4r@llziory - SUP (90 — |,
l ) Mp Mr

Ly p

together with (3), implies (4). Q.E.D.

Notice that

Fniz—1

@2 er pdw = V,_,p™" W(r)eriidr,

0

(3.3) gdo 2 V,..p™" fjmm Wy oo dr
0

Mr

where V,_, = 2z"['(n/2)~' is the total measure of the unit sphere S™-*
with respect to the measure induced by the volume element dx on R*. In
fact, by (3.1) and the definitions of ¢, § and F, we have

pdo = I 0dx

Mr

=3 | (For)dx

re€Er J &

- f Fdx
User =¥

= Fdx

R7

Jnlz—1

= Voop [y
0

(3.2) follows from the inequality for the integrand:
0= 2, (For)(For,) =z 2, (For),
rr’€r rer

which follows from F > 0.

3.2. It is known (cf. [1] p. 186) that the least positive eigenvalue
(") of 4, satisfies the inequality

3.4) jM WArmdo = () LF rdo
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for all »e C=(M;) such that
f pdo = 0.
Mp
We apply (3.4) for = ¢, — a,, Where
o = vol (Mp)™* j ondo .
Mp
Then we have
2
2 _ -1
fMP On(dron)do = A(I) [L{P ¢tdw — vol (M) (L{p gomdw) ] .
As m — oo, we have
2
) _ -1
(3.5) f ., Adr)do = 4(T) UM, ddw — vol (M) ( f . ;odw)]
by (8) and (4) in Lemma 3.1. Since #(y,) has measure 0, we have
(3.6 [, dtrpdo<+op| ¢do
Mp Mrp
by (2) in Lemma 3.1. Then, by (3.5) and (3.6),
2 =1
ZI(F)[I — vol (M}) lqu godw) (Ll, gozdm) ] <1+ op*.

Hence, together with (3.2) and (3.3), we have

jal2—1

zl(r)[l_ PV, vol (MF)_I(L T dr)z
X ([ woperoran) ] s @+ op

Letting ¢ — 0, we obtain
ProrositioN 3.1. Under the above situation, we have

A < inf {p*[1 — V,_ K, vol (M;)"'p~"]"%;
p>0

- 1= V...K, vol (M;)"'p™" > 0}
where

K= ([ wrar) ([ vayrar)
and
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n -1
Voo = 27:"/2F<~2—> .

3.3. We calculate the right hand side of (3.7). Since

W(r) = F(-’zi)(g)l'"’ifn,z-xr) ,

we have

K, = ([ duusyrrar) ([ Josryrar)
0 0
Since the derivative of o, (r)r*? (vesp. (r*[2)(J, s i(T)} — Jupo-oT) (1)) is
S orIr*® (resp. J,,_(r)r) (cf. [7] p. 189), we have

K, = (JuJnr-Dnsz- D"V G- ) (— Vs s(fnse-DnrplGae-) 7"
= (o iUnr2- D)"Y GUrnse- VoG- 0D
0y Jos(n-1) + Jappesiin-1) = 0 (cf. [7] p. 158)) ,
= 2(jup-0)""" .

Put
G(p) = p’1 — V,..K, vol (M;)"p~")""
and
po= 272+ n)V, K, vol (M;)~)"" .
If1-V,.,K,vol(M;)"'p=" > 0, then
GP)<0(@<p), G({@>0(p>p)and G(p)=0.
So we have
inf{G(p); 1 — V.. K, vol (Mp)"p™" > 0} = G(py)
= 270K + " (V,_ K, vol (M) )"

n/2 2/n
= 7@ () G vl (M)

Thus Theorem A is proved.

§4. Proof of Theorem B

4.1. In this section, we preserve the notations in 2.2, 2.3 and intro-
duction. Theorem B will be proved by the same way as Theorem A. Let
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z denote the projection of M onto M,. For rel’, let ¢, be the action of
7 on M. The Laplace-Beltrami operator —4, on M satisfies A(for) =
(4:f) o n for all twice differentiable functions f on M,. The volume element
on M, induced by dg, is denoted by dw. Let % be the fundamental do-
main in M for I, that is &F = {g-0¢ M; r(g-0,0) <r(g-o.t,-0) for all yeI'}
where r(-, -) is the distance function on (M, g). It is known (for example,
cf. [2] ) that

(4.1) M=t and ¢ FNZF

7€l

has measure 0 for all yeI', y + 1.
Since F, and F, ,, have the compact supports, we define the I'-invariant
functions 6, and 4,,, on M by

0,= 2, Fioz,, Orn =2, Fimor, .

rerl €l
Then there exist functions ¢; and ¢,, on M, such that ¢,ox =6, and

Qime® = 0,,. These functions have the following properties.

Lemma 4.1. (1) The function ¢, belongs to C'(M;) and C*(M, — (1)),
and 4dr¢p, belongs to L'(M;), (2) 27(m, + 4m,)dro, < (1 + e)abp, on M, —
7(y.), and (3) @1, € C°(M;) converges to ¢, uniformly on M, as m — o and

lim | 4r@am — 4r@aldo = 0.
Mr

m—oo

Moreover (4)

lim [ pualdrpunddo = [ o(droddo
Mp Mp

Proofs are similar to Lemma 3.1.

Notice that

0
“2) [, odo=[, Fdex=c[ D@eydx,

4.3) Gido > Cf’ D(®)g,(xyodx .
~43

Mr

Then, due to (4.2), (4.3) and Lemma 4.1, we have the following prop-
osition by the similar manner to Proposition 3.1.

ProposiTioN 4.1. Under the above assumption, we obtain
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(44 AL — Cvol (M) K] < 2(m, + 4m,,)"'ab

where
0 2 0 -1
K = ([ D@ewdx) ([ Dweawrds)",
the constant C and the function D(x) are the ones in (2.7).

4.2. We prove Theorem B due to Proposition 4.1. We fix any 1¢ a¥,
2+# 0. For a discrete subgroup I' of G with sufficiently large vol (M)
such that vol (M) > CK,, we have, by Proposition 4.1,

(M < 2(m, + 4m,) 'ab[l — Cvol (M,)'K;]™".
Hence, by the definition of ¢ and b, we have

lim sup A(") < 2(m, + 4m,,) 'ab
vOL (M p)—oo
' = J(m, + 4my,) " (m, + 4m,) + AA(H,Y)
for every 2ea*, 1+0. So we have

lim sup 2,(I") < §(m, + 4m,,)"'(m, + 2m,,)* .

vol (M p)—eo

Here B(H, H) = 2(m, + 4m,,) implies that the right hand side of the
above inequality coincides with |6F = (3, 8). Thus Theorem B is proved.

§5. Supremum of L’ spectrum

For a complete orientable Riemannian manifold (M, g) (not necessarily
compact), consider

|, e,
oM, g)= inf L*
pE 0P () 9
fM ¢'du,

where C*(M) is the space of all real valued C* functions on M with com-

’

pact support, —4, is the Laplace-Beltrami operator of (1, g) acting on
smooth functions on M, and dv, is the volume element of (44, g) (cf. [11]).
Then o(M, g) = 0 and it is called the supremum of the L* spectrum of
(M, g) (cf. [11]). Since the operator 4, is a real symmetric operator, we
notice that

| @,
oM,g)= inf 4%
pcceanC _
fM Ppdu,

b
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where Cy(M)° is the space of all complex valued C= functions on M with
compact support, and #(x), x € M, is the complex conjugate of ¢(x).

In this section, we calculate ¢(M, g) when (M, g) is a Riemannian
symmetric space of non-compact type of rank one. We preserve the nota-
tions in § 2.

ProposITION 5.1. Let (M, g) be a Riemannian symmetric space of non~
compact type (not necessarily of rank one). We normalize g in such a way
that it is induced by the Killing form of the Lie algebra g of the connected
component G of the Lie group of all isometries of (M,g). Then we have

o(M, g) = |of

where |6| is the norm of 6 = %> .cz+ ma by the inner product induced
from the Killing form as in §2.

Proof. It holds (cf. [10]) that

G [ @hfdgc=C[  (4frG GBI didk,

*X K/Z g (a)

for each fe Co(M). Here C is a positive constant, not depending on f,
Zx(a) is the centralizer of a in K, f(3, k) (1€ a*, ke K|Z(a)) is the Fourier
transform of f defined by

f(z, k) = J‘- f(g.O)e—(J?ll+J)H(g—1k)dgK ,
M

d2 is the Euclidean measure on a*, and dk is the measure on K/Z(a)
induced by the Haar measure dk on K (cf. [10]). Since (4,/)~(3, k) =
(27 + [8PF, B) (cf. [12] p. 92, [13] p. 458),

the right hand side of (5.1)
zjopC| | WPl dadk
o*X K/Z g (a)

— |oF [, fTdgx .
Thus we have o(}, g) > |oL. Q.E.D.

In particular, when (M, g) is of rank one, the following theorem holds.

TueoreMm C. Let (M, g) be a Riemannian symmetric space of non-
compact type of rank one. We normalize g as in Proposition 5.1. Then we
have
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o(M, g) = |oF .

Proof. We may prove o(M, g) < |6F. We use the notations in 2.3.
Since the supports of F, and F,,, m = 1,2, --- are contained in the set
{kh,-0; ke K,0 <t<2t}, and F,, converges to F, uniformly on M,

(.2) lim [ F2.dg, = I Fdg, .
m—oo J M i

Moreover we have

5. lim [ (4, )Fyndgx = [ (4F)Fdg. .

In fact, it follows from the inequality

|, AP\ F.ndsx — [ (4FIF.de.
S 4Fm — 4, Fllpaan S;l?p | Eom| + |4 Flacary S‘;p |\ Eym — F3l,

(2.10), (2.8) and Lemma 2.4.
Thus we have

(5.4 o(L,g) [ Fdg. < [ (4,F)Fdgs,

by (5.2), (5.3) and the definition of o(, g). Moreover we estimate
the right hand side of (5.4)
< 2m, + 4m.)"(L + 9ab [ Fidg,
due to (2.9). Then
o(M, g) < 2(m, + 4m,) (1 + e)ab
for every 0 <e¢<1and 0= 2ca*. Thus we have ¢(J, g) < |6. Q.E.D.

Remark. Due to 2.1, it is proved by the similar way to Theorem C,
that

o(R", 8) =10,

where (R", g) is the standard Euclidean space.
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